The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition
Abstract
:1. Introduction
2. Composition of the Genus Capsicum
2.1. Nutritional Composition
2.2. Bioactive Compounds Found in Chili Peppers
2.2.1. Phenolic Compounds
Flavonoids
2.2.2. Capsaicinoids and Capsinoids
3. Bioactivities Associated with Polyphenols and Capsaicinoids of the Genus Capsicum
3.1. Antioxidant Activity
3.2. Antimicrobial Activity
3.3. Anti-Inflammatory Activity
3.4. Antihypertensive Activity
3.5. Antihyperglycemic Activity
3.6. Metal-Chelating Activity
3.7. Antitumoral Activity
4. Incorporation of Polyphenols and Capsacinoids from Capsicum on Food and Cosmetics Products
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palma, J.M.; Terán, F.; Contreras-Ruiz, A.; Rodríguez-Ruiz, M.; Corpas, F.J. Antioxidant Profile of Pepper (Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants 2020, 9, 878. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.A.; Mahmood, T.; Ali, M.; Saeed, A.; Maalik, A. Pharmacological importance of an ethnobotanical plant: Capsicum annuum L. Nat. Prod. Res. 2014, 28, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kang, Y.-H. In Vitro Inhibitory Potential against Key Enzymes Relevant for Hyperglycemia and Hypertension of Red Pepper (Capsicum annuum L.) Including Pericarp, Placenta, and Stalk. J. Food Biochem. 2014, 38, 300–306. [Google Scholar] [CrossRef]
- Idrees, S.; Hanif, M.A.; Ayub, M.A.; Hanif, A.; Ansari, T.M. Chili Pepper. In Medicinal Plants of South Asia: Novel Sources for Drug Discovery, 1st ed.; Hanif, M., Nawaz, H., Khan, M., Byrne, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 113–124. ISBN 9780081026595. [Google Scholar]
- Żurawik, A.; Jadczak, D.; Panayotov, N.; Żurawik, P. Macro- and micronutrient content in selected cultivars of Capsicum annuum L. depending on fruit coloration. Plant, Soil Environ. 2020, 66, 155–161. [Google Scholar] [CrossRef]
- Del Valle-Echevarria, A.R.; Kantar, M.B.; Branca, J.; Moore, S.; Frederiksen, M.K.; Hagen, L.; Hussain, T.; Baumler, D.J. Aeroponic Cloning of Capsicum spp. Horticulturae 2019, 5, 30. [Google Scholar] [CrossRef]
- Carvalho, A.V.; de Andrade Mattietto, R.; de Oliveira Rios, A.; de Almeida Maciel, R.; Moresco, K.S.; de Souza Oliveira, T.C. Bioactive compounds and antioxidant activity of pepper (Capsicum sp.) genotypes. J. Food Sci. Technol. 2015, 52, 7457–7464. [Google Scholar] [CrossRef]
- Hervert-Hernández, D.; Sáyago-Ayerdi, S.G.; Goñi, I. Bioactive Compounds of Four Hot Pepper Varieties (Capsicum annuum L.), Antioxidant Capacity, and Intestinal Bioaccessibility. J. Agric. Food Chem. 2010, 58, 3399–3406. [Google Scholar] [CrossRef]
- Mokhtar, M.; Russo, M.; Cacciola, F.; Donato, P.; Giuffrida, D.; Riazi, A.; Farnetti, S.; Dugo, P.; Mondello, L. Capsaicinoids and Carotenoids in Capsicum annuum L.: Optimization of the Extraction Method, Analytical Characterization, and Evaluation of its Biological Properties. Food Anal. Methods 2016, 9, 1381–1390. [Google Scholar] [CrossRef]
- Castro-Concha, L.A.; Tuyub-Che, J.; Moo-Mukul, A.; Vazquez-Flota, F.A.; Miranda-Ham, M.L. Antioxidant Capacity and Total Phenolic Content in Fruit Tissues from Accessions of Capsicum chinense Jacq. (Habanero Pepper) at Different Stages of Ripening. Sci. World J. 2014, 2014, 809073. [Google Scholar] [CrossRef]
- Campos, M.R.S.; Gómez, K.R.; Ordo~Nez, Y.M.; Ancona, D.B. Polyphenols, Ascorbic Acid and Carotenoids Contents and Antioxidant Properties of Habanero Pepper (Capsicum chinense) Fruit. Food Nutr. Sci. 2013, 04, 47–54. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.D.J.; Cira-Chávez, L.A.; Gardea-Béjar, A.A.; Guevara-Arauza, J.C.; Sepúlveda, D.R.; Reyes-Hernández, J.; Ruiz-Cruz, S. Effect of heat treatment on the content of some bioactive compounds and free radical-scavenging activity in pungent and non-pungent peppers. Food Res. Int. 2013, 50, 519–525. [Google Scholar] [CrossRef]
- Nascimento, P.L.A.; Nascimento, T.C.E.S.; Ramos, N.S.M.; Silva, G.R.; Gomes, J.E.G.; Falcão, R.E.A.; Moreira, K.A.; Porto, A.L.F.; Silva, T.M.S. Quantification, Antioxidant and Antimicrobial Activity of Phenolics Isolated from Different Extracts of Capsicum frutescens (Pimenta Malagueta). Molecules 2014, 19, 5434–5447. [Google Scholar] [CrossRef]
- Cerón-Carrillo, T.; Munguía-Pérez, R.; García, S.; Santiesteban-López, N.A. Actividad Antimicrobiana de Extractos de Diferentes Especies de Chile (Capsicum). Re Ib Ci 2014, 1, 213–221. [Google Scholar]
- Zimmer, A.R.; Leonardi, B.; Miron, D.; Schapoval, E.; de Oliveira, J.R.; Gosmann, G. Antioxidant and anti-inflammatory properties of Capsicum baccatum: From traditional use to scientific approach. J. Ethnopharmacol. 2012, 139, 228–233. [Google Scholar] [CrossRef]
- Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Evaluation of pepper (Capsicum annuum) for management of diabetes and hypertension. J. Food Biochem. 2006, 31, 370–385. [Google Scholar] [CrossRef]
- Menichini, F.; Tundis, R.; Bonesi, M.; Loizzo, M.R.; Conforti, F.; Statti, G.A.; de Cindio, B.; Houghton, P. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chem. 2009, 114, 553–560. [Google Scholar] [CrossRef]
- Oboh, G.; Puntel, R.; da Rocha, J.B.T. Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain—In vitro. Food Chem. 2007, 102, 178–185. [Google Scholar] [CrossRef]
- Siddiqui, M.W.; Momin, C.M.; Acharya, P.; Kabir, J.; Debnath, M.K.; Dhua, R.S. Dynamics of changes in bioactive molecules and antioxidant potential of Capsicum chinense Jacq. cv. Habanero at nine maturity stages. Acta Physiol. Plant. 2013, 35, 1141–1148. [Google Scholar] [CrossRef]
- Shanmugaprakash, M.; Jayashree, C.; Vinothkumar, V.; Senthilkumar, S.; Siddiqui, S.; Rawat, V.; Arshad, M. Biochemical characterization and antitumor activity of three phase partitioned l-asparaginase from Capsicum annuum L. Sep. Purif. Technol. 2015, 142, 258–267. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.-R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 2011, 72, 1358–1370. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.-R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary Metabolites of Capsicum Species and Their Importance in the Human Diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, T.L.; Afolayan, A.J. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: A review. Food Sci. Nutr. 2018, 6, 2239–2251. [Google Scholar] [CrossRef] [PubMed]
