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Abstract: Cancer, which presents with high incidence and mortality rates, has become a significant
health threat worldwide. However, there is currently no effective solution for rapid screening and
high-quality treatment of early-stage cancer patients. Metal-based nanoparticles (MNPs), as a new
type of compound with stable properties, convenient synthesis, high efficiency, and few adverse
reactions, have become highly competitive tools for early cancer diagnosis. Nevertheless, challenges
such as the difference between the microenvironment of detected markers and the real-life body fluids
remain in achieving widespread clinical application of MNPs. This review provides a comprehensive
review of the research progress made in the field of in vitro cancer diagnosis using metal-based
nanoparticles. By delving into the characteristics and advantages of these materials, this paper aims
to inspire and guide researchers towards fully exploiting the potential of metal-based nanoparticles
in the early diagnosis and treatment of cancer.
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1. Introduction

Cancer is a prevalent and lethal disease that constitutes a significant public health
concern on a global scale. In China, the prevalence and mortality of cancer are higher than
most countries in the world, and these data are showing a rapid elevated trend [1–4]. The
uncontrolled proliferation of cancer cells, often accompanied by infiltration and metas-
tasis, contributes significantly to the elevated mortality rate [5,6]. The development of
early-stage cancer diagnosis and clinical targeted therapy has thus become a focal point of
research. Conventional techniques, such as cytological examination, imaging examination,
and immunohistochemical examination, are frequently employed for the detection and
identification of malignant tumors. While imaging technologies such as CT, MRI, and
PET-CT can accurately locate the size, shape, and location of tumors, early-stage lesions
of certain cancers may be challenging to detect. Moreover, the use of radiation or contrast
agents carries inherent risks of toxicity and irradiation. Although cytological examination
can detect cell morphology and structure and provide quick diagnosis for certain cancers,
it is susceptible to misjudgments of normal cells as cancer cells or vice versa. Immunohis-
tochemical examination, which detects specific proteins in tissue to determine the type
and classification of cancer cells, offers a more accurate diagnosis and personalized treat-
ment plans; however, this method typically requires invasive sampling, which may pose
unpredictable risks, such as bleeding or infection.

As an emerging technological modality, nanotechnologies have demonstrated notable
advantages and extensive potential for application in the field of biomedicine. At present,
nanotechnologies have been widely used in the diagnosis and treatment of diseases, such
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as drug delivery [7–9], targeted therapy [10,11], detection and diagnosis [12], and molecular
imaging [13,14]. Metal-based nanoparticles (MNPs) are a kind of nanomaterials with
extensive and meaningful application possibilities, which can exert a variety of unique
physical, chemical, and biological properties and then show strong potential in the early
diagnosis of cancer. The principal detection mechanism of this method is grounded on the
surface plasma resonance enhancement effect and local surface plasma resonance effect
of nanomaterials, as well as their distinct optical, electrical, thermal, chemical, and other
properties, which are leveraged through specific biomarker detection methodologies. At
present, MNPs have made great strides in in vitro and in vivo screening technologies for
early-stage tumor diagnosis. As an illustration, magnetic nanoparticles can be employed in
MRI and magnetic navigation technology to enhance the precision and accuracy of cancer
cell and metastasis localization and sizing.

As the latest review of recent studies on the use of MNPs, the present review provides
a comprehensive summary of the recent research progress in the development of tumor
marker biosensors utilizing MNPs. The review appropriately categorizes and summarizes
the various types of MNP sensors, bifurcating them into two distinct research directions
based on their catalytic and optical properties. Being different from previous studies, we
also proposed the challenges of MNPs in clinical application and the main development
directions in the future, hoping to provide scientific and valuable ideas for researchers, so
that MNPs can give full play to their unique advantages and make contributions to the
construction of biosensors with practical application value.

2. Introduction for Tumor Markers

MNPs, as a class of nanomaterials with robust catalytic activity, favorable electri-
cal conductivity, and exceptional optical properties, among other physical and chemical
attributes, represent a prime candidate for fabricating biosensors aimed at early cancer
diagnosis via the detection of tumor markers. Tumor markers are a group of substances
that are overexpressed by the body or cancerous cells during the onset and progression of
cancer and play a significant role in the timely diagnosis of cancer patients. Some existing
research reports have proved that biosensors constructed based on MNPs can be used for
the detection of tumor markers.

