Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology
Abstract
:1. Introduction
2. Arachidonic Acid Metabolism in the Pancreas
3. Arachidonic Acid and Calcium Signaling in the Pancreas
4. Role of Arachidonic Acid in Pancreatitis and Diabetes
5. Arachidonic Acid’s Involvement in Pancreatic Cancer Development
6. Arachidonic Acid and Stroma: Interplay in the Tissue Microenvironment
7. Discussion and Conclusions
8. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res. 2018, 11, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xiang, R.; Glorieux, C.; Huang, P. PLA2G2A Phospholipase Promotes Fatty Acid Synthesis and Energy Metabolism in Pancreatic Cancer Cells with K-ras Mutation. Int. J. Mol. Sci. 2022, 23, 11721. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Wang, M.-H. Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat. 2011, 95, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schuller, H.M.; Zhang, L.; Weddle, D.L.; Castonguay, A.; Walker, K.; Miller, M.S. The cyclooxygenase inhibitor ibuprofen and the FLAP inhibitor MK886 inhibit pancreatic carcinogenesis induced in hamsters by transplacental exposure to ethanol and the tobacco carcinogen NNK. J. Cancer Res. Clin. Oncol. 2002, 128, 525–532. [Google Scholar] [CrossRef]
- Murakami, M.; Nakatani, Y.; Atsumi, G.-I.; Inoue, K.; Kudo, I. Regulatory Functions of Phospholipase A2. Crit. Rev. Immunol. 2017, 37, 127–195. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Chang, Y.; Fan, J.; Ji, W.; Su, C. Phospholipase A2 superfamily in cancer. Cancer Lett. 2021, 497, 165–177. [Google Scholar] [CrossRef]
- Turunen, P.M.; Putula, J.; Kukkonen, J.P. Filtration assay for arachidonic acid release. Anal. Biochem. 2010, 407, 233–236. [Google Scholar] [CrossRef]
- Chaudhry, A.; Rubin, R.P. Mediators of Ca2(+)-dependent secretion. Environ. Health Perspect. 1990, 84, 35–39. [Google Scholar] [CrossRef]
- Yeung-Yam-Wah, V.; Lee, A.K.; Tse, A. Arachidonic acid mobilizes Ca2+ from the endoplasmic reticulum and an acidic store in rat pancreatic β cells. Cell Calcium 2012, 51, 140–148. [Google Scholar] [CrossRef]
- Ding, X.-Z.; Hennig, R.; Adrian, T.E. Lipoxygenase and cyclooxygenase metabolism: New insights in treatment and chemoprevention of pancreatic cancer. Mol. Cancer 2003, 2, 10. [Google Scholar] [CrossRef]
- Vane, J.R.; Bakhle, Y.S.; Botting, R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, F.A. Cyclooxygenase enzymes: Regulation and function. Curr. Pharm. Des. 2004, 10, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Ren, J.; Song, W.; Xiang, R.; Ge, Y.; Lu, W.; Fu, T. Resveratrol Suppresses Severe Acute Pancreatitis-Induced Microcirculation Disturbance through Targeting SIRT1-FOXO1 Axis. Oxid. Med. Cell. Longev. 2021, 2021, 8891544. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clin. Immunol. 2006, 119, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Narumiya, S.; Fitzgerald, G.A. Genetic and pharmacological analysis of prostanoid receptor function. J. Clin. Investig. 2001, 108, 25–30. [Google Scholar] [CrossRef]
- Persaud, S.J.; Muller, D.; Belin, V.D.; Kitsou-Mylona, I.; Asare-Anane, H.; Papadimitriou, A.; Burns, C.J.; Huang, G.C.; Amiel, S.A.; Jones, P.M. The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes 2007, 56, 197–203. [Google Scholar] [CrossRef]
- Ashton, A.W.; Zhang, Y.; Cazzolli, R.; Honn, K.V. The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022, 27, 6234. [Google Scholar] [CrossRef]
- Closa, D.; Rosello-Catafau, J.; Hotter, G.; Bulbena, O.; Fernandez-Cruz, L.; Gelpi, E. Cyclooxygenase and lipoxygenase metabolism in sodium taurocholate induced acute hemorrhagic pancreatitis in rats. Prostaglandins 1993, 45, 315–322. [Google Scholar] [CrossRef]
- Katori, M.; Kawamura, M.; Sawada, M. 11-Dehydro-TXB2 and 2,3-dinor-TXB2 as new parameters of TXA2 generation. Nihon Rinsho 1992, 50, 349–354. [Google Scholar] [PubMed]
- Lasserre, B.; Navarro-Delmasure, C.; Chanh, A.P.H.; Catala, J.; Hollande, E. Modifications in the TXA2and PGI2plasma levels and some other biochemical parameters during the initiation and development of non-insulin-dependent diabetes mellitus (NIDDM) syndrome in the rabbit. Prostaglandins Leukot. Essent. Fat. Acids 2000, 62, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Merchant, N.; Bhaskar, L.V.K.S.; Momin, S.; Sujatha, P.; Reddy, A.B.M.; Nagaraju, G.P. 5-Lipoxygenase: Its involvement in gastrointestinal malignancies. Crit. Rev. Oncol. Hematol. 2018, 127, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Bosma, K.J.; Andrei, S.R.; Katz, L.S.; Smith, A.A.; Dunn, J.C.; Ricciardi, V.F.; Ramirez, M.A.; Baumel-Alterzon, S.; Pace, W.A.; Carroll, D.T.; et al. Pharmacological blockade of the EP3 prostaglandin E2 receptor in the setting of type 2 diabetes enhances β-cell proliferation and identity and relieves oxidative damage. Mol. Metab. 2021, 54, 101347. [Google Scholar] [CrossRef]
