Leocarpinolide B Attenuates Collagen Type II-Induced Arthritis by Inhibiting DNA Binding Activity of NF-κB
Abstract
:1. Introduction
2. Results
2.1. LB Reduced IL-1β–Induced Secretion of Inflammatory Cytokines in SW982 Human Synovial Cells
2.2. LB Demonstrated the Ability to Reduce IL-1β-Stimulated Proliferation, Migration, and Invasion of Human SW982 Synovial Cells
2.3. LB Alleviated the Collagen Type II-Induced Arthritis in Mice
2.4. LB Demonstrated a Moderating Effect on Inflammation-Related Endogenous Substances in Both Serum and Joint Muscle Tissue
2.5. LB Reduced the Spleen Index and Increased CD4+FOXP3+ Cells in CIA Mice
2.6. LB Exhibited the Ability to Attenuate Both the Radiological and Pathological Features Observed in the Hind Paw Joints of Mice
2.7. NF-κB p65 (RELA) Was Predicated to Be the Potential Target of LB on RA Treatment
2.8. LB Exhibited a Good Interaction with NF-κB p65 through Two Hydrogen Bonds
2.9. LB Inhibited NF-κB DNA Binding Activity by Directly Targeting NF-κB p65
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture
4.3. ELISA Assay for Culture Supernatant and Serum Sample
4.4. Quantitative PCR
4.5. Cellular Thermal Shift Assay
4.6. Animals
4.7. Drug Administration
4.8. Radiographic and Histopathological Evaluation
4.9. Scratch Wound Healing Assay
4.10. Transwell Migration and Invasion Assays
4.11. A Network Pharmacology Analysis Identified Potential Targets of LB for RA Treatment
4.11.1. Prediction of Potential Targets of the LB
4.11.2. Collection of Targets Related to Rheumatoid Arthritis (RA)
4.11.3. PPI Network Construction and Pathways Enrichment of LB and RA
4.12. Molecular Docking of LB and RELA (NF-κB p65)
4.13. Flow Cytometry Analysis
4.14. NF-κB Transcription Factor Binding Activity Assay
4.15. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Firestein, G.S. Evolving Concepts of Rheumatoid Arthritis. Nature 2003, 423, 356–361. [Google Scholar] [CrossRef]
- Nygaard, G.; Firestein, G.S. Restoring Synovial Homeostasis in Rheumatoid Arthritis by Targeting Fibroblast-like Synoviocytes. Nat. Rev. Rheumatol. 2020, 16, 316–333. [Google Scholar] [CrossRef]
- Firestein, G.S.; McInnes, I.B. Immunopathogenesis of Rheumatoid Arthritis. Immunity 2017, 46, 183–196. [Google Scholar] [CrossRef]
- Nemtsova, M.V.; Zaletaev, D.V.; Bure, I.V.; Mikhaylenko, D.S.; Kuznetsova, E.B.; Alekseeva, E.A.; Beloukhova, M.I.; Deviatkin, A.A.; Lukashev, A.N.; Zamyatnin, A.A. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front. Genet. 2019, 10, 570. [Google Scholar] [CrossRef]
- Bartok, B.; Firestein, G.S. Fibroblast-like Synoviocytes: Key Effector Cells in Rheumatoid Arthritis. Immunol. Rev. 2010, 233, 233–255. [Google Scholar] [CrossRef]
- Kerschbaumer, A.; Sepriano, A.; Bergstra, S.A.; Smolen, J.S.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; Pope, J.E.; et al. Efficacy of Synthetic and Biological DMARDs: A Systematic Literature Review Informing the 2022 Update of the EULAR Recommendations for the Management of Rheumatoid Arthritis. Ann. Rheum. Dis. 2023, 82, 95–106. [Google Scholar] [CrossRef]
- Zhang, Q.R.; Zhong, Z.F.; Sang, W.; Xiong, W.; Tao, H.X.; Zhao, G.D.; Li, Z.X.; Ma, Q.S.; Tse, A.K.W.; Hu, Y.J.; et al. Comparative Comprehension on the Anti-Rheumatic Chinese Herbal Medicine Siegesbeckiae Herba: Combined Computational Predictions and Experimental Investigations. J. Ethnopharmacol. 2019, 228, 200–209. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Gupta, R.C.; Goel, R.K. Differential Content of Secondary Metabolites in Diploid and Tetraploid Cytotypes of Siegesbeckia orientalis L. Nat. Prod. Res. 2018, 32, 2476–2482. [Google Scholar] [CrossRef]