Based on published literature, tumor markers can be classified into four distinct
groups: biomacromolecules, biomolecules, circulating tumor cells (CTC), and exosomes
(Figure 1). Among which, biomacromolecules include nucleic acids and proteins. Different
kinds of nucleic acids, such as mRNA, miRNA, and tRNA, play an important role in many
pathophysiological phenomena and cell differentiation and proliferation processes, so
they can be regarded as markers for early cancer diagnosis. On the other hand, proteins
serve as the primary building blocks in the process of cellular proliferation, the expression
of tumor-related proteins with explosive growth in early cancer patients, which enables
it to accurately determine whether the patient is undergoing disease. For example, the
corresponding miRNAs show different expressions in colorectal cancer, pituitary cancer,
and other cancers [15–17]. Alpha fetoprotein (AFP) or cancer embryo antigen (CEA) can be
used as characteristic markers in the early diagnosis of gastric cancer, lung cancer, breast
cancer, etc. [18–20]. So far, there are more than 160 different types of tumor markers that
can be used for the diagnosis of early-stage cancer patients, including hydrogen peroxide
(H2O2), glutathione (GSH), and other biomolecule compounds [21–23], CTC [24], exosomes
engaged in regulating cell waste disposal and intercellular communication, etc. [25].
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sitivity (Figure 2) [31]. Through the test, it was found that the immunosensor showed a 
wide linear detection range of CEA (50 fg/mL~100 ng/mL), and the lowest limit of detec-
tion can reach 16.7 fg/mL. In the presence of interfering substances, such as prostate-spe-
cific antigen (PSA), human immunoglobulin G (HIgG), and AFP, the signal of CEA is sig-
nificantly stronger than that of the interfering substance, and the interfering substance 
basically has no inductive signal. Upon comparison with the conventional enzyme-linked 
immunosorbent assay (ELISA) method, the study demonstrated that the variance between 
the two approaches was less than 5%, thereby verifying the linearity, specificity, and sta-
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Zhang et al., used hollow magnetic silica-coated nickel/carbon (Ni/C@SiO2) nano-
composites as the carrier and gold nanoparticle-coated polyaniline microspheres 
(CPS@PANI@Au) as the electrochemical biosensor to develop a sandwich-type electro-
chemical biosensor for CEA identification (Figure 3) [32]. A gold nanoparticle-coated 
PANI microsphere with good biocompatible properties can be used as a carrier for fixing 
proteins, and additional boric acid is introduced to fix the glycoproteins of CEA. On the 
one hand, hollow magnetic nanosilicon has hydroxyl groups that are easy to be modified 
on the surface, and on the other hand, it has a larger specific surface area, lower density, 
and simpler separation method. As a carrier, it has unique advantages for CEA detection 
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3. The Catalytic Properties of MNPs for Detecting Tumor Markers
3.1. Construction of Electrocatalytic-Activity-Based Electrochemical Biosensor

In the biological analysis field, electrochemistry and its related technologies can be
used as an effective biosensor tool to transform the target analyzer into an electrochemical
signal that can be accurately measured [26]. Due to their large grain boundary ratio and
high specific surface energy, MNPs can adsorb and bond with other substances, and are
widely used in the modification of electrode materials [27–29]. At present, the improvement
of the biosensor includes two directions: one is switch to a new signal amplification marker
to enhance sensor functionality, and other is design and develop a substrate material with
better biocompatibility and conductivity, thereby increasing the antibody load and speeding
up electron transfer [30].

Using MoS2/Cu-Au as the sensing platform and Mulberry-like porous nanorods
(Au@PtPd MPs) as the signal amplifier, Dong’s group successfully constructed a sandwich-
type electrochemical immune sensor for the precise detection of CEA with high sensitivity
(Figure 2) [31]. Through the test, it was found that the immunosensor showed a wide linear
detection range of CEA (50 fg/mL~100 ng/mL), and the lowest limit of detection can reach
16.7 fg/mL. In the presence of interfering substances, such as prostate-specific antigen (PSA),
human immunoglobulin G (HIgG), and AFP, the signal of CEA is significantly stronger than
that of the interfering substance, and the interfering substance basically has no inductive
signal. Upon comparison with the conventional enzyme-linked immunosorbent assay
(ELISA) method, the study demonstrated that the variance between the two approaches was
less than 5%, thereby verifying the linearity, specificity, and stability of the immunosensor
output.