- Barboza, G.E.; García, C.C.; Bianchetti, L.D.B.; Romero, M.V.; Scaldaferro, M. Monograph of wild and cultivated chili peppers (Capsicum L., Solanaceae). Phytokeys 2022, 200, 1–423. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.V.; Shah, N.D.; Patrekar, P.V. Medicinal Plants from Solanaceae Family. Res. J. Technol. 2013, 6, 143–151. [Google Scholar]
- Costa, J.; Sepúlveda, M.; Gallardo, V.; Cayún, Y.; Santander, C.; Ruíz, A.; Reyes, M.; Santos, C.; Cornejo, P.; Lima, N.; et al. Antifungal Potential of Capsaicinoids and Capsinoids from the Capsicum Genus for the Safeguarding of Agrifood Production: Advantages and Limitations for Environmental Health. Microorganisms 2022, 10, 2387. [Google Scholar] [CrossRef] [PubMed]
- Máthé, A.; Bandoni, A. Medicinal and Aromatic Plants in the Southern Cone. In Medicinal and Aromatic Plants of South America, 1st ed.; Máthé, A., Baldoni, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 2, pp. 3–48. [Google Scholar]
- Espichán, F.; Rojas, R.; Quispe, F.; Cabanac, G.; Marti, G. Metabolomic characterization of 5 native Peruvian chili peppers (Capsicum spp.) as a tool for species discrimination. Food Chem. 2022, 386, 132704. [Google Scholar] [CrossRef]
- Sahid, Z.D.; Syukur, M.; Maharijaya, A.; Nurcholis, W. Quantitative and qualitative diversity of chili (Capsicum spp.) genotypes. Biodiversitas J. Biol. Divers. 2022, 23, 895–901. [Google Scholar] [CrossRef]
- Aguilar-Meléndez, A.; Vásquez-Dávila, M.A.; Manzanero-Medina, G.I.; Katz, E. Chile (Capsicum spp.) as Food-Medicine Continuum in Multiethnic Mexico. Foods 2021, 10, 2502. [Google Scholar] [CrossRef]
- Meneses Lazo, R.E.; Garruña, R. El cultivo del chile habanero (Capsicum chinense Jacq.) como modelo de estudio en México. Trop Subtrop. Agrosyst. 2020, 23, 1–17. [Google Scholar]
- Norma Oficial Mexicana NOM-189-SCFI-2017, Chile Habanero de la Península de Yucatán (Capsicum chinense Jacq.)—Especificaciones y Métodos de Prueba. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5513923&fecha=21/02/2018#gsc.tab=0 (accessed on 9 April 2023).
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef]
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicum, 2nd ed.; Bosland, P.W., Votava, E.J., Eds.; CABI: Wallingford, UK, 2012; pp. 1–11. [Google Scholar]
- Market Reports World Global Capsicum Industry Research Report Competitive Landscape Market—Industry Reports. Available online: https://www.marketreportsworld.com/global-capsicum-industry-research-report-2023-competitive-landscape-market-22367246 (accessed on 13 March 2023).
- FAOSTAT Crops and Livestock Products. Available online: https://www.fao.org/faostat/es/#data/QCL/visualize (accessed on 27 March 2023).
- Servicio de Información Agroalimentaria y Pesquera (SIAP) Producción Agrícola. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2022/Panorama-Agroalimentario-2022 (accessed on 9 April 2023).
- Ramírez-Sucre, M.O.; Oney-Montalvo, J.E.; Lope-Navarrete, M.C.; Barron-Zambrano, J.A.; Herrera-Corredor, J.A.; Cabal-Prieto, A.; Rodríguez-Buenfil, I.M.; Ramírez-Rivera, E.D.J. Authenticity markers in habanero pepper (Capsicum chinense) by the quantification of mineral multielements through ICP-spectroscopy. Food Sci. Technol. 2022, 42, e24121. [Google Scholar] [CrossRef]
- Echave, J.; Pereira, A.G.; Carpena, M.; Ángel Prieto, M.; Simal-Gandara, J. Capsicum Seeds as a Source of Bioactive Compounds: Biological Properties, Extraction Systems, and Industrial Application. In Capsicum, 1st ed.; Dekebo, A., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-83880-942-3. [Google Scholar]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J. Food Compos. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aslam Maan, A.; Khan, M.K.I.; Nadeem, M.; Khalil, A.A.; Din, A.; Aadil, R.M. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-related Matrices. Food Rev. Int. 2022, 38, 1166–1196. [Google Scholar] [CrossRef]
- Oney-Montalvo, J.; Uc-Varguez, A.; Ramírez-Rivera, E.; Ramírez-Sucre, M.; Rodríguez-Buenfil, I. Influence of Soil Composition on the Profile and Content of Polyphenols in Habanero Peppers (Capsicum chinense Jacq.). Agronomy 2020, 10, 1234. [Google Scholar] [CrossRef]
- Deepa, N.; Kaur, C.; George, B.; Singh, B.; Kapoor, H. Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT 2007, 40, 121–129. [Google Scholar] [CrossRef]
- Escalante-Araiza, F.; Gutiérrez-Salmeán, G. Traditional Mexican foods as functional agents in the treatment of cardiometabolic risk factors. Crit. Rev. Food Sci. Nutr. 2021, 61, 1353–1364. [Google Scholar] [CrossRef]
- Hornero-Méndez, D.; Costa-García, J.; Mínguez-Mosquera, M.I. Characterization of Carotenoid High-Producing Capsicum annuum Cultivars Selected for Paprika Production. J. Agric. Food Chem. 2002, 50, 5711–5716. [Google Scholar] [CrossRef] [PubMed]
- Guía-García, J.L.; Charles-Rodríguez, A.V.; Reyes-Valdés, M.H.; Ramírez-Godina, F.; Robledo-Olivo, A.; García-Osuna, H.T.; Cerqueira, M.A.; Flores-López, M.L. Micro and nanoencapsulation of bioactive compounds for agri-food applications: A review. Ind. Crop. Prod. 2022, 186, 115198. [Google Scholar] [CrossRef]
- Materska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L.). J. Funct. Foods 2014, 7, 269–277. [Google Scholar] [CrossRef]
- Narez-Jiménez, C.A.; De-La-Cruz-Lázaro, E.; Gómez-Vázquez, A.; Castañón-Nájera, G.; Cruz-Hernández, A.; Márquez-Quiroz, C. La diversidad morfológica in situ de chiles silvestres (Capsicum spp.) de Tabasco, México. Rev. Fitotec. Mex. 2014, 37, 209. [Google Scholar] [CrossRef]
- Paran, I.; Ben-Chaim, A.; Kang, B.-C.; Jahn, M. Capsicums. In Vegetables, 1st ed.; Chittaranjan, K., Ed.; Springer: Berlin, Germany, 2007; pp. 209–226. [Google Scholar] [CrossRef]
- Yang, N.; Galves, C.; Goncalves, A.C.R.; Chen, J.; Fisk, I. Impact of capsaicin on aroma release: In vitro and in vivo analysis. Food Res. Int. 2020, 133, 109197. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Garcia, S.N.; Vázquez-Cruz, M.A.; Miranda-Lopez, R.; Garcia-Mier, L.; Guevara-González, R.G.; Feregrino-Perez, A.A. Effect of Elicitors as Stimulating Substances on Sensory Quality Traits in Color Sweet Bell Pepper (Capsicum annuum L. cv. Fascinato and Orangela) Grown under Greenhouse Conditions. Pol. J. Food Nutr. Sci. 2018, 68, 359–365. [Google Scholar] [CrossRef]
- Servicio de Información Agropecuaria y Pesquera (SIAP). Un Panorama Del Cultivo Del Chile; Mexico. 2010. Available online: http://infosiap.siap.gob.mx/images/stories/infogramas/100705-monografia-chile.pdf (accessed on 9 April 2023).
