Microscopic Droplet Size Analysis (MDSA) of “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Essential Oil after the Nebulization Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectrometric Studies and Refractive Index
2.2. Rheological Test Results
2.3. Microscopic Droplet Size Analysis (MDSA)
2.4. Surface Properties
2.5. Biological Activity
3. Materials and Methods
3.1. Materials
3.2. Oil Dispersion Preparation
3.3. Methods
3.3.1. UV-Vis and FTIR
3.3.2. Rheological Tests
3.3.3. Nebulization/Droplets Spraying
3.3.4. Microscopic Droplet Size Analysis (MDSA)
- (1)
- Visualization of the sprayed liquid structure;
- (2)
- Statistical evaluation of the size of the generated droplets.
3.3.5. Surface Properties
3.3.6. Refractive Index and Turbidity
3.3.7. pH Measurements
3.3.8. Biological Activity Tests
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of Essential Oils in Food Safety: Antimicrobial and Antioxidant Applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Available online: https://Oec.World/En/Profile/Hs/Essential-Oils (accessed on 1 February 2023).
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of Essential Oils. TrAC Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Kunnath, K.; Alfarhan, A.; Rajagopal, R.; Ramesh, V. Chemical Composition of Cinnamomum Verum Leaf and Flower Essential Oils and Analysis of Their Antibacterial, Insecticidal, and Larvicidal Properties. Molecules 2021, 26, 6303. [Google Scholar] [CrossRef] [PubMed]
- El Gendy, A.E.-N.G.; Essa, A.F.; El-Rashedy, A.A.; Elgamal, A.M.; Khalaf, D.D.; Hassan, E.M.; Abd-ElGawad, A.M.; Elgorban, A.M.; Zaghloul, N.S.; Alamery, S.F.; et al. Antiviral Potentialities of Chemical Characterized Essential Oils of Acacia Nilotica Bark and Fruits against Hepatitis A and Herpes Simplex Viruses: In Vitro, In Silico, and Molecular Dynamics Studies. Plants 2022, 11, 2889. [Google Scholar] [CrossRef]
- Mejía, J.J.; Sierra, L.J.; Ceballos, J.G.; Martínez, J.R.; Stashenko, E.E. Color, Antioxidant Capacity and Flavonoid Composition in Hibiscus Rosa-Sinensis Cultivars. Molecules 2023, 28, 1779. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Kunaviktikul, W.; Klunklin, A.; Chanthapoon, C.; Chaiyasut, C. Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. Appl. Sci. 2022, 12, 4495. [Google Scholar] [CrossRef]
- Myszka, K.; Tomaś, N.; Wolko, Ł.; Szwengiel, A.; Grygier, A.; Nuc, K.; Majcher, M. In Situ Approaches Show the Limitation of the Spoilage Potential of Juniperus phoenicea L. Essential Oil against Cold-Tolerant Pseudomonas Fluorescens KM24. Appl. Microbiol. Biotechnol. 2021, 105, 4255–4268. [Google Scholar] [CrossRef]
- Kozłowska, M.; Ziarno, M.; Rudzińska, M.; Majcher, M.; Małajowicz, J.; Michewicz, K. The Effect of Essential Oils on the Survival of Bifidobacterium in In Vitro Conditions and in Fermented Cream. Appl. Sci. 2022, 12, 1067. [Google Scholar] [CrossRef]
- Leja, K.; Majcher, M.; Juzwa, W.; Czaczyk, K.; Komosa, M. Comparative Evaluation of Piper Nigrum, Rosmarinus Officinalis, Cymbopogon Citratus and Juniperus Communis L. Essential Oils of Different Origin as Functional Antimicrobials in Foods. Foods 2020, 9, 141. [Google Scholar] [CrossRef]