Zhang et al., used hollow magnetic silica-coated nickel/carbon (Ni/C@SiO2)
nanocomposites as the carrier and gold nanoparticle-coated polyaniline microspheres
(CPS@PANI@Au) as the electrochemical biosensor to develop a sandwich-type electro-
chemical biosensor for CEA identification (Figure 3) [32]. A gold nanoparticle-coated PANI
microsphere with good biocompatible properties can be used as a carrier for fixing proteins,
and additional boric acid is introduced to fix the glycoproteins of CEA. On the one hand,
hollow magnetic nanosilicon has hydroxyl groups that are easy to be modified on the sur-
face, and on the other hand, it has a larger specific surface area, lower density, and simpler
separation method. As a carrier, it has unique advantages for CEA detection with good
selectivity and specificity. The complete distribution of PANI endows it with exceptional
electron transfer properties, thereby enabling effective amplification of detection signals
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and leading to a substantial increase in the sensitivity of the sensor. By optimizing the test
conditions, it was finally determined that the sensor showed excellent sensing performance.
Compared with other interfering substances, such as bovine serum protein (BSA), lysozyme
(Lys), and thrombin (Thr), CEA showed significant differences, and the lowest limit of
detection was 1.56 pg/mL.
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miRNA is often considered unsuitable for use as a tumor marker due to its poor
stability, complex structure, and difficulties in preserving and purifying samples, which
result in nonspecific detection. In contrast, other markers, such as CEA and AFP, are more
frequently used due to their ease of detection. Zhou et al., synthesized a gold nanofilm
similar to a 3D popcorn structure as a new type of electrochemically active substrate,
and constructed a biosensor, named “molecular machine”, for surface-enhanced Raman
scattering (SERS) detection and electrochemical detection and miRNA (Figure 4) [33]. This
approach significantly increases the number of active “hot spots,” thereby improving the
sensitivity of SERS and electrochemical signals to exquisitely low detection limits, as low
as 2.2 fM. The biosensor can also selectively monitor a variety of different biomarkers,
making it an ultrasensitive miRNA detection platform by changing the corresponding
probe sequence. The versatility and reliability of this method have been confirmed through
its successful detection of miRNA levels in different cancer cells, indicating its promising
potential for clinical applications.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 20 
 

 

miRNA is often considered unsuitable for use as a tumor marker due to its poor sta-
bility, complex structure, and difficulties in preserving and purifying samples, which re-
sult in nonspecific detection. In contrast, other markers, such as CEA and AFP, are more 
frequently used due to their ease of detection. Zhou et al., synthesized a gold nanofilm 
similar to a 3D popcorn structure as a new type of electrochemically active substrate, and 
constructed a biosensor, named “molecular machine”, for surface-enhanced Raman scat-
tering (SERS) detection and electrochemical detection and miRNA (Figure 4) [33]. This 
approach significantly increases the number of active “hot spots,” thereby improving the 
sensitivity of SERS and electrochemical signals to exquisitely low detection limits, as low 
as 2.2 fM. The biosensor can also selectively monitor a variety of different biomarkers, 
making it an ultrasensitive miRNA detection platform by changing the corresponding 
probe sequence. The versatility and reliability of this method have been confirmed 
through its successful detection of miRNA levels in different cancer cells, indicating its 
promising potential for clinical applications.  

 
Figure 4. Molecular machine for miRNA detection by gold nanomembranes based on a 3D popcorn 
structure. FTO: fluorine-doped tin oxide coated glass; MCH: 6-mercapto-1-hexanol; DNA-R6G: 
DNA-rhodamine 6G. 

Before these biosensors mentioned above, many MNP-based electrochemical sensors 
were developed for the detection of cancer markers. These sensors have demonstrated 
practicality and reliability and possess a well-established detection system and mecha-
nism. However, the metal elements used in these sensors are mostly precious metals, such 
as gold and platinum, leaving significant room for improvement in terms of material prep-
aration and reusability (Table 1). 

  

Figure 4. Molecular machine for miRNA detection by gold nanomembranes based on a 3D popcorn
structure. FTO: fluorine-doped tin oxide coated glass; MCH: 6-mercapto-1-hexanol; DNA-R6G:
DNA-rhodamine 6G.