- Anaya-Esparza, L.M.; la Mora, Z.V.-D.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA) Food Data Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/170108/nutrients (accessed on 8 April 2023).
- Maji, A.K.; Banerji, P. Phytochemistry and gastrointestinal benefits of the medicinal spice, Capsicum annuum L. (Chilli): A review. J. Complement. Integr. Med. 2016, 13, 97–122. [Google Scholar] [CrossRef]
- Alam, A.; Saleh, M.; Mohsin, G.; Nadirah, T.A.; Aslani, F.; Rahman, M.M.; Roy, S.K.; Juraimi, A.S.; Alam, M.Z. Evaluation of phenolics, capsaicinoids, antioxidant properties, and major macro-micro minerals of some hot and sweet peppers and ginger land-races of Malaysia. J. Food Process. Preserv. 2020, 44, e14483. [Google Scholar] [CrossRef]
- Schulze, B.; Spiteller, D. Capsaicin: Tailored Chemical Defence against Unwanted “Frugivores”. Chembiochem 2009, 10, 428–429. [Google Scholar] [CrossRef]
- Jeong, W.Y.; Jin, J.S.; Cho, Y.A.; Lee, J.H.; Park, S.; Jeong, S.W.; Kim, Y.-H.; Lim, C.-S.; El-Aty, A.M.A.; Kim, G.-S.; et al. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. J. Sep. Sci. 2011, 34, 2967–2974. [Google Scholar] [CrossRef]
- Junior, S.B.; Tavares, A.M.; Filho, J.T.; Zini, C.A.; Godoy, H.T. Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Res. Int. 2012, 48, 98–107. [Google Scholar] [CrossRef]
- Fabela-Morón, M.F.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T.; Pacheco, N. Trends in Capsaicinoids Extraction from Habanero Chili Pepper (Capsicum chinense Jacq.): Recent Advanced Techniques. Food Rev. Int. 2019, 36, 105–134. [Google Scholar] [CrossRef]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in Phytochemical and Antioxidant Activity of Selected Pepper Cultivars (Capsicum Species) As Influenced by Maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef]
- Gayathri, N.; Gopalakrishnan, M.; Sekar, T. Phytochemical screening and antimicrobial activity of Capsicum chinense Jacq. Int. J. Adv. Pharm. 2016, 5, 12–20. [Google Scholar]
- Spiller, F.; Alves, M.K.; Vieira, S.M.; Carvalho, T.A.; Leite, C.E.; Lunardelli, A.; Poloni, J.A.; Cunha, F.Q.; de Oliveira, J.R. Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation. J. Pharm. Pharmacol. 2008, 60, 473–478. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Kim, H.-W.; Lee, M.-K.; Kim, H.-J.; Kim, J.-B.; Choe, J.-S.; Lee, Y.-M.; Jang, H.-H. Antioxidant and Anti-Inflammatory Activities in Relation to the Flavonoids Composition of Pepper (Capsicum annuum L.). Antioxidants 2020, 9, 986. [Google Scholar] [CrossRef]
- Galvez-Ranilla, L.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J. Funct. Foods 2011, 3, 44–49. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, L.; Sun, L.; Cao, J. Bioactive characteristics and antioxidant activities of nine peppers. J. Funct. Foods 2012, 4, 331–338. [Google Scholar] [CrossRef]
- Chávez-Mendoza, C.; Sanchez, E.; Muñoz-Marquez, E.; Sida-Arreola, J.P.; Flores-Cordova, M.A. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper. Antioxidants 2015, 4, 427–446. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Menichini, F.; Tundis, R. Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. LWT 2015, 64, 623–631. [Google Scholar] [CrossRef]
- Tundis, R.; Menichini, F.; Bonesi, M.; Conforti, F.; Statti, G.; Menichini, F.; Loizzo, M.R. Antioxidant and hypoglycaemic activities and their relationship to phytochemicals in Capsicum annuum cultivars during fruit development. LWT 2013, 53, 370–377. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- de Araújo, F.F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.; Kalita, D.; Bartolo, M.E.; Jayanty, S.S. Capsaicinoids, Polyphenols and Antioxidant Activities of Capsicum annuum: Comparative Study of the Effect of Ripening Stage and Cooking Methods. Antioxidants 2019, 8, 364. [Google Scholar] [CrossRef]
- Bauer, J.L.; Harbaum-Piayda, B.; Schwarz, K. Phenolic compounds from hydrolyzed and extracted fiber-rich by-products. LWT 2012, 47, 246–254. [Google Scholar] [CrossRef]
- Singh, N.; Yadav, S.S. A review on health benefits of phenolics derived from dietary spices. Curr. Res. Food Sci. 2022, 5, 1508–1523. [Google Scholar] [CrossRef]
- Linares, I.B.; Arraez-Roman, D.; Herrero, M.; Ibanez, E.; Segura-Carretero, A.; Gutierrez, A.F. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 7682–7690. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Gutierrez, A.F. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Zapata, P.J.; Castillo, S.; Guillén, F.; Martínez-Romero, D.; Valero, D. Antioxidant and nutritive constituents during sweet pepper development and ripening are enhanced by nitrophenolate treatments. Food Chem. 2010, 118, 497–503. [Google Scholar] [CrossRef]
- Dubey, R.K.; Singh, V.; Upadhyay, G.; Pandey, A.; Prakash, D. Assessment of phytochemical composition and antioxidant potential in some indigenous chilli genotypes from North East India. Food Chem. 2015, 188, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Oney-Montalvo, J.E.; Avilés-Betanzos, K.A.; Ramírez-Rivera, E.d.J.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Polyphenols Content in Capsicum chinense Fruits at Different Harvest Times and Their Correlation with the Antioxidant Activity. Plants 2020, 9, 1394. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Nicácio, A.E.; Jardim, I.; Visentainer, J.; Maldaner, L. Determination of Phenolic Compounds in Red Sweet Pepper (Capsicum annuum L.) using a modified QuEChERS method and UHPLC-MS/MS analysis and its relation to antioxidant activity. J. Braz. Chem. Soc. 2019, 30, 1229–1240. [Google Scholar] [CrossRef]
- Lemos, V.C.; Reimer, J.J.; Wormit, A. Color for Life: Biosynthesis and Distribution of Phenolic Compounds in Pepper (Capsicum annuum). Agriculture 2019, 9, 81. [Google Scholar] [CrossRef]