- Leja, K.; Drożdżyńska, A.; Majcher, M.; Kowalczewski, P.Ł.; Czaczyk, K. Influence of Sub-Inhibitory Concentration of Selected Plant Essential Oils on the Physical and Biochemical Properties of Pseudomonas Orientalis. Open Chem. 2019, 17, 492–505. [Google Scholar] [CrossRef]
- Rao, J.; Chen, B.; McClements, D.J. Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action. Annu. Rev. Food Sci. Technol. 2019, 10, 365–387. [Google Scholar] [CrossRef] [PubMed]
- Strub, D.J.; Talma, M.; Strub, M.; Rut, W.; Zmudzinski, M.; Brud, W.; Neyts, J.; Vangeel, L.; Zhang, L.; Sun, X.; et al. Evaluation of the Anti-SARS-CoV-2 Properties of Essential Oils and Aromatic Extracts. Sci. Rep. 2022, 12, 14230. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Albalawi, M.A. Essential Oils and COVID-19. Molecules 2022, 27, 7893. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Khan, R.A.; Alhowail, A.H.; Alqasoumi, A.; Sajid, S.M.; Mohammed, A.M.; Alsharidah, M.; Al Rugaie, O.; Mousa, A.M. Octreotide-Conjugated Silver Nanoparticles for Active Targeting of Somatostatin Receptors and Their Application in a Nebulized Rat Model. Nanotechnol. Rev. 2021, 11, 266–283. [Google Scholar] [CrossRef]
- Akhlaghi, M.; Taebpour, M.; Lotfabadi, N.N.; Naghib, S.M.; Jalili, N.; Farahmand, L.; Haghiralsadat, B.F.; Rahmanian, M.; Tofighi, D. Synthesis and Characterization of Smart Stimuli-Responsive Herbal Drug-Encapsulated Nanoniosome Particles for Efficient Treatment of Breast Cancer. Nanotechnol. Rev. 2022, 11, 1364–1385. [Google Scholar] [CrossRef]
- Hu, Q.; Li, X.; Chen, F.; Wan, R.; Yu, C.; Li, J.; McClements, D.J.; Deng, Z. Microencapsulation of an Essential Oil (Cinnamon Oil) by Spray Drying: Effects of Wall Materials and Storage Conditions on Microcapsule Properties. J. Food Process. Preserv. 2020, 44, e14805. [Google Scholar] [CrossRef]
- Mukurumbira, A.R.; Shellie, R.A.; Keast, R.; Palombo, E.A.; Jadhav, S.R. Encapsulation of Essential Oils and Their Application in Antimicrobial Active Packaging. Food Control 2022, 136, 108883. [Google Scholar] [CrossRef]
- Cook, R.O.; Pannu, R.K.; Kellaway, I.W. Novel Sustained Release Microspheres for Pulmonary Drug Delivery. J. Control. Release 2005, 104, 79–90. [Google Scholar] [CrossRef]
- Nasr, M.; Nawaz, S.; Elhissi, A. Amphotericin B Lipid Nanoemulsion Aerosols for Targeting Peripheral Respiratory Airways via Nebulization. Int. J. Pharm. 2012, 436, 611–616. [Google Scholar] [CrossRef]
- Martel-Estrada, S.-A.; Morales-Cardona, A.-I.; Vargas-Requena, C.-L.; Rubio-Lara, J.-A.; Martínez-Pérez, C.-A.; Jimenez-Vega, F. Delivery Systems in Nanocosmeceuticals. Rev. Adv. Mater. Sci. 2022, 61, 901–930. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Guo, Y.; Lara Ochoa, S.; Fathordoobady, F.; Singh, A. Optimal Ultrasonication Process Time Remains Constant for a Specific Nanoemulsion Size Reduction System. Sci. Rep. 2021, 11, 9241. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Sannikova, N.; Guo, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Comparing Microfluidics and Ultrasonication as Formulation Methods for Developing Hempseed Oil Nanoemulsions for Oral Delivery Applications. Sci. Rep. 2021, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.D.; do Rosario, D.K.A.; Conte-Junior, C.A. Can Droplet Size Influence Antibacterial Activity in Ultrasound-Prepared Essential Oil Nanoemulsions? Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Avvaru, B.; Patil, M.N.; Gogate, P.R.; Pandit, A.B. Ultrasonic Atomization: Effect of Liquid Phase Properties. Ultrasonics 2006, 44, 146–158. [Google Scholar] [CrossRef]