Before these biosensors mentioned above, many MNP-based electrochemical sensors
were developed for the detection of cancer markers. These sensors have demonstrated
practicality and reliability and possess a well-established detection system and mechanism.
However, the metal elements used in these sensors are mostly precious metals, such as gold
and platinum, leaving significant room for improvement in terms of material preparation
and reusability (Table 1).
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Table 1. MNPs’ electrochemical sensor that has been reported in the literature.

Materials Tumor Marker Linearity Range Limit of Detection Ref.

N-doped graphene/Au nanoparticles
(NG-AuNPs) miRNA 10 fM~1 nM 0.17 fM [34]

Multifunctional iron-based metal–organic
frameworks (PdNPs@Fe-MOFs) miRNA 0.01 fM~10 pM 0.003 fM [35]

Unmodified gold nanoparticles (AuNPs) miRNA 0.05~0.9 pM 16 fM [36]

Gold nanoparticle (AuNP)-coated magnetic
microbeads (AuNP-MMBs) miRNA 5 fM~100 fM 0.14 fM [37]

Graphite oxide–gold (GO-Au) nanocomposites CEA 1~40 ng/mL 15.8 ng/mL [38]

Silver nanoclusters (AgNCs@Apt@UiO-66) CEA 0.01~10 ng/mL 0.3 ng/mL [39]

Au@Ag
nanoparticles (Au@Ag NPs) CEA 0.0001~100 ng/mL 0.05 pg/mL [40]

MoS2–Au composite–Ag NPs CEA 1 pg/mL~50 ng/mL 0.27 pg/mL [41]

Ag/MoS2@Fe3O4 CEA 0.0001~20 ng/mL 0.03 pg/mL [42]

Platinum porous nanoparticles (Pt PNPs) CEA, AFP 0.05 ng/mL~200 ng/mL 0.002, 0.05 ng/mL [43]

Carbon–gold nanocomposite (CGN) CEA, PSA, AFP 0.01~100 ng/mL 2.7, 4.8 and 3.1 pg/mL [44]

Hollow gold nanospheres (HGN) DNA 1~10 nM 1 pM [45]

Magnetic mesoporous
nanogold/thionine/NiCo2O4

SCCA 2.5 pg/mL~15 ng/mL 1.0 pg/mL [46]

3.2. Chemical Catalysis-Based Tumor Marker Determination

The main principle of chemocatalytic determination of tumor markers is monitoring
real-time color signals’ changes through colorimetric methods, and on-site analysis and
instant diagnosis could be completed without complex and sophisticated equipment. At
present, the reaction media used in this process are primarily synthesized using costly and
potent natural enzymes. Nonetheless, the limited storage capacity and purification methods
of natural enzymes have significantly constrained their widespread utilization [47]. MNPs
have attracted the attention of researchers owing to their enzyme-like catalytic activity, and
a series of colorimetric biosensors have been designed for testing and analysis of tumor
markers.

Gao’s group had successfully integrated MoS2 nanosheets (MoS2 NSs) with peroxidase-
like activity. Further, DNA modification was implemented to dramatically enhance the
enzyme-like activity of the MoS2 NSs. Notably, the modified material exhibited a catalytic
activity that was 4.3 times greater than that of unmodified MoS2 nanosheets. Based on the
enhancement of DNA on the activity of MoS2 NS enzymes, a colorimetric sensing platform
for the rapid and sensitive detection of CEA has been established [48]. The response results
appeared linear across the range of CEA concentrations up to 1000 ng/mL, and the lower
limit of detection can go down to 50 ng/mL. When there are interfering substances, such as
AFP, mucin-1 (muc-1), and BSA, in the detection system, good specificity can be maintained.
This work has represented a significant advancement in exploring the potential use of DNA
as a modifier to enhance the enzyme catalysis of MNPs, and the findings have promising
implications for the development of portable and visible tumor marker detectors.

Zheng et al., utilized the reduction and stabilization effects of NADH to synthesize
ultrasmall Au–Pd nanoclusters [49]. The strong interaction between Au–Pd enhances the
electron transfer of Au and Pd in bimetal nanoclusters, Au–Pd nanoclusters has better
enzyme-like activity than monometal nanoclusters, and the reaction rate is more than
20 times that of monometal elements. Based on the acidic conditions required for the
peroxidase-like activity of Au–Pd nanoclusters, a colorimetric method for the quantitative
monitoring of acidic phosphatase (ACP) has been established, with a detection concen-
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tration range of 1–14 U/L, and the lower limit of detection is down to 0.53 U/L, and
experiments have verified that this bimetallic catalytic enzyme has excellent sensitivity,
selectivity, and recycling ability. This NADH-based nanoenzyme has shown promising
universality and applicability in biological sensing, clinical diagnosis, etc.