- Ferreyra, M.L.F.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef]
- Terahara, N. Flavonoids in Foods: A Review. Nat. Prod. Commun. 2015, 10, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Romano, B.; Pagano, E.; Montanaro, V.; Fortunato, A.L.; Milic, N.; Borrelli, F. Novel Insights into the Pharmacology of Flavonoids. Phytother. Res. 2013, 27, 1588–1596. [Google Scholar] [CrossRef]
- Ribes-Moya, A.M.; Adalid, A.M.; Raigón, M.D.; Hellín, P.; Fita, A.; Rodríguez-Burruezo, A. Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: Effect of the genotype, ripening stage, and growing system. J. Sci. Food Agric. 2020, 100, 2208–2223. [Google Scholar] [CrossRef]
- Deveoğlu, O.; KaradaĞ, R. A review on the flavonoids—A dye source. Int. J. Adv. Eng. Pure Sci. 2019, 31, 188–200. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an Anti-Inflammatory and Neuroprotective Agent: A Brief Review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef]
- Shukla, R.; Pandey, V.; Vadnere, G.P.; Lodhi, S. Role of flavonoids in management of inflammatory disorders. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Poole, UK, 2019; pp. 293–322. [Google Scholar]
- Lightbourn, G.J.; Griesbach, R.J.; Novotny, J.A.; Clevidence, B.A.; Rao, D.D.; Stommel, J.R. Effects of Anthocyanin and Carotenoid Combinations on Foliage and Immature Fruit Color of Capsicum annuum L. J. Hered. 2008, 99, 105–111. [Google Scholar] [CrossRef]
- Liu, Y.; Nair, M.G. Capsaicinoids in the Hottest Pepper Bhut Jolokia and its Antioxidant and Antiinflammatory Activities. Nat. Prod. Commun. 2010, 5, 91–94. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; Olguín-Rojas, J.A.; Fayos, O.; González-De-Peredo, A.V.; Espada-Bellido, E.; Ferreiro-González, M.; Barroso, C.G.; Barbero, G.F.; Garcés-Claver, A.; Palma, M. Influence of Fruit Ripening on the Total and Individual Capsaicinoids and Capsiate Content in Naga Jolokia Peppers (Capsicum chinense Jacq.). Agronomy 2020, 10, 252. [Google Scholar] [CrossRef]
- Morozova, K.; Rodríguez-Buenfil, I.; López-Domínguez, C.; Ramírez-Sucre, M.; Ballabio, D.; Scampicchio, M. Capsaicinoids in Chili Habanero by Flow Injection with Coulometric Array Detection. Electroanalysis 2019, 31, 844–850. [Google Scholar] [CrossRef]
- Martínez, J.; Rosas, J.; Pérez, J.; Saavedra, Z.; Carranza, V.; Alonso, P. Green approach to the extraction of major capsaicinoids from habanero pepper using near-infrared, microwave, ultrasound and Soxhlet methods, a comparative study. Nat. Prod. Res. 2019, 33, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.G.; Rafii, M.Y.; Ismail, M.R.; Malek, A.; Latif, M.A. Capsaicin and Dihydrocapsaicin Determination in Chili Pepper Genotypes Using Ultra-Fast Liquid Chromatography. Molecules 2014, 19, 6474–6488. [Google Scholar] [CrossRef] [PubMed]
- Lozada, D.N.; Coon, D.L.; Guzmán, I.; Bosland, P.W. Heat profiles of ‘superhot’ and New Mexican type chile peppers (Capsicum spp.). Sci. Hortic. 2021, 283, 110088. [Google Scholar] [CrossRef]
- Dejmkova, H.; Morozova, K.; Scampicchio, M. Estimation of Scoville index of hot chili peppers using flow injection analysis with electrochemical detection. J. Electroanal. Chem. 2018, 821, 82–86. [Google Scholar] [CrossRef]
- Scoville, W.L. Note on Capsicums. J. Am. Pharm. Assoc. 1912, 1, 453–454. [Google Scholar] [CrossRef]
- Luo, X.-J.; Peng, J.; Li, Y.-J. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol. 2011, 650, 1–7. [Google Scholar] [CrossRef]
- Tanaka, Y.; Hosokawa, M.; Otsu, K.; Watanabe, T.; Yazawa, S. Assessment of Capsiconinoid Composition, Nonpungent Capsaicinoid Analogues, in Capsicum Cultivars. J. Agric. Food Chem. 2009, 57, 5407–5412. [Google Scholar] [CrossRef]
- Kaiser, M.; Higuera, I.; Goycoolea, F.M. Capsaicinoids: Occurrence, chemistry, biosynthesis, and biological effects. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Elhadi, M.Y., Ed.; John Wiley & Sons: Oxford, UK, 2017; Volume 1, pp. 499–513. ISBN 9781119158042. [Google Scholar]
- Lang, Y.; Kisaka, H.; Sugiyama, R.; Nomura, K.; Morita, A.; Watanabe, T.; Tanaka, Y.; Yazawa, S.; Miwa, T. Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuumcv. CH-19 Sweet. Plant J. 2009, 59, 953–961. [Google Scholar] [CrossRef]
- Uarrota, V.G.; Maraschin, M.; Bairros, D.F.M.D.; Pedreschi, R. Factors affecting the capsaicinoid profile of hot peppers and biological activity of their non-pungent analogs (Capsinoids) present in sweet peppers. Crit. Rev. Food Sci. Nutr. 2021, 61, 649–665. [Google Scholar] [CrossRef]
- Bridgemohan, P.; Mohammed, M.; Bridgemohan, R.S.H. Capsicums. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Elhadi, M.Y., Ed.; John Wiley & Sons: Oxford, UK, 2017; Volume 2, pp. 957–968. ISBN 9781119158042. [Google Scholar]
- He, G.-J.; Ye, X.-L.; Mou, X.; Chen, Z.; Li, X.-G. Synthesis and antinociceptive activity of capsinoid derivatives. Eur. J. Med. Chem. 2009, 44, 3345–3349. [Google Scholar] [CrossRef] [PubMed]
- Barbero, G.F.; Molinillo, J.M.G.; Varela, R.M.; Palma, M.; Macías, F.A.; Barroso, C.G. Application of Hansch’s Model to Capsaicinoids and Capsinoids: A Study Using the Quantitative Structure−Activity Relationship. A Novel Method for the Synthesis of Capsinoids. J. Agric. Food Chem. 2010, 58, 3342–3349. [Google Scholar] [CrossRef] [PubMed]
- Seki, T.; Ota, M.; Hirano, H.; Nakagawa, K. Characterization of newly developed pepper cultivars (Capsicum chinense) ‘Dieta0011-0301’, ‘Dieta0011-0602’, ‘Dieta0041-0401’, and ‘Dieta0041-0601’containing high capsinoid concentrations and a strong fruity aroma. Biosci. Biotechnol. Biochem. 2020, 84, 1870–1885. [Google Scholar] [CrossRef]
- Antonio, A.S.; Wiedemann, L.S.M.; Junior, V.F.V. The genus Capsicum: A phytochemical review of bioactive secondary metabolites. RSC Adv. 2018, 8, 25767–25784. [Google Scholar] [CrossRef] [PubMed]