- Dalmoro, A.; D’Amore, M.; Barba, A.A. Droplet Size Prediction in the Production of Drug Delivery Microsystems by Ultrasonic Atomization. Transl. Med. UniSa 2013, 7, 6–11. [Google Scholar] [PubMed]
- Siejak, P.; Smułek, W.; Fathordobady, F.; Grygier, A.; Baranowska, H.M.; Rudzińska, M.; Masewicz, Ł.; Jarzębska, M.; Nowakowski, P.T.; Makiej, A.; et al. Multidisciplinary Studies of Folk Medicine “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Components. Molecules 2021, 26, 2931. [Google Scholar] [CrossRef]
- Mahanta, U.; Khandelwal, M.; Deshpande, A.S. Antimicrobial Surfaces: A Review of Synthetic Approaches, Applicability and Outlook. J. Mater. Sci. 2021, 56, 17915–17941. [Google Scholar] [CrossRef]
- Clavijo-Romero, A.; Quintanilla-Carvajal, M.X.; Ruiz, Y. Stability and Antimicrobial Activity of Eucalyptus Essential Oil Emulsions. Food Sci. Technol. Int. 2019, 25, 24–37. [Google Scholar] [CrossRef]
- Kucharska-Ambrożej, K.; Martyna, A.; Karpińska, J.; Kiełtyka-Dadasiewicz, A.; Kubat-Sikorska, A. Quality Control of Mint Species Based on UV-VIS and FTIR Spectral Data Supported by Chemometric Tools. Food Control 2021, 129, 108228. [Google Scholar] [CrossRef]
- Nagaraju, P.G.; Sengupta, P.; Chicgovinda, P.P.; Rao, P.J. Nanoencapsulation of Clove Oil and Study of Physicochemical Properties, Cytotoxic, Hemolytic, and Antioxidant Activities. J. Food Process Eng. 2021, 44, e13645. [Google Scholar] [CrossRef]
- Chen, H.; Ji, H.; Zhou, X.; Wang, L. Green Synthesis of Natural Benzaldehyde from Cinnamon Oil Catalyzed by Hydroxypropyl-β-Cyclodextrin. Tetrahedron 2010, 66, 9888–9893. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Castro, L.E.N.; da Rosa, C.G.; da Rosa Almeida, A.; Maciel-Silva, F.W.; Kempe, P.R.G.; de Oliveira, A.L.R.; Forster-Carneiro, T.; Bertoldi, F.C.; Barreto, P.L.M.; et al. Production of Nanocomposite Films Functionalized with Silver Nanoparticles Bioreduced with Rosemary (Rosmarinus officinalis L.) Essential Oil. J. Agric. Food Res. 2023, 11, 100479. [Google Scholar] [CrossRef]
- López-Muñoz, G.A.; Antonio-Pérez, A.; Díaz-Reyes, J. Quantification of Total Pigments in Citrus Essential Oils by Thermal Wave Resonant Cavity Photopyroelectric Spectroscopy. Food Chem. 2015, 174, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhorabek, F.; Dai, X.; Huang, J.; Chau, Y. Minimalist Design of an Intrinsically Disordered Protein-Mimicking Scaffold for an Artificial Membraneless Organelle. ACS Cent. Sci. 2022, 8, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Rani, E.R.; Radha, G.V. Insights into Novel Excipients of Self-Emulsifying Drug Delivery Systems and Their Significance: An Updated Review. Crit Rev. Drug Carr. Syst. 2021, 38, 27–74. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Formation of Thermally Reversible Optically Transparent Emulsion-Based Delivery Systems Using Spontaneous Emulsification. Soft Matter 2015, 11, 9321–9329. [Google Scholar] [CrossRef]
