Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization of APH
2.2. Flame Retardancy
2.3. Mechanism of Flame Retardancy
2.4. Thermal Stability
2.5. Mechanical Performance
3. Experimental
3.1. Materials
3.2. Synthesis of Flame Retardant APH
3.3. Preparation of EP and APH/EP Composite
3.4. Test Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, J.; Mi, X.; Chen, S.; Xu, Z.; Zhang, D.; Miao, M.; Wang, J. A bio-based hyperbranched flame retardant for epoxy resins. Chem. Eng. J. 2020, 381, 122719. [Google Scholar] [CrossRef]
- Zhong, L.; Hao, Y.; Zhang, J.; Wei, F.; Li, T.; Miao, M.; Zhang, D. Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin. Macromolecules 2022, 55, 595–607. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Q.; Shen, L.; Cui, Z.; Kou, L.; Cheng, J.; Zhang, J. A renewable resveratrol-based epoxy resin with high Tg, excellent mechanical properties and low flammability. Chem. Eng. J. 2020, 383, 123124. [Google Scholar] [CrossRef]
- Kandola, B.K.; Magnoni, F.; Ebdon, J.R. Flame retardants for epoxy resins: Application-related challenges and solutions. J. Vinyl. Addit. Technol. 2022, 28, 17–49. [Google Scholar] [CrossRef]
- He, L.X.; Liu, X.D.; Zheng, X.T.; Dong, Y.Q.; Bai, W.B.; Lin, Y.C.; Jian, R.K. A versatile phosphorothioate bearing benzimidazole for the preparation of flame retardant, mechanically strong and high transparency epoxy resins. Polym. Degrad. Stab. 2022, 203, 110056. [Google Scholar] [CrossRef]
- Jian, R.K.; Pang, F.Q.; Lin, Y.C.; Bai, W.B. Facile construction of lamellar-like phosphorus-based triazole-zinc complex for high-performance epoxy resins. J. Colloid Interface Sci. 2022, 609, 513–522. [Google Scholar] [CrossRef]
- Liu, X.D.; Zheng, X.T.; Dong, Y.Q.; He, L.X.; Chen, F.; Bai, W.B.; Lin, Y.C.; Jian, R.K. A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins. Polym. Degrad. Stab. 2022, 196, 109840. [Google Scholar] [CrossRef]
- Chu, F.; Hu, W.; Song, L.; Hu, Y. State-of-the-art research in flame-retardant unsaturated polyester resins: Progress, challenges and prospects. Fire Technol. 2022, 1–42. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Y.; Deng, H.; Lyu, R.; Zhu, J.; Yang, Y. Synergistic flame retardant effect of barium phytate and intumescent flame retardant for epoxy resin. Polymers 2021, 13, 2900. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Zhou, Y.; Zhao, B.; Hu, Q.; Chen, S.; Pan, K. Molecular design of reactive flame retardant for preparing biobased flame retardant polyamide 56. Polym. Degrad. Stab. 2023, 207, 110212. [Google Scholar] [CrossRef]
- Bekeshev, A.; Mostovoy, A.; Shcherbakov, A.; Zhumabekova, A.; Serikbayeva, G.; Vikulova, M.; Svitkina, V. Effect of phosphorus and chlorine containing plasticizers on the physicochemical and mechanical properties of epoxy composites. J. Compos. Sci. 2023, 7, 178. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Wang, X. Preparation and properties of epoxy resin modified with phosphorus and nitrogen flame retardants. Mater. Res. Express 2023, 10, 035303. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Cao, S.; Cao, Y.; Wang, J. Reactive, intumescent, halogen-free flame retardant for polypropylene. J. Appl. Polym. Sci. 2014, 131, 40054. [Google Scholar] [CrossRef]