- Arce-Rodríguez, M.L.; Ochoa-Alejo, N. Biochemistry and molecular biology of capsaicinoid biosynthesis: Recent advances and perspectives. Plant Cell Rep. 2019, 38, 1017–1030. [Google Scholar] [CrossRef]
- Joo, J.I.; Kim, D.H.; Choi, J.-W.; Yun, J.W. Proteomic Analysis for Antiobesity Potential of Capsaicin on White Adipose Tissue in Rats Fed with a High Fat Diet. J. Proteome Res. 2010, 9, 2977–2987. [Google Scholar] [CrossRef]
- Lee, E.-J.; Jeon, M.S.; Kim, B.D.; Kim, J.H.; Kwon, Y.-G.; Lee, H.; Lee, Y.S.; Yang, J.H.; Kim, T.Y. Capsiate inhibits ultraviolet B-induced skin inflammation by inhibiting Src family kinases and epidermal growth factor receptor signaling. Free Radic. Biol. Med. 2010, 48, 1133–1143. [Google Scholar] [CrossRef]
- Ramírez-Romero, R.; Gallup, J.M.; Sonea, I.M.; Ackermann, M.R. Dihydrocapsaicin treatment depletes peptidergic nerve fibers of substance P and alters mast cell density in the respiratory tract of neonatal sheep. Regul. Pept. 2000, 91, 97–106. [Google Scholar] [CrossRef]
- Rosa, A.; Deiana, M.; Casu, V.; Paccagnini, S.; Appendino, G.; Ballero, M.; Dessí, M.A. Antioxidant Activity of Capsinoids. J. Agric. Food Chem. 2002, 50, 7396–7401. [Google Scholar] [CrossRef]
- Lu, M.; Ho, C.-T.; Huang, Q. Extraction, bioavailability, and bioefficacy of capsaicinoids. J. Food Drug Anal. 2017, 25, 27–36. [Google Scholar] [CrossRef]
- Bogusz, S.; Libardi, S.H.; Dias, F.F.; Coutinho, J.P.; Bochi, V.C.; Rodrigues, D.; Melo, A.M.; Godoy, H.T. Brazilian Capsicum peppers: Capsaicinoid content and antioxidant activity. J. Sci. Food Agric. 2018, 98, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; D’acierno, A.; Cozzolino, A.; Spigno, P.; Riccardi, R.; Raimo, F.; Pane, C.; Zaccardelli, M.; Lombardo, V.T.; Tucci, M.; et al. Biochemical Characterization of Traditional Varieties of Sweet Pepper (Capsicum annuum L.) of the Campania Region, Southern Italy. Antioxidants 2020, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Della Valle, A.; Dimmito, M.P.; Zengin, G.; Pieretti, S.; Mollica, A.; Locatelli, M.; Cichelli, A.; Novellino, E.; Ak, G.; Yerlikaya, S.; et al. Exploring the Nutraceutical Potential of Dried Pepper Capsicum annuum L. on Market from Altino in Abruzzo Region. Antioxidants 2020, 9, 400. [Google Scholar] [CrossRef]
- de Sá Mendes, N.; de Andrade Gonçalves, É.C.B. The role of bioactive components found in peppers. Trends Food Sci. Technol. 2020, 99, 229–243. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Chen, C.; Lan, Y.; Xiao, J.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.-T. Capsaicin—The major bioactive ingredient of chili peppers: Bio-efficacy and delivery systems. Food Funct. 2020, 11, 2848–2860. [Google Scholar] [CrossRef]
- Mendes, N.D.S.; Coimbra, P.P.; Santos, M.C.; Cameron, L.C.; Ferreira, M.S.; Buera, M.D.P.; Gonçalves, C. Capsicum pubescens as a functional ingredient: Microencapsulation and phenolic profilling by UPLC-MSE. Food Res. Int. 2020, 135, 109292. [Google Scholar] [CrossRef]
- Torrenegra Alarcón, M.T.; Conde, C.G.; Mendez, G.L. Actividad antioxidante del extracto etanólico de Capsicum frutescens L. BISTUA Rev. Fac. Cienc. Básicas 2019, 17, 102–111. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, Y.; Chen, J.; Huang, Y.; Yan, Y.; Li, L.; Li, Z.; Ren, Y.; Xiao, Y. Total phenolics, capsaicinoids, antioxidant activity, and α-glucosidase inhibitory activity of three varieties of pepper Seeds. Int. J. Food Prop. 2020, 23, 1016–1035. [Google Scholar] [CrossRef]
- Sherova, G.; Pavlov, A.; Georgiev, V. Polyphenols profiles and antioxidant activities of extracts from Capsicum chinense in vitro plants and callus cultures. Food Sci. Appl. Biotechnol. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Sora, G.T.S.; Haminiuk, C.; Da Silva, M.V.; Zielinski, A.; Gonçalves, G.A.; Bracht, A.; Peralta, R.M. A comparative study of the capsaicinoid and phenolic contents and in vitro antioxidant activities of the peppers of the genus Capsicum: An application of chemometrics. J. Food Sci. Technol. 2015, 52, 8086–8094. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Jiménez-Fernández, M.; Azuara, E. Oleoresins from Capsicum spp.: Extraction Methods and Bioactivity. Food Bioprocess Technol. 2016, 10, 51–76. [Google Scholar] [CrossRef]
- Von Borowski, R.G.; Barros, M.P.; da Silva, D.B.; Lopes, N.P.; Zimmer, K.R.; Staats, C.C.; de Oliveira, C.B.; Giudice, E.; Gillet, R.; Macedo, A.J.; et al. Red pepper peptide coatings control Staphylococcus epidermidis adhesion and biofilm formation. Int. J. Pharm. 2020, 574, 118872. [Google Scholar] [CrossRef]
- Simpson, D.M.; Brown, S.; Tobias, J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology 2008, 70, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ademosun, A.O.; Odubanjo, O.V.; Akinbola, I.A. Antioxidative Properties and Inhibition of Key Enzymes Relevant to Type-2 Diabetes and Hypertension by Essential Oils from Black Pepper. Adv. Pharmacol. Sci. 2013, 2013, 926047. [Google Scholar] [CrossRef]
- Carrasco-Castilla, J.; Hernández-Álvarez, A.J.; Jiménez-Martínez, C.; Jacinto-Hernández, C.; Alaiz, M.; Girón-Calle, J.; Vioque, J.; Dávila-Ortiz, G. Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food Chem. 2012, 131, 1157–1164. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, J.; Liu, D.; Zhao, T.; Lu, Z.; Zhu, L.; Cao, L.; Yang, J.; Jin, J.; Cai, Y. Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol. Ther. 2016, 17, 1117–1125. [Google Scholar] [CrossRef]
- Shi, Q.; Tang, H.; Mei, Y.; Chen, J.; Wang, X.; Liu, B.; Cai, Y.; Zhao, N.; Yang, M.; Li, H. Effects of endogenous capsaicin stress and fermentation time on the microbial succession and flavor compounds of chili paste (a Chinese fermented chili pepper). Food Res. Int. 2023, 168, 112763. [Google Scholar] [CrossRef]