- Borin, T.F.; Angara, K.; Rashid, M.H.; Achyut, B.R.; Arbab, A.S. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. Int. J. Mol. Sci. 2017, 18, 2661. [Google Scholar] [CrossRef]
- Dobrian, A.D.; Morris, M.A.; Taylor-Fishwick, D.A.; Holman, T.R.; Imai, Y.; Mirmira, R.G.; Nadler, J.L. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol. Ther. 2019, 195, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.-X.; Ding, X.-L.; Wu, S.-B.; Zhang, H.-F.; Cao, W.; Qu, L.-S.; Zhang, H. Inhibition of 5-lipoxygenase triggers apoptosis in pancreatic cancer cells. Oncol. Rep. 2015, 33, 661–668. [Google Scholar] [CrossRef]
- Wang, T.; Fu, X.; Chen, Q.; Patra, J.K.; Wang, D.; Wang, Z.; Gai, Z. Arachidonic Acid Metabolism and Kidney Inflammation. Int. J. Mol. Sci. 2019, 20, 3683. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Gubbala, V.B.; Jytosana, N.; Trinh, V.Q.; Maurer, H.C.; Naeem, R.F.; Lytle, N.K.; Ma, Z.; Zhao, S.; Lin, W.; Han, H.; et al. Eicosanoids in the pancreatic tumor microenvironment—A multicellular, multifaceted progression. Gastro Hep Adv. 2022, 1, 682–697. [Google Scholar] [CrossRef]
- Kiss, L.; Bier, J.; Röder, Y.; Weissmann, N.; Grimminger, F.; Seeger, W. Direct and simultaneous profiling of epoxyeicosatrienoic acid enantiomers by capillary tandem column chiral-phase liquid chromatography with dual online photodiode array and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2008, 392, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Ju, W.; Hao, H.; Wang, G.; Li, P. Cytochrome P450 2J2: Distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab. Rev. 2013, 45, 311–352. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, D.; Greene, E.R.; Pozzi, A.; Wang, D.W.; Zeldin, D.C. EET signaling in cancer. Cancer Metastasis Rev. 2011, 30, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Jiang, Y.; Wang, H.; Gao, G. CYP2J2-produced epoxyeicosatrienoic acids contribute to the ferroptosis resistance of pancreatic ductal adenocarcinoma in a PPARγ-dependent manner. Zhong Nan Da Xue Xue Bao Yi Xue Ban J. Cent. South Univ. Med. Sci. 2021, 46, 932–941. [Google Scholar] [CrossRef]
- Frömel, T.; Naeem, Z.; Pirzeh, L.; Fleming, I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol. Ther. 2022, 234, 108049. [Google Scholar] [CrossRef]
- Luo, P.; Chang, H.-H.; Zhou, Y.; Zhang, S.; Hwang, S.H.; Morisseau, C.; Wang, C.-Y.; Inscho, E.W.; Hammock, B.D.; Wang, M.-H. Inhibition or deletion of soluble epoxide hydrolase prevents hyperglycemia, promotes insulin secretion, and reduces islet apoptosis. J. Pharmacol. Exp. Ther. 2010, 334, 430–438. [Google Scholar] [CrossRef]
- Schulz, I.; Krause, E.; González, A.; Göbel, A.; Sternfeld, L.; Schmid, A. Agonist-stimulated pathways of calcium signaling in pancreatic acinar cells. Biol. Chem. 1999, 380, 903–908. [Google Scholar] [CrossRef]
- Nadella, S.; Ciofoaia, V.; Cao, H.; Kallakury, B.; Tucker, R.D.; Smith, J.P. Cholecystokinin Receptor Antagonist Therapy Decreases Inflammation and Fibrosis in Chronic Pancreatitis. Dig. Dis. Sci. 2020, 65, 1376–1384. [Google Scholar] [CrossRef]
- Smith, J.P.; Solomon, T.E. Cholecystokinin and pancreatic cancer: The chicken or the egg? Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G91–G101. [Google Scholar] [CrossRef]
- Del Castillo-Vaquero, A.; Salido, G.M.; González, A. Increased calcium influx in the presence of ethanol in mouse pancreatic acinar cells. Int. J. Exp. Pathol. 2010, 91, 114–124. [Google Scholar] [CrossRef]
- Tapia, J.A.; Salido, G.M.; González, A. Ethanol consumption as inductor of pancreatitis. World J. Gastrointest. Pharmacol. Ther. 2010, 1, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.B.; Nakkina, S.P.; Beardsley, J.M.; Parikh, J.G.; Altomare, D.A. Induction of pancreatitis in mice with susceptibility to pancreatic cancer. Methods Cell Biol. 2022, 168, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Minaga, K.; Watanabe, T.; Kamata, K.; Kudo, M.; Strober, W. A Mouse Model of Acute and Chronic Pancreatitis. Curr. Protoc. 2022, 2, e422. [Google Scholar] [CrossRef] [PubMed]
- Trulsson, L.M.; Gasslander, T.; Svanvik, J. Cholecystokinin-8-induced hypoplasia of the rat pancreas: Influence of nitric oxide on cell proliferation and programmed cell death. Basic Clin. Pharmacol. Toxicol. 2004, 95, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Portincasa, P.; Wang, D.Q.-H. Update on the Molecular Mechanisms Underlying the Effect of Cholecystokinin and Cholecystokinin-1 Receptor on the Formation of Cholesterol Gallstones. Curr. Med. Chem. 2019, 26, 3407–3423. [Google Scholar] [CrossRef]