- Linghu, K.-G.; Ma, Q.S.; Zhao, G.D.; Xiong, W.; Lin, L.; Zhang, Q.-W.; Bian, Z.; Wang, Y.; Yu, H. Leocarpinolide B Attenuates LPS-Induced Inflammation on RAW264.7 Macrophages by Mediating NF-ΚB and Nrf2 Pathways. Eur. J. Pharmacol. 2020, 868, 172854. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, J.; Wu, Z.-W.; Wang, Z.-M.; Hu, J.; Fu, H.-Z.; Chen, Y.-Y.; Qian, R.-Q. Kirenol Exerts a Potent Anti-Arthritic Effect in Collagen-Induced Arthritis by Modifying the T Cells Balance. Phytomedicine 2012, 19, 882–889. [Google Scholar] [CrossRef]
- Linghu, K.G.; Xiong, S.H.; Zhao, G.D.; Zhang, T.; Xiong, W.; Zhao, M.; Shen, X.C.; Xu, W.; Bian, Z.; Wang, Y.; et al. Sigesbeckia orientalis L. Extract Alleviated the Collagen Type II—Induced Arthritis Through Inhibiting Multi-Target—Mediated Synovial Hyperplasia and Inflammation. Front. Pharmacol. 2020, 11, 547913. [Google Scholar] [CrossRef] [PubMed]
- Conigliaro, P.; Triggianese, P.; De Martino, E.; Chimenti, M.S.; Sunzini, F.; Viola, A.; Canofari, C.; Perricone, R. Challenges in the Treatment of Rheumatoid Arthritis. Autoimmun. Rev. 2019, 18, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid Arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Sparks, J.A. Rheumatoid Arthritis. Ann. Intern. Med. 2019, 170, ITC1–ITC16. [Google Scholar] [CrossRef] [PubMed]
- Paço, A.; Brás, T.; Santos, J.O.; Sampaio, P.; Gomes, A.C.; Duarte, M.F. Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022, 27, 1142. [Google Scholar] [CrossRef] [PubMed]
- Lü, S.; Wang, Q.; Li, G.; Sun, S.; Guo, Y.; Kuang, H. The Treatment of Rheumatoid Arthritis Using Chinese Medicinal Plants: From Pharmacology to Potential Molecular Mechanisms. J. Ethnopharmacol. 2015, 176, 177–206. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Xia, X.; Peng, W.-K.; Wang, Q.-H.; Peng, J.-H.; Li, Y.; Wu, J.-X.; Zhang, J.-Y.; Zhao, Y.; Chen, X.-M.; et al. The Effectiveness and Safety of Tripterygium Wilfordii Hook. F Extracts in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2018, 9, 356. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Qian, H.; Tao, W.; Zhang, Y.; Hu, C.; Mao, W.; Guo, Q. Natural Medicines of Targeted Rheumatoid Arthritis and Its Action Mechanism. Front. Immunol. 2022, 13, 945129. [Google Scholar] [CrossRef]
- Ma, Q.S.; Linghu, K.G.; Zhang, T.; Zhao, G.D.; Xiong, W.; Xiong, S.H.; Zhao, M.; Xu, W.; Yu, J.; Yu, H. Sigesbeckia Glabrescens Makino Extract Attenuated the Collagen-Induced Arthritis through Inhibiting the Synovial Hyperplasia and Inflammation. Chin. Med. 2020, 15, 91. [Google Scholar] [CrossRef]
- Linghu, K.-G.; Zhao, G.D.; Xiong, W.; Sang, W.; Xiong, S.H.; Tse, A.K.W.; Hu, Y.; Bian, Z.; Wang, Y.; Yu, H. Comprehensive Comparison on the Anti-Inflammatory Effects of Three Species of Sigesbeckia Plants Based on NF-ΚB and MAPKs Signal Pathways in Vitro. J. Ethnopharmacol. 2020, 250, 112530. [Google Scholar] [CrossRef]
- Ding, Q.; Hu, W.; Wang, R.; Yang, Q.; Zhu, M.; Li, M.; Cai, J.; Rose, P.; Mao, J.; Zhu, Y.Z. Signaling Pathways in Rheumatoid Arthritis: Implications for Targeted Therapy. Signal Transduct. Target. Ther. 2023, 8, 68. [Google Scholar] [CrossRef]
- Wang, Z.; Linghu, K.G.; Hu, Y.; Zuo, H.; Yi, H.; Xiong, S.H.; Lu, J.; Chan, G.; Yu, H.; Huang, R.Y. Deciphering the Pharmacological Mechanisms of the Huayu-Qiangshen-Tongbi Formula through Integrating Network Pharmacology and in Vitro Pharmacological Investigation. Front. Pharmacol. 2019, 10, 1065. [Google Scholar] [CrossRef] [PubMed]