In general, colorimetric analysis that relies on peroxidase enzymes typically involves
the addition of H2O2, which often leads to toxic effects on cells. However, the use of
MNPs as simulated enzymes eliminates the requirement for H2O2, greatly improving the
accuracy of the test. Ge et al., developed a human serum albumin (HAS) template based on
MnO2 nanosheet, which functions as an oxide analog enzyme for the colorimetric detection
of the typical tumor marker GSH (Figure 5) [50]. The synthesized MnO2 nanosheet can
directly catalyze the oxidation of 3,3′, 5,5′-tetramethyl biphenylamine (TMB) to produce
blue ox-TMB. In the presence of GSH, the MnO2 nanosheets are reduced to Mn2+ due to
the reaction with GSH, inhibiting the oxidation of TMB. As a result, the quantification of
GSH is accomplished by detecting changes in absorbance that correspond with varying
concentrations, thereby facilitating cancer diagnosis. Additionally, metal composite ma-
terials also exhibit good oxide analog enzyme activity. Guo et al., reported a new type of
nanocomposite, namely, Cu2+-modified hexagonal boron nitride nanosheets loaded with
gold nanoparticles (Au NPs/Cu2+-BNNS) [51]. The nanomaterial exhibits excellent oxide
analog enzyme activity, which is derived from the adsorption of reactive oxygen species,
and Cu2+ can synergistically promote the oxidation process. Notably, the color rendering
of TMB induced by AuNPs/Cu2+-BNNS takes only 4 min, making it a useful tool for the
rapid detection of CEA.
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The detection of tumor markers using nanoenzymes has always been a key focus of
academic research. While Table 2 highlights several noteworthy detection methodologies,
it is worth noting that the literature cited in the table represents merely a small subset of
the extensive reports available on this subject.
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Table 2. MNP sensors based on chemical catalysis for marker detection.

Materials Tumor Marker Linearity Range Limit of Detection Ref.

Co/Mn oxide nanocomposite ACP 0.02~1.0 U/L 8.2 mU/L [52]

PdPt bimetallic alloy nanowires (Pd/Pt NWs) ACP 0.17~2.67 U/L 0.06 U/L [53]

Carboxylated chitosan modified Pt
nanoclusters (CC-Pt NCs) ACP 0.25~18 U/L 1.31 × 10−3 U/L [54]

MnO2 nanosheets ACP 0.075~0.45 mU/mL 0.046 mU/mL [55]

Molybdenum oxide nanoparticles (MoO3 NPs) ACP 0.09~7.3 U/L 0.011 U/L [47]

CuO nanoparticles cholesterol 0.625~12.5 µM 0.17 µM [56]

Ultrasmall Pt nanoclusters (Pt NCs) glucose 0~200 µM 0.28 µM [57]

CuS nanoparticles (CuS NPs) AFP 0.1–60 ng/mL 0.07 ng/mL [58]

Two-dimensional Co9S8 nanocomposites
(H2TCPP-Co9S8 nanocomposites) H2O2 10~200 µM 8.19 µM [59]

Porous 2D FeS2 nanosheets H2O2 0.02~4.00 µM 7.60 nM [60]

Pt–Ru bimetallic nanoclusters (Pt–Ru NCs) H2O2 0.1~5 µg/mL 0.08 µg/mL [61]

Dendritic mesoporous silica nanoparticle-MnO2 GSH 2~250 µM 0.654 µM [62]

BSA-AuNP@ZnCo2O4 nanosheets GSH 0.25~17.50 U/L 0.137 U/L [63]

3.3. Methods-Based Photocatalytic Properties for Tumor Marker Detection

Aside from the aforementioned chemocatalytic and electrocatalytic activities, nanoma-
terials that exhibit photocatalytic properties can generate photoinduced holes under illumi-
nation, which can subsequently oxidize TMB, resulting in the production of a blue solution.
Ding et al., developed the GO-C3N4-AgBr ternary heterojunction nano-photocatalyst, which
facilitates the separation of photogenic electron–hole pairs under sunlight. The separated
holes can sensitively catalyze colorless TMB to generate blue ox-TMB [64]. Next, PSA in the
detection solution is collected based on the specific binding of antigen and antibody. Finally,
TMB is added to the ABS buffer of the immune complex. Under visible light irradiation, a
rapid color change is observed within 10 s, and the PSA level is quantitatively identified
based on the color change. The results indicate that the limit of detection of PSA can be
reduced to 20 pg/mL, and the sensitivity is adequate to monitor the amount of PSA in the
serum in healthy individuals (which is around 4 ng/mL).