- Niinistö, S.; Takkinen, H.-M.; Erlund, I.; Ahonen, S.; Toppari, J.; Ilonen, J.; Veijola, R.; Knip, M.; Vaarala, O.; Virtanen, S.M. Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity. Diabetologia 2017, 60, 1223–1233. [Google Scholar] [CrossRef]
- Stevens, T.; Berk, M.P.; Lopez, R.; Chung, Y.-M.; Zhang, R.; Parsi, M.A.; Bronner, M.P.; Feldstein, A.E. Lipidomic profiling of serum and pancreatic fluid in chronic pancreatitis. Pancreas 2012, 41, 518–522. [Google Scholar] [CrossRef]
- Hernandez-Perez, M.; Kulkarni, A.; Samala, N.; Sorrell, C.; El, K.; Haider, I.; Aleem, A.M.; Holman, T.R.; Rai, G.; Tersey, S.A.; et al. A 12-lipoxygenase-Gpr31 signaling axis is required for pancreatic organogenesis in the zebrafish. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 14850–14862. [Google Scholar] [CrossRef]
- Metz, S.A. Feedback modulation of glucose-induced insulin secretion by arachidonic acid metabolites: Possible molecular mechanisms and relevance to diabetes mellitus. Prostaglandins Med. 1981, 7, 581–589. [Google Scholar] [CrossRef]
- Mouslech, Z.; Valla, V. Endocannabinoid system: An overview of its potential in current medical practice. Neuro Endocrinol. Lett. 2009, 30, 153–179. [Google Scholar]
- Zhou, G.X.; Ding, X.L.; Huang, J.F.; Zhang, H.; Wu, S.B. Suppression of 5-lipoxygenase gene is involved in triptolide-induced apoptosis in pancreatic tumor cell lines. Biochim. Biophys. Acta 2007, 1770, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Schulz, I.; Stolze, H.H. The exocrine pancreas: The role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Annu. Rev. Physiol. 1980, 42, 127–156. [Google Scholar] [CrossRef] [PubMed]
- Crottès, D.; Lin, Y.-H.T.; Peters, C.J.; Gilchrist, J.M.; Wiita, A.P.; Jan, Y.N.; Jan, L.Y. TMEM16A controls EGF-induced calcium signaling implicated in pancreatic cancer prognosis. Proc. Natl. Acad. Sci. USA 2019, 116, 13026–13035. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Sternfeld, L.; Rodriguez, J.A.; Ross, C.; Hayden, M.R.; Carriere, F.; Liu, G.; Schulz, I. The role of free fatty acids, pancreatic lipase and Ca2+ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase-deficient mice. Acta Physiol. 2009, 195, 13–28. [Google Scholar] [CrossRef]
- Bettaieb, L.; Brulé, M.; Chomy, A.; Diedro, M.; Fruit, M.; Happernegg, E.; Heni, L.; Horochowska, A.; Housseini, M.; Klouyovo, K.; et al. Ca2+ Signaling and Its Potential Targeting in Pancreatic Ductal Carcinoma. Cancers 2021, 13, 3085. [Google Scholar] [CrossRef]
- Kutschat, A.P.; Johnsen, S.A.; Hamdan, F.H. Store-Operated Calcium Entry: Shaping the Transcriptional and Epigenetic Landscape in Pancreatic Cancer. Cells 2021, 10, 966. [Google Scholar] [CrossRef]
- Siegel, G.; Sternfeld, L.; Gonzalez, A.; Schulz, I.; Schmid, A. Arachidonic acid modulates the spatiotemporal characteristics of agonist-evoked Ca2+ waves in mouse pancreatic acinar cells. J. Biol. Chem. 2001, 276, 16986–16991. [Google Scholar] [CrossRef]
- González, A.; Schmid, A.; Sternfeld, L.; Krause, E.; Salido, G.M.; Schulz, I. Cholecystokinin-evoked Ca2+ waves in isolated mouse pancreatic acinar cells are modulated by activation of cytosolic phospholipase A2, phospholipase D, and protein kinase C. Biochem. Biophys. Res. Commun. 1999, 261, 726–733. [Google Scholar] [CrossRef]
- Wu, L.; Katz, S.; Brown, G.R. Inositol 1,4,5-trisphosphate-, GTP-, arachidonic acid- and thapsigargin-mediated intracellular calcium movement in PANC-1 microsomes. Cell Calcium 1994, 15, 228–240. [Google Scholar] [CrossRef]
- Stickle, D.; Ramanadham, S.; Turk, J. Effects of arachidonyltrifluoromethyl ketone on cytosolic [Ca2+] in HIT insulinoma cells. J. Lipid Mediat. Cell Signal. 1997, 17, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lankisch, P.G.; Apte, M.; Banks, P.A. Acute pancreatitis. Lancet 2015, 386, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Lu, G.; Huai, J.; Ding, J. Impact of smoking on the risk of pancreatitis: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0124075. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, C.J.; Jamieson, N.; Lerch, M.M.; Mayerle, J.V. Drug induced pancreatitis. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 143–155. [Google Scholar] [CrossRef]
- Pekgöz, M. Post-endoscopic retrograde cholangiopancreatography pancreatitis: A systematic review for prevention and treatment. World J. Gastroenterol. 2019, 25, 4019–4042. [Google Scholar] [CrossRef]