- Lampa, E.; Eguchi, A.; Todaka, E.; Mori, C. Fetal exposure markers of dioxins and dioxin-like PCBs. Environ. Sci. Pollut. Res. Int. 2018, 25, 11940–11947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Buekens, A.; Li, X. Open burning as a source of dioxins. Crit. Rev. Environ. Sci. Technol. 2017, 47, 543–620. [Google Scholar] [CrossRef]
- Huang, Z.; Ruan, B.; Wu, J.; Ma, N.; Jiang, T.; Tsai, F.C. Highefficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant. J. Appl. Polym. Sci. 2020, 138, 50413. [Google Scholar] [CrossRef]
- Chai, G.; Zhu, G.; Gao, S.; Zhou, J.; Gao, Y.; Wang, Y. On improving flame retardant and smoke suppression efficiency of epoxy resin doped with aluminum tri-hydroxide. Adv. Compos. Lett. 2019, 28, 19894597. [Google Scholar] [CrossRef]
- Chi, Z.; Guo, Z.; Xu, Z.; Zhang, M.; Li, M.; Shang, L.; Ao, Y. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism. Polym. Degrad. Stab. 2020, 176, 109151. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.Y.; Jian, R.K.; Liu, Z.; Huang, G. Chemical structure construction of DOPO-containing compounds for flame retardancy of epoxy resin: A review. Prog. Org. Coat. 2023, 175, 107316. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, X.; Bu, M.; Lei, C. Toughening and strengthening epoxy resins with a new bi-DOPO biphenyl reactive flame retardant. Eur. Polym. J. 2022, 178, 111488. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, H.; Cao, J.; Zou, J.; Ma, H. A high-efficiency DOPO-based reactive flame retardant with bi-hydroxyl for low-flammability epoxy resin. J. Appl. Polym. Sci. 2020, 138, 50165. [Google Scholar] [CrossRef]
- Li, Z.; Chen, M.; Li, S.; Fan, X.; Liu, C. Simultaneously improving the thermal, flame-retardant and mechanical properties of epoxy resins modified by a novel multi-element synergistic flame retardant. Macromol. Mater. Eng. 2019, 304, 1800619. [Google Scholar] [CrossRef]
- Qi, Y.; Weng, Z.; Kou, Y.; Song, L.; Li, J.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem. Eng. J. 2021, 406, 126881. [Google Scholar] [CrossRef]
- Bao, X.; Wu, F.; Wang, J. Thermal degradation behavior of epoxy resin containing modified carbon nanotubes. Polymers 2021, 13, 3332. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Tao, R.; Dai, P.; Luo, Z.; He, M. Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites. Polym. Compos. 2020, 41, 2025–2035. [Google Scholar] [CrossRef]
- Gao, T.Y.; Wang, F.D.; Xu, Y.; Wei, C.X.; Zhu, S.E.; Yang, W.; Lu, H.D. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chem. Eng. J. 2022, 428, 131173. [Google Scholar] [CrossRef]
- Qian, X.; Song, L.; Bihe, Y.; Yu, B.; Shi, Y.; Hu, Y.; Yuen, R.K.K. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Mater. Chem. Phys. 2014, 143, 1243–1252. [Google Scholar] [CrossRef]
- Zhi, M.; Yang, X.; Fan, R.; Yue, S.; Zheng, L.; Liu, Q.; He, Y. A comprehensive review of reactive flame-retardant epoxy resin: Fundamentals, recent developments, and perspectives. Polym. Degrad. Stab. 2022, 201, 109976. [Google Scholar] [CrossRef]