- López-Salas, D.; Oney-Montalvo, J.E.; Ramírez-Rivera, E.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Evaluation of the Volatile Composition and Sensory Behavior of Habanero Pepper during Lactic Acid Fermentation by L. plantarum. Foods 2022, 11, 3618. [Google Scholar] [CrossRef] [PubMed]
- López-Salas, D.; Oney-Montalvo, J.E.; Ramírez-Rivera, E.; Ramírez-Sucre, M.O.; Rodríguez-Buenfil, I.M. Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds. Fermentation 2022, 8, 219. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Yang, J.; Wang, X.; Lü, X. Unraveling the difference in physicochemical properties, sensory, and volatile profiles of dry chili sauce and traditional fresh dry chili sauce fermented by Lactobacillus plantarum PC8 using electronic nose and HS-SPME-GC-MS. Food Biosci. 2022, 50, 102057. [Google Scholar] [CrossRef]
- Li, M.; Xu, X.; Bi, S.; Pan, X.; Lao, F.; Wu, J. Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuum L.). Food Res. Int. 2023, 163, 112194. [Google Scholar] [CrossRef] [PubMed]
- González-Quijano, G.K.; Dorantes-Alvarez, L.; Hernández-Sánchez, H.; Jaramillo-Flores, M.E.; Perea, M.D.J.; De León, A.V.-P.; Hernández-Rodríguez, C. Halotolerance and Survival Kinetics of Lactic Acid Bacteria Isolated from Jalapeño Pepper (Capsicum annuum L.) Fermentation. J. Food Sci. 2014, 79, M1545–M1553. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Bai, Y.; Di Cagno, R.; Gobbetti, M.; Gänzle, M.G. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol. 2015, 46, 272–279. [Google Scholar] [CrossRef]
- Duckstein, S.M.; Lorenz, P.; Stintzing, F.C. Conversion of Phenolic Constituents in Aqueous Hamamelis virginiana Leaf Extracts During Fermentation. Phytochem. Anal. 2012, 23, 588–597. [Google Scholar] [CrossRef]
- Ripari, V.; Bai, Y.; Gänzle, M.G. Metabolism of phenolic acids in whole wheat and rye malt sourdoughs. Food Microbiol. 2019, 77, 43–51. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef]
- Muñoz, R.; de las Rivas, B.; López de Felipe, F.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J.A.; Rodríguez, H.; Landete, J.M. Biotransformation of Phenolics by Lactobacillus Plantarum in Fermented Foods. In Fermented Foods in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; pp. 63–83. ISBN 9780128023099. [Google Scholar]
- Piekarska-Radzik, L.; Klewicka, E. Mutual influence of polyphenols and Lactobacillus spp. bacteria in food: A review. Eur. Food Res. Technol. 2021, 247, 9–24. [Google Scholar] [CrossRef]
- Sharma, R.; Diwan, B.; Singh, B.P.; Kulshrestha, S. Probiotic fermentation of polyphenols: Potential sources of novel functional foods. Food Prod. Process. Nutr. 2022, 4, 21. [Google Scholar] [CrossRef]
- Song, Y.-R.; Shin, N.-S.; Baik, S.-H. Physicochemical properties, antioxidant activity and inhibition of α-glucosidase of a novel fermented pepper (Capsiccum annuum L.) leaves-based vinegar. Int. J. Food Sci. Technol. 2014, 49, 2491–2498. [Google Scholar] [CrossRef]
- Wang, T.; Li, M.; Cai, S.; Zhou, L.; Hu, X.; Yi, J. Polyphenol-rich extract of fermented chili pepper alleviates insulin resistance in HepG2 cells via regulating INSR, PTP1B, PPAR-γ, and AMPK pathways. Fermentation 2023, 9, 84. [Google Scholar] [CrossRef]
- Zellama, M.S.; Chahdoura, H.; Zairi, A.; Ziani, B.E.C.; Boujbiha, M.A.; Snoussi, M.; Ismail, S.; Flamini, G.; Mosbah, H.; Selmi, B.; et al. Chemical characterization and nutritional quality investigations of healthy extra virgin olive oil flavored with chili pepper. Environ. Sci. Pollut. Res. 2022, 29, 16392–16403. [Google Scholar] [CrossRef]
- Capsicum Crema 150 g|Ag Cosmetica. Available online: http://agcosmeticanatural.com/producto/capsicum-crema-150-g/ (accessed on 11 May 2023).
- Product-Detail. Available online: https://www.mx.farmasi.com/farmasi/product/detail/gel-de-masaje-bálsamo-de-pimentón-y-chile?pid=1000305 (accessed on 11 May 2023).
- Cocamidopropyl Betaine—Flower Tales Cosmetics—Prodotti per la Cosmetica Naturale fai da te. Available online: https://flowertalescosmetics.com/en/catalogue/product/chili-pepper-capsicum-oil-based-extrac (accessed on 11 May 2023).
- Chili: Capsicum Body Soap #Slimming #Metabolising—Buy Makeup, Cosmetics, Skincare and Haircare|Snoe Beauty Philippines. Available online: https://snoebeauty.com/products/naturals-chili-capsicum-body-soap-slimming-metabolising (accessed on 11 May 2023).
- Mascarilla Facial Kawaii—Red Pepper—GypsyVibes Cera Española. Available online: https://gypsyvibes.mx/producto/mascarilla-facial-kawaii-red-pepper/ (accessed on 11 May 2023).
- Red Pepper Oil (Capsicum Oil) Size 100 mL. Available online: https://manischemicals.com/en/atural-oils-butters/2003-έλαιο-κόκκινου-πιπεριού-capsicum-oil.html (accessed on 11 May 2023).
- Venkatramna Industries—Manufacturer, Exporter and Wholesale Supplier of Pure Essential Oil, Attars, Abolute, Hydrosol, Agarwood Oil, Shamama. Available online: https://venkatramna-perfumers.com/ProductDetail.aspx?Category=Oleoresins&Title=Capsicum%20Oleoresin%202.5%20Per%20capsaicin (accessed on 11 May 2023).
- Cream With CBD & Capsaicin|Oliver’s Harvest. Available online: https://oliversharvest.com/cbd-capsaicin-cream/ (accessed on 11 May 2023).
- Buy Cosmetic Plant Thermoactive Anti-Cellulite Oil with Hot Pepper Extract at Beautyorganicstore.com. Available online: https://beautyorganicstore.com/bath-body/anti-cellulite-cream/cosmetic-plant-thermoactive-anti-cellulite-oil-with-hot-pepper-extract-6-8-fl-oz/ (accessed on 11 May 2023).
- Capsaicin Sauce. Available online: https://www.jayonefoods.com/product/capsaicin-sauce (accessed on 11 May 2023).
- Red Pepper Paste|Mild|Galil|24 Oz—ShopGalil. Available online: https://shopgalil.com/products/red-pepper-paste-mild-galil-24-oz?variant=42084146282676 (accessed on 11 May 2023).