- Yen, H.-H.; Ho, T.-W.; Wu, C.-H.; Kuo, T.-C.; Wu, J.-M.; Yang, C.-Y.; Tien, Y.-W. Late acute pancreatitis after pancreaticoduodenectomy: Incidence, outcome, and risk factors. J. Hepatobiliary Pancreat. Sci. 2019, 26, 109–116. [Google Scholar] [CrossRef]
- Uomo, G.; Manes, G. Risk factors of chronic pancreatitis. Dig. Dis. 2007, 25, 282–284. [Google Scholar] [CrossRef]
- Geokas, M.C.; Baltaxe, H.A.; Banks, P.A.; Silva, J.J.; Frey, C.F. Acute pancreatitis. Ann. Intern. Med. 1985, 103, 86–100. [Google Scholar] [CrossRef]
- González, A.; Schmid, A.; Salido, G.M.; Camello, P.J.; Pariente, J.A. XOD-catalyzed ROS generation mobilizes calcium from intracellular stores in mouse pancreatic acinar cells. Cell. Signal. 2002, 14, 153–159. [Google Scholar] [CrossRef]
- González, A.; Granados, M.P.; Salido, G.M.; Pariente, J.A. H2O2-induced changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Mol. Cell. Biochem. 2005, 269, 165–173. [Google Scholar] [CrossRef]
- Rivera-Barreno, R.; del Castillo-Vaquero, A.; Salido, G.M.; Gonzalez, A. Effect of cinnamtannin B-1 on cholecystokinin-8-evoked responses in mouse pancreatic acinar cells. Clin. Exp. Pharmacol. Physiol. 2010, 37, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, T.J.; Hietaranta, A.J.; Gronroos, J.M. Phospholipase A2 in acute pancreatitis: New biochemical and pathological aspects. Hepato-Gastroenterology 1999, 46, 2731–2735. [Google Scholar] [PubMed]
- Lei, X.; Barbour, S.E.; Ramanadham, S. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie 2010, 92, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Süleyman, H.; Demircan, B.; Karagöz, Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep. 2007, 59, 247–258. [Google Scholar]
- Schlosser, W.; Schlosser, S.; Ramadani, M.; Gansauge, F.; Gansauge, S.; Beger, H.-G. Cyclooxygenase-2 is overexpressed in chronic pancreatitis. Pancreas 2002, 25, 26–30. [Google Scholar] [CrossRef]
- Huang, H.; Chen, J.; Peng, L.; Yao, Y.; Deng, D.; Zhang, Y.; Liu, Y.; Wang, H.; Li, Z.; Bi, Y.; et al. Transgenic expression of cyclooxygenase-2 in pancreatic acinar cells induces chronic pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G179–G186. [Google Scholar] [CrossRef]
- Polito, F.; Bitto, A.; Irrera, N.; Squadrito, F.; Fazzari, C.; Minutoli, L.; Altavilla, D. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis. Br. J. Pharmacol. 2010, 161, 1002–1011. [Google Scholar] [CrossRef]
- Warner, T.D.; Mitchell, J.A. Cyclooxygenases: New forms, new inhibitors, and lessons from the clinic. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 790–804. [Google Scholar] [CrossRef]
- Mateu, A.; Ramudo, L.; Manso, M.A.; De Dios, I. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini. Int. J. Biochem. Cell Biol. 2015, 69, 132–141. [Google Scholar] [CrossRef]
- Zhou, W.; Levine, B.A.; Olson, M.S. Lipid mediator production in acute and chronic pancreatitis in the rat. J. Surg. Res. 1994, 56, 37–44. [Google Scholar] [CrossRef]
- Kilian, M.; Gregor, J.I.; Heukamp, I.; Wagner, C.; Walz, M.K.; Schimke, I.; Kristiansen, G.; Wenger, F.A. Early inhibition of prostaglandin synthesis by n-3 fatty acids determinates histologic severity of necrotizing pancreatitis. Pancreas 2009, 38, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.-K.; Reding, T.; Bain, M.; Heikenwalder, M.; Bimmler, D.; Graf, R. Prostaglandin E2 modulates TNF-alpha-induced MCP-1 synthesis in pancreatic acinar cells in a PKA-dependent manner. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1196–G1204. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; An, C.S.; Yun, B.S.; Kang, K.S.; Lee, Y.A.; Won, S.M.; Gwag, B.J.; Cho, S.I.; Hahm, K.-B. Prevention effects of ND-07, a novel drug candidate with a potent antioxidative action and anti-inflammatory action, in animal models of severe acute pancreatitis. Eur. J. Pharmacol. 2012, 687, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Reding, T.; Bimmler, D.; Perren, A.; Sun, L.-K.; Fortunato, F.; Storni, F.; Graf, R. A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (WBN/Kob rats): Significant reduction of macrophage infiltration and fibrosis. Gut 2006, 55, 1165–1173. [Google Scholar] [CrossRef]
- Luci, D.K.; Jameson, J.B., 2nd; Yasgar, A.; Diaz, G.; Joshi, N.; Kantz, A.; Markham, K.; Perry, S.; Kuhn, N.; Yeung, J.; et al. Synthesis and structure-activity relationship studies of 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase. J. Med. Chem. 2014, 57, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015, 6, 297–310. [Google Scholar] [CrossRef]
- Chandrasekharan, J.A.; Sharma-Walia, N. Lipoxins: Nature’s way to resolve inflammation. J. Inflamm. Res. 2015, 8, 181–192. [Google Scholar] [CrossRef]