Zhang et al., utilized ZnO/AgI as a nanophotocatalyst for the in vitro detection of the
tumor marker CEA (Figure 6) [65]. Under light irradiation, the ZnO/AgI nanomaterial un-
dergoes electron transition to oxidize TMB. This nanomaterial is unique in that it possesses
a suitable bandgap between ZnO and AgI, which facilitates electron–hole separation and
enhances the efficiency of oxidation. The detection limit of ZnO/AgI for CEA can reach
65 pg/mL, and it maintains a good linear relationship within the concentration range of
0.1–7.0 ng/mL.

Employing the catalytic characteristics of MNPs for tumor marker detection represents
an enhanced approach relative to conventional in vitro detection methods. This method
relies on the catalytic impact of MNPs on biomarkers under specific conditions, thereby
enabling the identification and diagnosis of cancer biomarkers. Constructing tumor marker
sensors using the catalytic properties of MNPs is a widely researched and theoretically
deep method. On the one hand, this category of methods is based on traditional detection
methods, and on the other hand, the high catalytic performance can significantly convert
and amplify biological signals, making MNPs suitable for detecting tumor markers. Build-
ing tumor marker sensors using electrocatalysis or chemical catalysis has shown good
detection ranges and lower limits in single laboratory tests. However, it is important to
note that the microenvironment in biological fluids is complex and flexible, and the stability,
sensitivity, and specificity of sensors constructed based on the catalytic properties of MNPs
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to maintain excellent detection performance in the presence of various interfering sub-
stances are uncertain, which limits their ability to be transformed into practical applications.
Building sensors using photocatalysis is a novel application direction for MNPs, but there
is relatively little research on this topic. Although photocatalysis can quickly and accurately
detect specific biomarkers, the essence is still based on colorimetric analysis. Although it
is simple to operate, the reuse of the sensor remains insufficient. Overall, whether using
electrocatalysis, chemical catalysis, or photocatalysis, they all exhibit advantages, such as
high sensitivity, strong specificity, and fast reaction speed in the detection of tumor markers.
However, their limitations include high cost, limited application range, and the impact of
complex biological microenvironments on catalytic efficiency, which should not be ignored.
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4. The Optical Properties of MNPs for Detecting Tumor Markers
4.1. Construction of MNPs’ Fluorescence Biosensor

Fluorescence-based sensors have high sensitivity and selectivity, which allows them a
strong precedence in detecting tumor biomarkers. Due to their exceptional electronic struc-
ture and diminutive size, some MNPs commonly demonstrate high fluorescence quantum
yields and molar extinction coefficients, along with notable photostability, making them
frequently used for constructing fluorescence sensors. Quantum dots are one of the earliest
nanomaterials applied in the field of bioscience. Compared with traditional organic dyes,
they have higher quantum yields, better photostability, and longer luminescence lifetimes,
but their toxicity and broad absorption band severely limit their use in biomedicine. In
2012, Luo et al., first discovered that the interaction between thiol salts and Au elements
significantly amplified the intensity of luminescence in the materials. Subsequent stud-
ies revealed that the luminescence mechanism is achieved through ligand–metal charge
transfer or ligand–metal–metal charge transfer, followed by radiation relaxation through a
metal-centered triplet state, resulting in luminescence [66–68].

Huang et al., designed satellite structures of Au nanorods (Au NRs) and Ag2S quantum
dots (Ag2S QDs) that are precisely regulated by DNA. The optimal metal-enhanced fluores-
cence effect is achieved when the distance between the two is approximately 8 nm [69]. In
light of this, the structure is used for the accurate detection of the prostate cancer marker
urine prostate cancer antigen 3 (PCA3), exhibiting high sensitivity and selectivity. The
linear correlation between the variables is well suited within an interval of 5–500 pM, and
the limit of detection for PCA3 is 1.42 pM. Importantly, the designed metal-enhanced near-
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infrared fluorescent satellite structure probe has been successfully used to detect PCA3 in
human serum samples and prostate cancer cell lysates, demonstrating promising potential
in the field of clinical cancer diagnosis.