- Mostovoy, A.S.; Yakovlev, A.V.; Lopukhova, M.I. Directional control of physico-chemical and mechanical properties of epoxide composites by the addition of graphite-graphene structures. Polym. Plast. Technol. Mater. 2019, 59, 874–883. [Google Scholar] [CrossRef]
- Qi, Y.; Weng, Z.; Zhang, K.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy. Chem. Eng. J. 2020, 387, 124115. [Google Scholar] [CrossRef]
- Cui, M.; Li, J.; Chen, X.; Hong, W.; Chen, Y.; Xiang, J.; Yan, J.; Fan, H. A halogen-free, flame retardant, waterborne polyurethane coating based on the synergistic effect of phosphorus and silicon. Prog. Org. Coat. 2021, 158, 106359. [Google Scholar] [CrossRef]
- Luo, H.; Rao, W.; Liu, Y.; Zhao, P.; Wang, L.; Yu, C. Novel multi-element DOPO derivative toward low-flammability epoxy resin. J. Appl. Polym. Sci. 2020, 137, 49427. [Google Scholar] [CrossRef]
- Luo, C.; Nan, C.; Zuo, J.; Lin, F. Effect of sulfur in different valence on flame retardance of epoxy resin for light emitting diode. J. Appl. Polym. Sci 2020, 138, 50271. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Y.; Zhang, T.; Zhao, W.; Ji, P. Improving the flame retardancy and smoke suppression of epoxy resins by introducing of DOPO derivative functionalized ZIF-8. Polym. Degrad. Stab. 2021, 194, 109749. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Wang, J.; Chen, K.; Zhang, B.; Chen, Q.; Guo, P.; Wang, X.; Liu, F.; Huo, S.; et al. Facile fabrication of single-component flame-retardant epoxy resin with rapid curing capacity and satisfied thermal resistance. React. Funct. Polym. 2022, 170, 105103. [Google Scholar] [CrossRef]
- Bifulco, A.; Varganici, C.D.; Rosu, L.; Mustata, F.; Rosu, D.; Gaan, S. Recent advances in flame retardant epoxy systems containing non-reactive DOPO based phosphorus additives. Polym. Degrad. Stab. 2022, 200, 109962. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, C.; Qian, X.; Jing, J.; Jin, L. DOPO/Silicon/CNT nanohybrid flame retardants: Toward improving the fire safety of epoxy resins. Polymers 2022, 14, 565. [Google Scholar] [CrossRef]
- Cao, M.; Liu, B.W.; Zhang, L.; Peng, Z.C.; Zhang, Y.Y.; Wang, H.; Zhao, H.B.; Wang, Y.Z. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos. Part B 2021, 225, 109309. [Google Scholar] [CrossRef]
- Gong, K.; Yin, L.; Pan, H.; Mao, S.; Liu, L.; Zhou, K. Novel exploration of the flame retardant potential of bimetallic MXene in epoxy composites. Compos. Part B 2022, 237, 109862. [Google Scholar] [CrossRef]
- Huo, S.; Zhou, Z.; Jiang, J.; Sai, T.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chem. Eng. J. 2022, 427, 131578. [Google Scholar] [CrossRef]
- Luo, H.; Rao, W.; Zhao, P.; Wang, L.; Liu, Y.; Yu, C. An efficient organic/inorganic phosphorus-nitrogen-silicon flame retardant towards low-flammability epoxy resin. Polym. Degrad. Stab. 2020, 178, 109195. [Google Scholar] [CrossRef]
- Yu, C.; Wu, T.; Yang, F.; Wang, H.; Rao, W.; Zhao, H.B. Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins. J. Colloid Interface Sci. 2022, 628, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Yang, F.; Wu, T.; Shi, J.; Zhao, H.B.; Rao, W. Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chem. Eng. J. 2023, 461, 142061. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, S.; Du, X.; Du, Z.; Cheng, X.; Wang, H. Durable flame retardant and water repellent cotton fabric based on synergistic effect of ferrocene and DOPO. Cellulose 2021, 28, 1809–1826. [Google Scholar] [CrossRef]