- Shahid, R.A.; Vigna, S.R.; Layne, A.C.; Romac, J.M.-J.; Liddle, R.A. Acinar Cell Production of Leukotriene B4 Contributes to Development of Neurogenic Pancreatitis in Mice. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 75–86. [Google Scholar] [CrossRef]
- Vigna, S.R.; Shahid, R.A.; Nathan, J.D.; McVey, D.C.; Liddle, R.A. Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats. Pancreas 2011, 40, 708–714. [Google Scholar] [CrossRef]
- Hotter, G.; Closa, D.; Prats, N.; Pi, F.; Gelpí, E.; Roselló-Catafau, J. Free radical enhancement promotes leucocyte recruitment through a PAF and LTB4 dependent mechanism. Free Radic. Biol. Med. 1997, 22, 947–954. [Google Scholar] [CrossRef]
- Liao, D.; Qian, B.; Zhang, Y.; Wu, K.; Xu, M. Inhibition of 5-lipoxygenase represses neutrophils activation and activates apoptosis in pancreatic tissues during acute necrotizing pancreatitis. Biochem. Biophys. Res. Commun. 2018, 498, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Oruc, N.; Yukselen, V.; Ozutemiz, A.O.; Yuce, G.; Celik, H.A.; Musoglu, A.; Batur, Y. Leukotriene receptor antagonism in experimental acute pancreatitis in rats. Eur. J. Gastroenterol. Hepatol. 2004, 16, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Dobrian, A.D.; Huyck, R.W.; Glenn, L.; Gottipati, V.; Haynes, B.A.; Hansson, G.I.; Marley, A.; McPheat, W.L.; Nadler, J.L. Activation of the 12/15 lipoxygenase pathway accompanies metabolic decline in db/db pre-diabetic mice. Prostaglandins Other Lipid Mediat. 2018, 136, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Pek, S.B.; Nathan, M.H. Role of eicosanoids in biosynthesis and secretion of insulin. Diabete Metab. 1994, 20, 146–149. [Google Scholar]
- Hwang, H.-J.; Park, K.-S.; Choi, J.H.; Cocco, L.; Jang, H.-J.; Suh, P.-G. Zafirlukast promotes insulin secretion by increasing calcium influx through L-type calcium channels. J. Cell. Physiol. 2018, 233, 8701–8710. [Google Scholar] [CrossRef]
- McDonnell, A.M.; Dang, C.H. Basic review of the cytochrome p450 system. J. Adv. Pract. Oncol. 2013, 4, 263–268. [Google Scholar] [CrossRef]
- Sarlis, N.J.; Gourgiotis, L. Hormonal effects on drug metabolism through the CYP system: Perspectives on their potential significance in the era of pharmacogenomics. Curr. Drug Targets Immune Endocr. Metab. Disord. 2005, 5, 439–448. [Google Scholar] [CrossRef]
- Sayed, T.S.; Maayah, Z.H.; Zeidan, H.A.; Agouni, A.; Korashy, H.M. Insight into the physiological and pathological roles of the aryl hydrocarbon receptor pathway in glucose homeostasis, insulin resistance, and diabetes development. Cell. Mol. Biol. Lett. 2022, 27, 103. [Google Scholar] [CrossRef]
- Falck, J.R.; Manna, S.; Moltz, J.; Chacos, N.; Capdevila, J. Epoxyeicosatrienoic acids stimulate glucagon and insulin release from isolated rat pancreatic islets. Biochem. Biophys. Res. Commun. 1983, 114, 743–749. [Google Scholar] [CrossRef]
- Bailey, R.; Cooper, J.D.; Zeitels, L.; Smyth, D.J.; Yang, J.H.M.; Walker, N.M.; Hyppönen, E.; Dunger, D.B.; Ramos-Lopez, E.; Badenhoop, K.; et al. Association of the vitamin D metabolism gene CYP27B1 with type 1 diabetes. Diabetes 2007, 56, 2616–2621. [Google Scholar] [CrossRef]
- Cao, R.-C.; Yang, W.-J.; Xiao, W.; Zhou, L.; Tan, J.-H.; Wang, M.; Zhou, Z.-T.; Chen, H.-J.; Xu, J.; Chen, X.-M.; et al. St13 protects against disordered acinar cell arachidonic acid pathway in chronic pancreatitis. J. Transl. Med. 2022, 20, 218. [Google Scholar] [CrossRef] [PubMed]
- Suresh, Y.; Das, U.N. Differential effect of saturated, monounsaturated, and polyunsaturated fatty acids on alloxan-induced diabetes mellitus. Prostaglandins, Leukot. Essent. Fat. Acids 2006, 74, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Gundala, N.K.V.; Das, U.N. Arachidonic acid–rich ARASCO oil has anti-inflammatory and antidiabetic actions against streptozotocin + high fat diet induced diabetes mellitus in Wistar rats. Nutrition 2019, 66, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, E.; Weber, H.; Kasper, M.; Jonas, L. Role of PGE2 in the development of pancreatic injury induced by chronic alcohol feeding in rats. Pancreatol. Off. J. Int. Assoc. Pancreatol. 2003, 3, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Shadhu, K.; Xi, C. Inflammation and pancreatic cancer: An updated review. Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. 2019, 25, 3–13. [Google Scholar] [CrossRef]
- Ling, S.; Feng, T.; Jia, K.; Tian, Y.; Li, Y. Inflammation to cancer: The molecular biology in the pancreas (Review). Oncol. Lett. 2014, 7, 1747–1754. [Google Scholar] [CrossRef]