- Silva, M.T.; Borges, L.L.; Fiuza, T.d.S.; Tresvenzol, L.M.F.; da Conceição, E.C.; Batista, C.R.; Matos, C.B.; da Veiga Júnior, V.F.; Mourão, R.H.V.; Ferri, P.H.; et al. Viscosity of the Oil-Resins and Chemical Composition of the Essential Oils from Oils-Resins of Copaifera Multijuga Hayne Growing in the National Forest Saracá-Taquera Brazil. J. Essent. Oil Bear. Plants 2017, 20, 1226–1234. [Google Scholar] [CrossRef]
- Kwiatkowski, P.; Sienkiewicz, M.; Pruss, A.; Łopusiewicz, Ł.; Arszyńska, N.; Wojciechowska-Koszko, I.; Kilanowicz, A.; Kot, B.; Dołęgowska, B. Antibacterial and Anti-Biofilm Activities of Essential Oil Compounds against New Delhi Metallo-β-Lactamase-1-Producing Uropathogenic Klebsiella Pneumoniae Strains. Antibiotics 2022, 11, 147. [Google Scholar] [CrossRef]
- Alderees, F.; Akter, S.; Mereddy, R.; Sultanbawa, Y. Formulation, Characterization, and Stability of Food Grade Oil-in-water Nanoemulsions of Essential Oils of Tasmannia Lanceolata, Backhousia Citriodora and Syzygium Anisatum. J. Food Saf. 2022, 42, e13001. [Google Scholar] [CrossRef]
- Jarzębski, M.; Bellich, B.; Białopiotrowicz, T.; Śliwa, T.; Kościński, J.; Cesàro, A. Particle Tracking Analysis in Food and Hydrocolloids Investigations. Food Hydrocoll. 2017, 68, 90–101. [Google Scholar] [CrossRef]
- Jarzębski, M.; Smułek, W.; Siejak, P.; Rezler, R.; Pawlicz, J.; Trzeciak, T.; Jarzębska, M.; Majchrzak, O.; Kaczorek, E.; Kazemian, P.; et al. Aesculus hippocastanum L. as a Stabilizer in Hemp Seed Oil Nanoemulsions for Potential Biomedical and Food Applications. Int. J. Mol. Sci. 2021, 22, 887. [Google Scholar] [CrossRef] [PubMed]
- Jarzębski, M.; Siejak, P.; Sawerski, A.; Stasiak, M.; Ratajczak, K.; Masewicz, Ł.; Fathordoobady, F.; Guo, Y.; Singh, A.P. Nanoparticles Size Determination by Dynamic Light Scattering in Real (Non-Standard) Conditions Regulators—Design, Tests and Applications. In Practical Aspects of Chemical Engineering; Ochowiak, M., Woziwodzki, S., Mitkowski, P.T., Doligalski, M., Eds.; Springer Nature: Chem, Switzerland, 2020. [Google Scholar]
- Lefebvre, A.H.; McDonell, V.G. Atomization and Sprays, 2nd ed.; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315120911. [Google Scholar]
- Orzechowski, Z.; Prywer, J. Wytwarzanie i Zastosowanie Rozpylonej Cieczy; PWN: Warszawa, Poland, 2018; ISBN 978-83-01-19758-2. [Google Scholar]
- Liu, T.; Gao, Z.; Zhong, W.; Fu, F.; Li, G.; Guo, J.; Shan, Y. Preparation, Characterization, and Antioxidant Activity of Nanoemulsions Incorporating Lemon Essential Oil. Antioxidants 2022, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.M.T.; Neves, I.C.O.; Oliveira, N.L.; Botrel, D.A.; Minim, L.A.; de Resende, J.V. Ultrasound-Assisted Oil-in-Water Nanoemulsion Produced from Pereskia Aculeata Miller Mucilage. Ultrason. Sonochem. 2019, 50, 339–353. [Google Scholar] [CrossRef]