Nutrient | Quantity 1 |
---|---|
Water | 91.0–92.2 g |
Carbohydrates | 5.10–6.03 g |
Proteins | 0.99–1.30 g |
Fats | 0.30 g |
Fiber | 1.40–2.10 g |
Vitamin A | 157–300 mg |
Vitamin B1 | 0.03–0.05 mg |
Vitamin B2 | 0.05–0.08 mg |
Vitamin B3 | 0.98 mg |
Vitamin B5 | 0.20–0.32 mg |
Vitamin B6 | 0.29 mg |
Vitamin B12 | 0.45 mg |
Vitamin C | 120–128 mg |
Sulfur | 17 mg |
Calcium | 7–9 mg |
Chlorine | 37 mg |
Copper | 0.017–0.100 mg |
Phosphorus | 23–26 mg |
Iron | 0.43–0.50 mg |
Magnesium | 11–12 mg |
Manganese | 0.11–0.26 mg |
Potassium | 211–234 mg |
Sodium | 4–58 mg |
Iodine | 0.001 mg |
Bioactivity | Bioactive Compounds | Capsicum Varieties | Concentration Studied | Models/Cell Lines | Reference |
---|---|---|---|---|---|
Antimicrobial activity | Capsaicinoids and carotenoids | Algerian chili pepper (Capsicum annuum L.) | Capsaicinoids (pericarp) 68.3 µg·g−1; (placenta) 754.4 µg·g−1; carotenoids (fruit) 1620 µg·100 g−1 | Staphylococcus aureus; Listeria Monocytogenes; Enterococcus hirae | [9] |
Phenols, capsaicinoids, and chrysoeriol | Various Malagueta chili peppers (Capsicum frutescens) | Capsaicinoids 109.8 mg·g−1; dihydrocapsaicinoids 42.0 mg·g−1; chrysoeriol 5.50 mg·g−1 | Gram-positive bacteria (25 µg·mL−1); Gram-negative bacteria (10 µg·mL−1); Yeast (25 µg·mL−1) | [13] | |
Chlorophyll and carotenoids | Various tissues (callus, leaves, shoots, fruits, and seeds) of Capsicum chinense Jacq. | Chlorophyll 0.105 mg·g−1 and Carotenoids 4.10 mg·g−1 | Minimal inhibitory concentration (MIC): 5-21 mm inhibitory effect | [62] | |
Anti-inflammatory activity | Capsaicin | Red chili pepper (Capsicum baccatum) | Red pepper juice 0.25–2.0 g·kg−1 | Carrageenan-induced pleurisy in mice model; Carrageenan-induced peritonitis in mice model | [63] |
Capsaicin and quercetin Flavones and flavonols | Red chili pepper (Capsicum baccatum) | Butanol extract from fruit pepper (200 mg·kg−1 p.o.) | Carrageenan-induced pleurisy model in mice | [15] | |
Pepper extracts (Capsicum annuum) | Pepper extracts on IL-6 and TNF-α production in LPS-induced RAW 264.7 cells | Pepper leaves and pepper fruit in vitro assays | [64] | ||
Phenolic compounds (flavonoids) and capsaicin | Red pepper (Capsicum annuum L.) | Total extract (IC50): 287 µg·mL−1 mature; lipophilic fraction (IC50): 655 µg·mL−1 (mature) | Mature and immature fruit peppers | [17] | |
Phenolic compounds and carotenoids | Hot peppers of Arbol, Chipotle, Guajillo, and Morita (Capsicum annuum L.) | Arbol pepper 82.3 µmol·g−1 dry matter (phenolics) and 106.6 mg·100 g−1 dry pepper (carotenoids); Chipotle pepper 44.4 µmol·g−1 dry matter (phenolics) chipotle pepper | In vitro enzyme digestion (bioaccessibility) | [8] | |
Phenolic compounds (flavonoids) | Peppers: Arbol, Ancho, Yellow, Japanese, Red, Paprika, and Rocoto (Capsicum annuum, baccatum, chinense, and pubescens). | Chile de arbol (14.0 mg·g−1 dry weight); chile ancho and Japanese chili (14.5 mg·g−1 dry weight); paprika pepper (15.0 mg·g−1 dry weight); yellow pepper (13.0 mg·g−1 dry weight); red pepper (20.0 mg·g−1 dry weight); rocoto (12.5 mg·g−1 dry weight) | In vitro enzyme analysis | [65] | |
Phenolic compounds (flavonoids) | Various red chili peppers (Capsicum annuum L.) | Arian (mature 8.60% and ripe 21.50% inhibition); Marona (mature 14.80% and ripe 19.60% inhibition); Zorro (mature 9.80% and ripe 14.80% inhibition) | Harvest times based on maturity stage on phenolic compounds of five different colored Capsicum genotypes | [66] | |
Antioxidant activity | Phenolic compounds, capsaicinoids, and carotenoids | Nine chili cultivars from Yunnan Province in China (Capsicum frutescens L. and annuum L.) | Fructus Capsici (IC50 = 135.13 µg·mL−1) Point pepper (IC50 = 233.33 µg·mL−1) Long-Point pepper (red) (IC50 = 190.70 µg·mL−1) Point-pepper (IC50 = 286.76 µg·mL−1) Long-point-pepper (green) (IC50 = 223.33 µg·mL−1) Sweet pepper (IC50 = 366.67 µg·mL−1) Longline pepper (IC50 = 283.33 µg·mL−1) Screw pepper (IC50 = 195.00 µg·mL−1) Creasing pepper (IC50 = 210.10 µg·mL−1) | Antioxidant compositions of nine peppers from Yunnan in China | [67] |
Phenolic compounds and carotenoids | Habanero chili pepper (Capsicum chinense Jacq. var.) | L-36 (TEAC = 3.23 mM·mg−1 sample) L-110 (TEAC = 2.74 mM·mg−1 sample) Orange (TEAC = 2.42 mM·mg−1 sample) L-184 (TEAC = 1.94 mM·mg−1 sample) Red (TEAC = 3.05 mM·mg−1 sample) L-149 (TEAC = 1.99 mM·mg−1 sample) L-37 (TEAC = 1.55 mM·mg−1 sample) | The fruit of seven Capsicum chinense Jacq. var. Habanero genotypes grown in Yucatan, Mexico | [11] | |
Phenolic compounds | Red and Orange Habanero chili peppers (Capsicum chinense) | Chak k’an-iik immature pericarp (4.17 TEAC µmols TE·g−1) Chak k’an-iik immature placent (30.08 TEAC µmols TE·g−1) Chak k’an-iik mature pericarp (8.84 TEAC µmols TE·g−1) Chak k’an-iik mature placent (41.64 TEAC µmols TE·g−1) MR8H immature pericarp (4.22 TEAC µmols TE·g−1) MR8H immature placent (55.59 TEAC µmols TE·g−1) MR8H mature pericarp (6.67 TEAC µmols TE·g−1) MR8H mature placent (42.28 TEAC µmols TE·g−1) | Fruits tissues of two Capsicum chinense accessions | [10] | |
Phenolics compounds (anthocyanins), carotenoids, and vitamin C | Various chili genotypes. Capsicum sp., Capsicum annuum L., Capsicum chinense Jacq., and Capsicum baccatum L. var. Umblicatum | Biquinho (IAN 186313) 49.56 µM trolox·g−1 Curuçazinho (IAN 1836309) 58.36 µM trolox·g−1 olho de mutum (IAN 186324) 77.99 µM trolox·g−1 Amarcia (IAN 186312) 62.39 µM trolox·g−1 Cumari do Pará (IAN 186310) 46.79 µM trolox·g−1 PMO (IAN 186301) 83.59 µM trolox·g−1 Murupi (IAN 186311) 113.08 µM trolox·g−1 Churumbinho (186305) 70.05 µM trolox·g−1 | Eight pepper genotypes (Capsicum sp., Capsicum annun L., C. chinense Jacq, and C. baccatum L. var. umbilicatum) | [7] | |
Carotenoids, vitamin C, and phenolic compounds | Bell pepper (Capsicum annuum L.). Cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red) | Fascinato/Robusto (79.65% inhibition) Orangela/Terrano (76.0% inhibition) Fascinato/Terrano (73.5% inhibition) Sweet/Robusto (64.90% inhibition) Jeanette/Terrano (64.90% inhibition) | Commercial varieties of bell pepper were used as scions and grafted from either Terrano or Robusto rootstock | [68] | |
Phenolic compounds (flavonoids) and capsaicinoids | Twenty chili cultivars belong to Capsicum annuum, Capsicum baccatum, Capsicum chacoense, and Capsicum chinense. Bell, orange Habanero, Cayenne, red Habanero, Malagueta, and Dedo de moça peppers | DPPH assay: Effix (C. annuum) IC50 = 3.9 µg·mL−1 in fresh pepper; Loco (C. annuum) IC50 = 28.1 µg·mL−1 in boiled pepper; Acrata (C. annuum) IC50 = 5.0 µg·mL−1 in frozen pepper ABTS: Nobile and Acrata. (C. annuum) IC50 = 26.5 and 27.3 µg·mL−1 in frozen pepper | Fresh, boiled and frozen chili peppers cultivars belonging to four Capsicum species | [69] | |