- Knab, L.M.; Grippo, P.J.; Bentrem, D.J. Involvement of eicosanoids in the pathogenesis of pancreatic cancer: The roles of cyclooxygenase-2 and 5-lipoxygenase. World J. Gastroenterol. 2014, 20, 10729–10739. [Google Scholar] [CrossRef]
- Subongkot, S.; Frame, D.; Leslie, W.; Drajer, D. Selective cyclooxygenase-2 inhibition: A target in cancer prevention and treatment. Pharmacotherapy 2003, 23, 9–28. [Google Scholar] [CrossRef]
- Sarkar, F.H.; Adsule, S.; Li, Y.; Padhye, S. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev. Med. Chem. 2007, 7, 599–608. [Google Scholar] [CrossRef]
- Grossman, H.B. Selective COX-2 inhibitors as chemopreventive and therapeutic agents. Drugs Today 2003, 39, 203–212. [Google Scholar] [CrossRef]
- Anderson, W.F.; Umar, A.; Hawk, E.T. Cyclooxygenase inhibition in cancer prevention and treatment. Expert Opin. Pharmacother. 2003, 4, 2193–2204. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.S.; Alberts, D.S. Current application of selective COX-2 inhibitors in cancer prevention and treatment. Oncology 2002, 16, 37–51. [Google Scholar] [PubMed]
- Ding, X.-Z.; Tong, W.-G.; Adrian, T.E. Cyclooxygenases and lipoxygenases as potential targets for treatment of pancreatic cancer. Pancreatol. Off. J. Int. Assoc. Pancreatol. 2001, 1, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Omura, N.; Griffith, M.; Vincent, A.; Li, A.; Hong, S.-M.; Walter, K.; Borges, M.; Goggins, M. Cyclooxygenase-deficient pancreatic cancer cells use exogenous sources of prostaglandins. Mol. Cancer Res. 2010, 8, 821–832. [Google Scholar] [CrossRef]
- Mensah, E.T.; Smyrk, T.; Zhang, L.; Bick, B.; Wood-Wentz, C.M.; Buttar, N.; Chari, S.T.; Gleeson, F.C.; Kendrick, M.; Levy, M.; et al. Cyclooxygenase-2 and Cytosolic Phospholipase A2 Are Overexpressed in Mucinous Pancreatic Cysts. Clin. Transl. Gastroenterol. 2019, 10, e00028. [Google Scholar] [CrossRef]
- Chiblak, S.; Steinbauer, B.; Pohl-Arnold, A.; Kucher, D.; Abdollahi, A.; Schwager, C.; Höft, B.; Esposito, I.; Müller-Decker, K. K-Ras and cyclooxygenase-2 coactivation augments intraductal papillary mucinous neoplasm and Notch1 mimicking human pancreas lesions. Sci. Rep. 2016, 6, 29455. [Google Scholar] [CrossRef]
- Hermanova, M.; Trna, J.; Nenutil, R.; Dite, P.; Kala, Z. Expression of COX-2 is associated with accumulation of p53 in pancreatic cancer: Analysis of COX-2 and p53 expression in premalignant and malignant ductal pancreatic lesions. Eur. J. Gastroenterol. Hepatol. 2008, 20, 732–739. [Google Scholar] [CrossRef]
- Kim, M.P.; Li, X.; Deng, J.; Zhang, Y.; Dai, B.; Allton, K.L.; Hughes, T.G.; Siangco, C.; Augustine, J.J.; Kang, Y.; et al. Oncogenic KRAS Recruits an Expansive Transcriptional Network through Mutant p53 to Drive Pancreatic Cancer Metastasis. Cancer Discov. 2021, 11, 2094–2111. [Google Scholar] [CrossRef]
- Appel, M.J.; Woutersen, R.A. Modulation of growth and cell turnover of preneoplastic lesions and of prostaglandin levels in rat pancreas by dietary fish oil. Carcinogenesis 1994, 15, 2107–2112. [Google Scholar] [CrossRef]
- Hennig, R.; Ding, X.-Z.; Tong, W.-G.; Schneider, M.B.; Standop, J.; Friess, H.; Büchler, M.W.; Pour, P.M.; Adrian, T.E. 5-Lipoxygenase and leukotriene B4 receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am. J. Pathol. 2002, 161, 421–428. [Google Scholar] [CrossRef]
- Hennig, R.; Kehl, T.; Noor, S.; Ding, X.-Z.; Rao, S.M.; Bergmann, F.; Fürstenberger, G.; Büchler, M.W.; Friess, H.; Krieg, P.; et al. 15-lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia 2007, 9, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Haraldsdóttir, S.; Guolaugsdóttir, E.; Ingólfsdóttir, K.; Ogmundsdóttir, H.M. Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in vitro. Planta Med. 2004, 70, 1098–1100. [Google Scholar] [CrossRef] [PubMed]
- Wenger, F.A.; Kilian, M.; Achucarro, P.; Heinicken, D.; Schimke, I.; Guski, H.; Jacobi, C.A.; Müller, J.M. Effects of Celebrex and Zyflo on BOP-induced pancreatic cancer in Syrian hamsters. Pancreatol. Off. J. Int. Assoc. Pancreatol. 2002, 2, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Gregor, J.I.; Kilian, M.; Heukamp, I.; Kiewert, C.; Kristiansen, G.; Schimke, I.; Walz, M.K.; Jacobi, C.A.; Wenger, F.A. Effects of selective COX-2 and 5-LOX inhibition on prostaglandin and leukotriene synthesis in ductal pancreatic cancer in Syrian hamster. Prostaglandins Leukot. Essent. Fat. Acids 2005, 73, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Tersey, S.A.; Bolanis, E.; Holman, T.R.; Maloney, D.J.; Nadler, J.L.; Mirmira, R.G. Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes. Mol. Endocrinol. 2015, 29, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.V.; Saxena, S.; Relles, D.; Sarosiek, K.; Kang, C.Y.; Chipitsyna, G.; Sendecki, J.A.; Yeo, C.J.; Arafat, H.A. Differential expression of cytochrome P450 omega-hydroxylase isoforms and their association with clinicopathological features in pancreatic ductal adenocarcinoma. Ann. Surg. Oncol. 2013, 20, S636–S643. [Google Scholar] [CrossRef]