CTCs are a significant cause of postoperative recurrence and distant metastasis in
patients, as well as a critical factor leading to their mortality [70]. Many fluorescent
nanomaterials emitting visible light have been applied to the subsequent detection of CTCs.
Chen et al., proposed a sensitive, simple, and low-cost CTC detection strategy based on the
selective recognition of Ag+ and C-Ag+-C by CdTe quantum dots, using muc-1 as the CTC
marker and aptamers as the recognition probes [71]. The detection limit for muc-1 and
A549 cells was 0.15 fg/mL and 3 cell/mL, respectively, and muc-1 at a mass concentration
of 1 fg/mL and A549 cells at a concentration of 100 cell/mL could be visually distinguished.
Yu et al., connected graphite carbon nitride quantum dots and gold nanocluster complexes
with anti-EpCAM antibodies to obtain a CTC-specific ratio fluorescent immunoprobe,
which can effectively capture and accurately quantify CTCs [72].

With improvements to MNP materials, they can currently be applied to detect tumor
markers, such as ctDNA, exosomes, AFP, and PSA. Table 3 lists some MNP fluorescent
detection methods used for tumor detection.

Table 3. Tumor marker detection scheme based on fluorescent sensor.

Materials Tumor Marker Linearity Range Limit of Detection Ref.

CuInSe2@ZnS nanoprobes MCF-7 cells 10~5000 cell/well 12 cell/well [73]

Functionalized Ag2S nanodot MCF-7 cells 6–10 cell/mL - [74]

Pd nanosheets ctDNA 1~100 nM 0.63 nM [75]

Fe3O4 nanoparticles ctDNA 100 amol/L~1 nmol/L 1.6 amol/L [76]

Gold nanocages (Au NCs) ctDNA 5 pmol/L~1000
pmol/L 6.30 pmol/L [77]

Fe3O4 magnetic nanoparticle

Hepatic
carcinoma-

specific
exosomes

576 (±15)~5.76 × 107

(±5.1 × 105)
particles/mL

200 (±9) particles/mL [78]

Ln-upconversion nanoparticles (UCNPs) CEA 0.03~6 ng/mL 10.7 pg/mL [79]

Carbon dots@SiO2 nanorods CEA 1 fg/mL~10 ng/mL 794.6 ag/mL [80]

Palladium nanoparticles (PdNPs) AFP 5.0~150.0 ng/mL 1.38 ng/mL [81]

Anti-AFP antibody functional gold
nanoparticles (Au NPs) AFP 0.50~45 ng/mL 400 pg/mL [82]

ZnS nanospheres modified with CdTe
quantum dots AFP 0.04~64 ng·mL 10 pg/mL [83]

NaYF4:Yb3+, Er3+@NaYF4:Yb3+ UCNPs PSA 0.1~10 ng/mL 0.01 ng/mL [84]

Fe3O4 magnetic-quantum dot nanobeads PSA 0.01~100 ng mL 0.061 ng/mL [85]

Entropy-driven amplification system-templated
silver nanoclusters (Ag NCs) miRNA 0~50 nM 8.7 pM [86]

4.2. Build a Surface-Enhanced Raman Sensor

Surface-enhanced Raman scattering (SERS) is a fingerprinting technology that can re-
flect the vibrational characteristics of substances at the molecular level [87]. Compared with
single-molecule detection methods, such as fluorescence spectroscopy, Raman spectroscopy-
based methods have higher specificity. Distinct Raman spectra are exhibited by various
tissues, cells, and bodily fluids within the human body. During the process of carcinogene-
sis, the configuration, conformation, and composition ratio of various biomolecules change,
which may not cause clinical symptoms, but their Raman spectra will change. Therefore,
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SERS, with its high specificity, sensitivity, speed, and trace analysis capabilities, has gained
increasing attention in the field of cancer diagnosis (Table 4).