Phenolic compounds (flavonoids) and capsaicinoids | Red chili pepper seeds (Capsicum frutescens L.) | Seeds extracts with n-hexane (DPPH = 28% at 1000 μg·mL−1 and seeds extracts with chloroform (DPPH = 29% at 1000 μg ·mL−1) | Seeds from Capsicum frutescens L. | [65] | |
Anti-hypertensive activity | Phenolic compounds (flavonoids) | Medicinal plants, herbs, and species commonly used in Latin America: Arbol, Ancho, and Rocoto chili peppers (Capsicum) | 2.5 mg of dried sample (% ACE-inhibition): chile de arbol 45%, chile ancho 68%, Japanese chili 68%, paprika pepper 92 %, yellow pepper 48%, red pepper 84%, and rocoto 70% | In vitro potential against enzymes for hypertension of several chili peppers (Capsicum). | [65] |
Phenolic compounds (flavonoids) and capsaicin | Various tissues of red chili pepper (Capsicum annuum L.) | Red pepper pericarp A (97% at 5 mg·mL−1 of extract) placenta A (64% at 5 mg·mL−1 of extract) stalk A (14% at 5 mg·mL−1 of extract); red pepper pericarp B (90% at 5 mg·mL−1 of extract) placenta B (54% at 5 mg·mL−1 of extract) stalk B (16% at 5 mg·mL−1 of extract) | In vitro inhibitory potential ACE-inhibition against hypertension of red pepper (Capsicum annuum L.) | [3] | |
Anti-hyperglycemic activity | Phenolic compounds (flavonoids), carotenoids, and capsaicinoids | Habanero chili pepper (Capsicum chinense Jacq. cv. Habanero) | Total extract: α-amylase immature IC50 = 229 μg·mL−1, mature IC50 = 131 μg·mL−1; α-glucosidase immature IC50 = 150 μg·mL−1, mature IC50 = 265 μg·mL−1 | Fruits of Capsicum chinense Jacq. cv Habanero harvested at the same time but at two successive maturity stages | [17] |
Phenolic compounds (flavonoids) | Spices, chili peppers, medicinal plants, and herbs were evaluated. The extracts from chili peppers analyzed were: Arbol, Ancho, Yellow, Japanese, Red, Paprika, and Rocoto chili pepper (Capsicum) | 2.5 mg of dried sample (% Glucosidase inhibitory activity): chile de arbol 20%, chile ancho 23%, Japanese chili 38%, paprika pepper 30%, yellow pepper 40%, red pepper 45% and rocoto 46% | In vitro potential against enzymes for hyperglycemia of several chili peppers (Capsicum). | [65] | |
Phenolic compounds (flavonoids), carotenoids, and capsaicinoids | The varieties of chili pepper assessed in this study were: Fiesta, Acuminatum, Orange Thai, and Golden Cayenne (Capsicum annuum L.) | Total extract (α-glucosidase activity): Fiesta immature (IC50 = 109.2 µg·mL−1), Fiesta mature (>1000), Orange Thai immature (IC50 = 102.5 µg·mL−1), Orange Thai (IC50 = 166.5 µg·mL−1), Acuminatum immature (>1000), Acuminatum mature ((IC50 = 71.5 µg·mL−1), Cayenne Golden immature (IC50 = 81.1 µg·mL−1), Cayenne Golden mature (IC50 = 63.6 µg·mL−1) and Acarbose (IC50 = 35.5 µg·mL−1) | Four Capsicum annuum L. cultivars were studied at two stages of fruit ripening (immature and mature) | [70] | |
Phenolic compounds (flavonoids) and capsaicinoids | Various tissues of red chili pepper (Capsicum annuum L.) | Red pepper pericarp A (58% at 5 mg·mL−1 of extract) placenta A (38% at 5 mg·mL−1 of extract) stalk A (40% at 5 mg·mL−1 of extract); red pepper pericarp B (52% at 5 mg·mL−1 of extract) placenta B (32% at 5 mg·mL−1 of extract) stalk B (60% at 5 mg·mL−1 of extract) | In vitro inhibitory potential of α-glucosidase against hyperglycemia of red pepper (Capsicum annuum L.) | [3] | |
Metal-chelating activity | Phenolic compounds (flavonoids) and capsaicinoids | Habanero chili pepper (Capsicum chinense Jacq. cv.) | 71% at 42 days after fruit set | Habanero chili pepper (Capsicum chinense Jacq. cv.) examined during nine maturity stages (at 7-day intervals from fruit set) | [19] |
Antitumoral activity | L-asparaginase | Green chili pepper (Capsicum annuum L.) | Maximum cell growth inhibition was observed in the Human Oral Squamous Carcinoma cell line (IC50 360 µg·mL−1), while the least activity was found in Human Lung Carcinoma lines (IC50 535 µg·mL−1) and moderate activity in Human, Cervix cell lines (IC50 410 µg·mL−1) | Antiproliferative activity of L-asparaginase against three human cancerous cell lines | [20] |
Capsaicinoids and carotenoids | Algerian chili pepper (Capsicum annuum L.) | The antitumor activity of capsaicinoids at a concentration of 200 μg·mL−1 was 52%, and carotenoids reached 90% activity at the same concentration | Antitumor potential of capsaicinoids and carotenoids against cancerous (U937) and healthy (PBMC) cell lines | [9] |
Product | Brand | Type of Product | Beneficial Effect | References |
---|---|---|---|---|
Dermatologic cream | AG Cosmética natural™ | Cosmetic | Antihyperglycemic and anti-inflammatory | [150] |
Paprika and chili balm massage gel | Dr. C. Tuna™ | Cosmetic | Anti-inflammatory and antioxidant | [151] |
Chili pepper (Capsicum) oil-based extract | Flowertales™ | Cosmetic | Anti-inflammatory and antioxidant | [152] |
Capsicum body soap | S-SKIN Naturals™ | Cosmetic | Antioxidant | [153] |
Facemask Kawaii red pepper | Gipsy vibes™ | Cosmetic | Antioxidant | [154] |
Red pepper oil (Capsicum oil) | Mani chemicals™ | Cosmetic | Anti-inflammatory and antioxidant | [155] |
Capsicum (oleoresine) | Venkatramna™ | Cosmetic | Anti-inflammatory and antioxidant | [156] |
Cream with CBD and capsaicin | Oliver’s Harvest™ | Cosmetic | Antihyperglycemic | [157] |
Plant thermoactive anti-cellulite oil with hot pepper extract | Cosmetic plant™ | Cosmetic | Anti-inflammatory and antioxidant | [158] |
Capsaicin sauce | Jayone™ | Foods | Antioxidant | [159] |
Red pepper paste | Galil™ | Foods | Antioxidant | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Villegas, R.; González-Amaro, R.M.; Figueroa-Hernández, C.Y.; Rodríguez-Buenfil, I.M. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules 2023, 28, 4239. https://doi.org/10.3390/molecules28104239
Alonso-Villegas R, González-Amaro RM, Figueroa-Hernández CY, Rodríguez-Buenfil IM. The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules. 2023; 28(10):4239. https://doi.org/10.3390/molecules28104239
Chicago/Turabian StyleAlonso-Villegas, Rodrigo, Rosa María González-Amaro, Claudia Yuritzi Figueroa-Hernández, and Ingrid Mayanin Rodríguez-Buenfil. 2023. "The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition" Molecules 28, no. 10: 4239. https://doi.org/10.3390/molecules28104239
APA StyleAlonso-Villegas, R., González-Amaro, R. M., Figueroa-Hernández, C. Y., & Rodríguez-Buenfil, I. M. (2023). The Genus Capsicum: A Review of Bioactive Properties of Its Polyphenolic and Capsaicinoid Composition. Molecules, 28(10), 4239. https://doi.org/10.3390/molecules28104239