- Agundez, J.A.G. Cytochrome P450 gene polymorphism and cancer. Curr. Drug Metab. 2004, 5, 211–224. [Google Scholar] [CrossRef]
- Song, B.-J.; Abdelmegeed, M.A.; Cho, Y.-E.; Akbar, M.; Rhim, J.S.; Song, M.-K.; Hardwick, J.P. Contributing Roles of CYP2E1 and Other Cytochrome P450 Isoforms in Alcohol-Related Tissue Injury and Carcinogenesis. Adv. Exp. Med. Biol. 2019, 1164, 73–87. [Google Scholar] [CrossRef]
- Standop, J.; Schneider, M.; Ulrich, A.; Büchler, M.W.; Pour, P.M. Differences in immunohistochemical expression of xenobiotic-metabolizing enzymes between normal pancreas, chronic pancreatitis and pancreatic cancer. Toxicol. Pathol. 2003, 31, 506–513. [Google Scholar] [CrossRef]
- Kadlubar, S.; Anderson, J.P.; Sweeney, C.; Gross, M.D.; Lang, N.P.; Kadlubar, F.F.; Anderson, K.E. Phenotypic CYP2A6 variation and the risk of pancreatic cancer. JOP 2009, 10, 263–270. [Google Scholar]
- De Wever, O.; Mareel, M. Role of tissue stroma in cancer cell invasion. J. Pathol. 2003, 200, 429–447. [Google Scholar] [CrossRef] [PubMed]
- Gola, M.; Sejda, A.; Godlewski, J.; Cieślak, M.; Starzyńska, A. Neural Component of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers 2022, 14, 5246. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.; Snook, A.E.; Mueller, A.C. The poorly immunogenic tumor microenvironment of pancreatic cancer: The impact of radiation therapy, and strategies targeting resistance. Immunotherapy 2022, 14, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Iovanna, J.; Santofimia-Castaño, P. Stroma-targeting strategies in pancreatic cancer: A double-edged sword. J. Physiol. Biochem. 2023, 79, 213–222. [Google Scholar] [CrossRef]
- Fishbein, A.; Hammock, B.D.; Serhan, C.N.; Panigrahy, D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol. Ther. 2021, 218, 107670. [Google Scholar] [CrossRef]
- Kim, W.; Son, B.; Lee, S.; Do, H.; Youn, B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev. 2018, 37, 213–225. [Google Scholar] [CrossRef]
- Ching, M.M.; Reader, J.; Fulton, A.M. Eicosanoids in Cancer: Prostaglandin E2 Receptor 4 in Cancer Therapeutics and Immunotherapy. Front. Pharmacol. 2020, 11, 819. [Google Scholar] [CrossRef]
- Bu, L.; Yonemura, A.; Yasuda-Yoshihara, N.; Uchihara, T.; Ismagulov, G.; Takasugi, S.; Yasuda, T.; Okamoto, Y.; Kitamura, F.; Akiyama, T.; et al. Tumor microenvironmental 15-PGDH depletion promotes fibrotic tumor formation and angiogenesis in pancreatic cancer. Cancer Sci. 2022, 113, 3579–3592. [Google Scholar] [CrossRef]
- Colby, J.K.; Klein, R.D.; McArthur, M.J.; Conti, C.J.; Kiguchi, K.; Kawamoto, T.; Riggs, P.K.; Pavone, A.I.; Sawicki, J.; Fischer, S.M. Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia 2008, 10, 782–796. [Google Scholar] [CrossRef]
- Estaras, M.; Ortiz-Placin, C.; Castillejo-Rufo, A.; Fernandez-Bermejo, M.; Blanco, G.; Mateos, J.M.; Vara, D.; Gonzalez-Cordero, P.L.; Chamizo, S.; Lopez, D.; et al. Melatonin controls cell proliferation and modulates mitochondrial physiology in pancreatic stellate cells. J. Physiol. Biochem. 2023, 79, 235–249. [Google Scholar] [CrossRef]
- Grekova, S.P.; Angelova, A.; Daeffler, L.; Raykov, Z. Pancreatic Cancer Cell Lines Can Induce Prostaglandin E2 Production from Human Blood Mononuclear Cells. J. Oncol. 2011, 2011, 741868. [Google Scholar] [CrossRef] [PubMed]
- Charo, C.; Holla, V.; Arumugam, T.; Hwang, R.; Yang, P.; Dubois, R.N.; Menter, D.G.; Logsdon, C.D.; Ramachandran, V. Prostaglandin E2 Regulates Pancreatic Stellate Cell Activity via the EP4 Receptor. Pancreas 2013, 42, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Masamune, A.; Kikuta, K.; Satoh, M.; Sakai, Y.; Satoh, A.; Shimosegawa, T. Ligands of peroxisome proliferator-activated receptor-gamma block activation of pancreatic stellate cells. J. Biol. Chem. 2002, 277, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Estaras, M.; Gonzalez-Portillo, M.R.; Martinez, R.; Garcia, A.; Estevez, M.; Fernandez-Bermejo, M.; Mateos, J.M.; Vara, D.; Blanco-Fernández, G.; Lopez-Guerra, D.; et al. Melatonin Modulates the Antioxidant Defenses and the Expression of Proinflammatory Mediators in Pancreatic Stellate Cells Subjected to Hypoxia. Antioxidants 2021, 10, 577. [Google Scholar] [CrossRef]