- Zhang, W.; Fina, A.; Ferraro, G.; Yang, R. FTIR and GCMS analysis of epoxy resin decomposition products feeding the flame during UL 94 standard flammability test. Application to the understanding of the blowing-out effect in epoxy/polyhedral silsesquioxane formulations. J. Anal. Appl. Pyrolysis 2018, 135, 271–280. [Google Scholar] [CrossRef]
- Wang, X.; He, W.; Long, L.; Huang, S.; Qin, S.; Xu, G. A phosphorus and nitrogen-containing DOPO derivative as flame retardant for polylactic acid (PLA). J. Therm. Anal. Calorim. 2020, 145, 331–343. [Google Scholar] [CrossRef]
- Zhao, P.; Rao, W.; Luo, H.; Wang, L.; Liu, Y.; Yu, C. Novel organophosphorus compound with amine groups towards self-extinguishing epoxy resins at low loading. Mater. Des. 2020, 193, 108838. [Google Scholar] [CrossRef]
- Yu, C.; Wu, T.; Yang, F.; Rao, W.; Zhao, H.-B.; Zhu, Z. Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins. Eur. Polym. J. 2022, 167, 111075. [Google Scholar] [CrossRef]
Sample | t1/t2 (s) | Rating | Dripping (Yes/No) | LOI (%) |
---|---|---|---|---|
EP | 192/0 | Fail to pass | No | 23.5 |
1% APH/EP | 13/12 | V-1 | No | 29.8 |
2% APH/EP | 10/4 | V-1 | No | 30.7 |
3% APH/EP | 4/6 | V-0 | No | 30.9 |
4% APH/EP | 3/4 | V-0 | No | 31.2 |
Sample | EP | 2% APH/EP | 4% APH/EP |
---|---|---|---|
PHRR (kW/m2) | 1383.6 | 877.3 | 912.1 |
av-HRR (kW/m2) | 322.2 | 241.4 | 219.8 |
TSP (m2) | 61.0 | 35.7 | 37.6 |
THR (MJ/m2) | 79.0 | 68.8 | 67.0 |
COP (g/s) | 0.052 | 0.031 | 0.038 |
Char residue (wt%) | 11.8 | 15.2 | 19.4 |
Sample | C (wt%) | O (wt%) | N (wt%) | P (wt%) | Si (wt%) |
---|---|---|---|---|---|
4% APH/EP | 81.41 | 13.04 | 4.30 | 0.53 | 0.72 |
Sample | T5% (°C) | Tmax (°C) | RTmax (%/°C) | C700 (wt%) |
---|---|---|---|---|
EP | 399.4 | 419.1 | 1.8 | 19.5 |
2% APH/EP | 390.4 | 415.2 | 1.5 | 20.1 |
4% APH/EP | 389.4 | 414.2 | 1.4 | 22.0 |
Sample | EP (g) | DDM (g) | APH (g) |
---|---|---|---|
EP | 80.00 | 20.00 | 0.00 |
1% APH/EP | 80.00 | 20.00 | 1.01 |
2% APH/EP | 80.00 | 20.00 | 2.04 |
3% APH/EP | 80.00 | 20.00 | 3.09 |
4% APH/EP | 80.00 | 20.00 | 4.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Li, F.; Huang, M.; Meng, W.; Rao, W.; Lei, Y.; Yu, C. Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin. Molecules 2023, 28, 4287. https://doi.org/10.3390/molecules28114287
Huang Z, Li F, Huang M, Meng W, Rao W, Lei Y, Yu C. Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin. Molecules. 2023; 28(11):4287. https://doi.org/10.3390/molecules28114287
Chicago/Turabian StyleHuang, Ziqin, Fangli Li, Mingyan Huang, Wenqiao Meng, Wenhui Rao, Yuan Lei, and Chuanbai Yu. 2023. "Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin" Molecules 28, no. 11: 4287. https://doi.org/10.3390/molecules28114287
APA StyleHuang, Z., Li, F., Huang, M., Meng, W., Rao, W., Lei, Y., & Yu, C. (2023). Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin. Molecules, 28(11), 4287. https://doi.org/10.3390/molecules28114287