- Denkova-Kostova, R.; Teneva, D.; Tomova, T.; Goranov, B.; Denkova, Z.; Shopska, V.; Slavchev, A.; Hristova-Ivanova, Y. Chemical Composition, Antioxidant and Antimicrobial Activity of Essential Oils from Tangerine (Citrus reticulata L.), Grapefruit (Citrus paradisi L.), Lemon (Citrus lemon L.) and Cinnamon (Cinnamomum Zeylanicum Blume). Z. Für Nat. C 2021, 76, 175–185. [Google Scholar] [CrossRef]
- Alexa, V.T.; Szuhanek, C.; Cozma, A.; Galuscan, A.; Borcan, F.; Obistioiu, D.; Dehelean, C.A.; Jumanca, D. Natural Preparations Based on Orange, Bergamot and Clove Essential Oils and Their Chemical Compounds as Antimicrobial Agents. Molecules 2020, 25, 5502. [Google Scholar] [CrossRef]
Sample Description | Turbidity (-) | Refractive Index (-) | pH (-) |
---|---|---|---|
0.9 % NaCl | 0.95 ± 0.17 (a) | 1.3345 ± 0.0002 (a) | 5.35 ± 0.30 (a) |
0.9 % NaCl + 0.5% 5TO | 145.20 ± 9.18 (b) | 1.3338 ± 0.0001 (b) | 5.60 ± 0.30 (a) |
NDH | 0.45 ± 0.05 (c) | 1.3347 ± 0.0002 (a) | 4.56 ± 0.35 (b) |
NDH + 0.5% 5TO | 201.80 ± 2.68 (d) | 1.3352 ± 0.0001 (c) | 4.90 ± 0.40 (b) |
Sample Description | D10 (µm) | D32 = SMD (µm) | D30 = VMD (µm) | D43 (µm) | D0,5 = CMD (µm) |
---|---|---|---|---|---|
0.9 % NaCl | 2.30 ± 0.21 (a) | 3.60 ± 0.29 (a) | 2.90 ± 0.26 (a) | 4.26 ± 0.34 (a) | 1.93 ± 0.19 (a) |
0.9 % NaCl + 0.5% 5TO | 3.14 ± 0.30 (b) | 5.67 ± 0.51 (b) | 3.92 ± 0.39 (b) | 4.85 ± 0.44 (a) | 2.57 ± 0.26 (b) |
NDH | 2.40 ± 0.24 (a) | 4.53 ± 0.32 (c) | 3.33 ± 0.23 (a) | 5.54 ± 0.33 (b) | 1.93 ± 0.17 (a) |
NDH + 0.5% 5TO | 3.04 ± 0.21 (b) | 4.62 ± 0.37 (c) | 3.75 ± 0.38 (b) | 5.54 ± 0.39 (b) | 2.57 ± 0.21 (b) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smułek, W.; Jarzębski, M.; Ochowiak, M.; Matuszak, M.; Kaczorek, J.; Stangierski, J.; Pawlicz, J.; Drobnik, P.; Nowakowski, P.T.; Dyrda-Muskus, J.; et al. Microscopic Droplet Size Analysis (MDSA) of “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Essential Oil after the Nebulization Process. Molecules 2023, 28, 4368. https://doi.org/10.3390/molecules28114368
Smułek W, Jarzębski M, Ochowiak M, Matuszak M, Kaczorek J, Stangierski J, Pawlicz J, Drobnik P, Nowakowski PT, Dyrda-Muskus J, et al. Microscopic Droplet Size Analysis (MDSA) of “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Essential Oil after the Nebulization Process. Molecules. 2023; 28(11):4368. https://doi.org/10.3390/molecules28114368
Chicago/Turabian StyleSmułek, Wojciech, Maciej Jarzębski, Marek Ochowiak, Magdalena Matuszak, Jan Kaczorek, Jerzy Stangierski, Jarosław Pawlicz, Paweł Drobnik, Piotr T. Nowakowski, Joanna Dyrda-Muskus, and et al. 2023. "Microscopic Droplet Size Analysis (MDSA) of “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Essential Oil after the Nebulization Process" Molecules 28, no. 11: 4368. https://doi.org/10.3390/molecules28114368
APA StyleSmułek, W., Jarzębski, M., Ochowiak, M., Matuszak, M., Kaczorek, J., Stangierski, J., Pawlicz, J., Drobnik, P., Nowakowski, P. T., Dyrda-Muskus, J., Fiutak, G., Gorzelak, M., Ray, S. S., & Pal, K. (2023). Microscopic Droplet Size Analysis (MDSA) of “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Essential Oil after the Nebulization Process. Molecules, 28(11), 4368. https://doi.org/10.3390/molecules28114368