- Ralph, J.A.; Morand, E.F. MAPK Phosphatases as Novel Targets for Rheumatoid Arthritis. Expert Opin. Ther. Targets 2008, 12, 795–808. [Google Scholar] [CrossRef]
- Simon, L.S.; Taylor, P.C.; Choy, E.H.; Sebba, A.; Quebe, A.; Knopp, K.L.; Porreca, F. The Jak/STAT Pathway: A Focus on Pain in Rheumatoid Arthritis. Semin. Arthritis Rheum. 2021, 51, 278–284. [Google Scholar] [CrossRef]
- Makarov, S.S. NF-ΚB in Rheumatoid Arthritis: A Pivotal Regulator of Inflammation, Hyperplasia, and Tissue Destruction. Arthritis Res. Ther. 2001, 3, 200. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, R.S.; Shi, Z.; Li, J.Q. Nuclear Factor-ΚB in Rheumatoid Arthritis. Int. J. Rheum. Dis. 2020, 23, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Li, C.; Wang, X.; Dian, L.; Zhang, X.; Li, L.; Chen, S.; Cao, R.; Li, L.; Huang, N.; et al. Ainsliadimer A Selectively Inhibits IKKα/β by Covalently Binding a Conserved Cysteine. Nat. Commun. 2015, 6, 6522. [Google Scholar] [CrossRef] [PubMed]
- Ly, G.; Knorre, A.; Schmidt, T.J.; Pahl, H.L.; Merfort, I. The Anti-Inflammatory Sesquiterpene Lactone Helenalin Inhibits the Transcription Factor NF-ΚB by Directly Targeting P65. J. Biol. Chem. 1998, 273, 33508–33516. [Google Scholar] [CrossRef]
- Lyss, G.; Schmidt, T.J.; Merfort, I.; Pahl, H.L. Helenalin, an Anti-Inflammatory Sesquiterpene Lactone from Arnica, Selectively Inhibits Transcription Factor NF-ΚB. Format Biol. Chem. 1997, 378, 951–961. [Google Scholar] [CrossRef]
- Leuenberger, P.; Ganscha, S.; Kahraman, A.; Cappelletti, V.; Boersema, P.J.; von Mering, C.; Claassen, M.; Picotti, P. Cell-Wide Analysis of Protein Thermal Unfolding Reveals Determinants of Thermostability. Science 2017, 355, 6327. [Google Scholar] [CrossRef]
- Sims, N.A.; Green, J.R.; Glatt, M.; Schlict, S.; Martin, T.J.; Gillespie, M.T.; Romas, E. Targeting Osteoclasts with Zoledronic Acid Prevents Bone Destruction in Collagen-Induced Arthritis. Arthritis Rheum. 2004, 50, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Linghu, K.-G.; Wu, G.-P.; Fu, L.-Y.; Yang, H.; Li, H.-Z.; Chen, Y.; Yu, H.; Tao, L.; Shen, X.-C. 1,8-Cineole Ameliorates LPS-Induced Vascular Endothelium Dysfunction in Mice via PPAR-γ Dependent Regulation of NF-ΚB. Front. Pharmacol. 2019, 10, 178. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linghu, K.-G.; Zhao, G.-D.; Zhang, D.-Y.; Xiong, S.-H.; Wu, G.-P.; Shen, L.-Y.; Cui, W.-Q.; Zhang, T.; Hu, Y.-J.; Guo, B.; et al. Leocarpinolide B Attenuates Collagen Type II-Induced Arthritis by Inhibiting DNA Binding Activity of NF-κB. Molecules 2023, 28, 4241. https://doi.org/10.3390/molecules28104241
Linghu K-G, Zhao G-D, Zhang D-Y, Xiong S-H, Wu G-P, Shen L-Y, Cui W-Q, Zhang T, Hu Y-J, Guo B, et al. Leocarpinolide B Attenuates Collagen Type II-Induced Arthritis by Inhibiting DNA Binding Activity of NF-κB. Molecules. 2023; 28(10):4241. https://doi.org/10.3390/molecules28104241
Chicago/Turabian StyleLinghu, Ke-Gang, Guan-Ding Zhao, Dai-Yan Zhang, Shi-Hang Xiong, Guo-Ping Wu, Li-Yu Shen, Wen-Qing Cui, Tian Zhang, Yuan-Jia Hu, Bing Guo, and et al. 2023. "Leocarpinolide B Attenuates Collagen Type II-Induced Arthritis by Inhibiting DNA Binding Activity of NF-κB" Molecules 28, no. 10: 4241. https://doi.org/10.3390/molecules28104241
APA StyleLinghu, K. -G., Zhao, G. -D., Zhang, D. -Y., Xiong, S. -H., Wu, G. -P., Shen, L. -Y., Cui, W. -Q., Zhang, T., Hu, Y. -J., Guo, B., Shen, X. -C., & Yu, H. (2023). Leocarpinolide B Attenuates Collagen Type II-Induced Arthritis by Inhibiting DNA Binding Activity of NF-κB. Molecules, 28(10), 4241. https://doi.org/10.3390/molecules28104241