- Morrison, A.H.; Byrne, K.T.; Vonderheide, R.H. Immunotherapy and Prevention of Pancreatic Cancer. Trends Cancer 2018, 4, 418–428. [Google Scholar] [CrossRef]
- Markosyan, N.; Li, J.; Sun, Y.H.; Richman, L.P.; Lin, J.H.; Yan, F.; Quinones, L.; Sela, Y.; Yamazoe, T.; Gordon, N.; et al. Tumor cell–intrinsic EPHA2 suppresses antitumor immunity by regulating PTGS2 (COX-2). J. Clin. Investig. 2019, 129, 3594–3609. [Google Scholar] [CrossRef]
- Zhang, Y.; Kirane, A.; Huang, H.; Sorrelle, N.B.; Burrows, F.J.; Dellinger, M.T.; Brekken, R.A. Cyclooxygenase-2 Inhibition Potentiates the Efficacy of Vascular Endothelial Growth Factor Blockade and Promotes an Immune Stimulatory Microenvironment in Preclinical Models of Pancreatic Cancer. Mol. Cancer Res. 2019, 17, 348–355. [Google Scholar] [CrossRef]
- Tian, W.; Jiang, X.; Kim, D.; Guan, T.; Nicolls, M.R.; Rockson, S.G. Leukotrienes in Tumor-Associated Inflammation. Front. Pharmacol. 2020, 11, 1289. [Google Scholar] [CrossRef]
- Moore, G.Y.; Pidgeon, G.P. Cross-Talk between Cancer Cells and the Tumour Microenvironment: The Role of the 5-Lipoxygenase Pathway. Int. J. Mol. Sci. 2017, 18, 236. [Google Scholar] [CrossRef]
- Janakiram, N.B.; Mohammed, A.; Bryant, T.; Ritchie, R.; Stratton, N.; Jackson, L.; Lightfoot, S.; Benbrook, D.M.; Asch, A.S.; Lang, M.L.; et al. Loss of natural killer T cells promotes pancreatic cancer in LSL-KrasG12D/+ mice. Immunology 2017, 152, 36–51. [Google Scholar] [CrossRef]
- Sarsour, E.H.; Son, J.M.; Kalen, A.L.; Xiao, W.; Du, J.; Alexander, M.S.; O’Leary, B.R.; Cullen, J.J.; Goswami, P.C. Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer. J. Biol. Chem. 2020, 295, 6946–6957. [Google Scholar] [CrossRef] [PubMed]
- Schnittert, J.; Heinrich, M.A.; Kuninty, P.R.; Storm, G.; Prakash, J. Reprogramming tumor stroma using an endogenous lipid lipoxin A4 to treat pancreatic cancer. Cancer Lett. 2018, 420, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Rooney, P.H.; Telfer, C.; McFadyen, M.C.E.; Melvin, W.T.; Murray, G.I. The role of cytochrome P450 in cytotoxic bioactivation: Future therapeutic directions. Curr. Cancer Drug Targets 2004, 4, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Johnson, V.; Barrera, J.; Porras, M.; Hinojosa, D.; Hernández, I.; McGarrah, P.; Potter, D.A. Targeting cytochrome P450-dependent cancer cell mitochondria: Cancer associated CYPs and where to find them. Cancer Metastasis Rev. 2018, 37, 409–423. [Google Scholar] [CrossRef] [PubMed]
Diseases | AA Metabolism Pathway | Metabolite | Effect | Reference |
---|---|---|---|---|
DIABETES | COX pathway | PGE2 |
| [3,79,104] |
TXB2 |
| [79] | ||
LOX pathway | 12, 15-HETE |
| [93] | |
CYP-450 pathway | 5,6-EET |
| [99] | |
8,9-, 11,12- or 14,15-EET |
| [99] | ||
PANCREATITIS | COX pathway | TXB2, PGE2, 6-ketoPGF1α and PGD2 |
| [20,80] |
PGE2 |
| [79,81,83] | ||
PGE2 |
| [82] | ||
LOX pathway | LTB4 and 15-HETE |
| [20] | |
Lipoxins (LXs) |
| [87] | ||
LTB4 |
| [89,90] | ||
PANCREATIC CANCER | COX pathway | PGE2 |
| [114,138,142,146] |
LOX pathway | LXA4 |
| [152] | |
5,12-HETE |
| [27] | ||
CYP-450 pathway | 8,9-ETE |
| [34] | |
20-HETE |
| [126] |
Inhibitor | AA Metabolism Pathway | Therapeutic Target | Effector Function | Reference |
---|---|---|---|---|
Rofecoxib | COX pathway | COX-2 |
| [84] |
Apricoxib | COX-2 |
| [147] | |
Melatonin | COX-2 |
| [144,145] | |
5-aminosalicylic acid (compound of mesalazine) | COX-2 |
| [64] | |
Nimesulide | COX-2 |
| [107] | |
Ibuprofen | COX |
| [4] | |
Celecoxib | COX-2 |
| [139] | |
MK-886 | LOX pathway | 5-LOX activating protein (FLAP) |
| [4,90,107] |
Zileuton | 5-LOX |
| [91] | |
Zafirlukast | Leukotriene receptor antagonist |
| [92,95] | |
Zyflo | 5-LOX |
| [123,124] | |
Triptolide | 5-LOX |
| [51] | |
Protolichesterinic acid and lobaric acid | 5, 12-LOX |
| [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Placín, C.; Castillejo-Rufo, A.; Estarás, M.; González, A. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules 2023, 28, 4316. https://doi.org/10.3390/molecules28114316
Ortiz-Placín C, Castillejo-Rufo A, Estarás M, González A. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules. 2023; 28(11):4316. https://doi.org/10.3390/molecules28114316
Chicago/Turabian StyleOrtiz-Placín, Cándido, Alba Castillejo-Rufo, Matías Estarás, and Antonio González. 2023. "Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology" Molecules 28, no. 11: 4316. https://doi.org/10.3390/molecules28114316
APA StyleOrtiz-Placín, C., Castillejo-Rufo, A., Estarás, M., & González, A. (2023). Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules, 28(11), 4316. https://doi.org/10.3390/molecules28114316