MNPs are typically utilized as active substrates to enhance SERS signals, and the
material type, shape, and size of the MNPs, as well as the adsorption amount and distance
of probes on the active substrate, can impact the enhancement effect of SERS. The most
commonly used MNPs are Au, Ag, and Cu [88,89]. Other transition metals or noble metals,
such as Ni, Pt, and Pd, can also produce enhancement effects [90], but the effect is relatively
low. Oxide semiconductors, such as TiO2 and ZnO, also exhibit a slight SERS enhancement
effect [91]. For instance, Raymond et al., fabricated core–shell nanoparticles consisting of
magnetic iron oxide and gold, and subsequently generated SERS nanotags in four distinct
colors. They combined these with immunomagnetic separation to create a microfluidic
device for capturing tumor cells bound to nanoparticles. They also quantitatively detected
four surface protein markers of single tumor cells in whole blood. The sensor provides
a straightforward and efficient platform for enhancing the accuracy of cancer metastasis
observation and monitoring [92].

Dong et al., developed a SERS-based nanoprobe with a gold-modified TiO2 large-
pore inverse opal structure that exhibits a significant “slow light effect” and can be uti-
lized for capturing and optically analyzing exosomes in plasma or other biological fluids
(Figure 7) [93]. The probe demonstrated precise detection results for exosome detection in
cancers, such as prostate, liver, and colon cancer, through the measurement of exosomes
from cancer and normal cells in vitro.

Table 4. MNPs detection method based on SERS technology.

Materials Tumor Marker Linearity Range Limit of Detection Ref.

Small gold nanorods (Au NRs) Exosomes of
breast cancer cells 106~108 particles/mL 2 × 106 particles/mL [94]

Gold nanostar@4-mercaptobenzoic
acid@nanoshell structures

(AuNS@4-MBA@Au)

Exosomes of liver
cancer patients

40~4.0 × 107

particles/µL
27 particles/µL [95]

Magnetic bead MB@SiO2@Au@aptamer

Exosomes of
breast, colorectal,

and prostate
cancer

- 32, 73, and 203
particles/µL [96]

Fe3O4@TiO2 nanoparticles PD-L1 exosome 5 × 103~2 × 105

particles/mL
1 particles/µL [97]

Fe3O4@Ag-DNA-Au@Ag@DTNB miRNA 3 aM~100 pM 1.8 aM [98]

Plasmonic head-flocked gold nanopillars@LNA
detection probe miRNA 1 aM~100 nM 1 aM [99]

Functionalized gold nanoparticles (Au NPs) muc-4 10 ng/mL~100 µg/mL 33 ng/mL [100]

Silver/chitosan nanoparticles
(Ag@CS NPs)

Platelet-derived
growth factor BB 10 pg/mL~5.0 ng/mL 3.2 pg/mL [101]

Fe3O4 nanoring (R-Fe3O4) Interleukin-6 0.1~1000 pg/mL 0.028 pg/mL [102]

4-MBA-encoded Au NPs
(AuNP-MBA) MCF-7 5~500 cells/mL 5 cells/mL [103]

Triangular silver nanoprisms
(Ag NPR) HeLa cell 1–100 cells/mL 1 cell/mL [104]

Poly(ethyleneimine) (PEI)-stabilized
superparamagnetic iron oxide nanoparticles

(SPION-PEI)
HeLa cell 1–25 cells/mL 1 cell/mL [105]
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4.3. Determination of Tumor Markers by Surface Plasmon Resonance Characteristics of MNPs

Nanoparticle aggregation can induce plasmon coupling between particles, resulting in
a surface plasmon resonance (SPR) shift. Gold and silver nanoparticles (Au NPs, Ag NPs)
are popular choices for colorimetric SPR detection among various nanomaterials. Cancer-
related target molecules can trigger nanoparticle aggregation through covalent bonds,
hydrogen bonds, hydrophobic forces, or electrostatic interactions. To improve the specificity
and sensitivity of nanoparticle binding to cancer-related target molecules, nanoparticles
can be surface-modified with ligands, antibodies, or other target molecules [106].

Szymańska et al., developed a surface plasmon resonance (SPR) imaging sensor for
detecting CA125/MUC16 [107]. Anti-MUC16 antibodies were immobilized on a gold chip
using a cysteamine linker and covalently attached with EDS/NHS. The sensor exhibited
a linear response range of 2.2~150 U/mL, good recovery rate, and precision. It was
successfully used to determine the markers in the serum of ovarian cancer patients.
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Wang et al., developed a sensor with dual Au NP-assisted signal amplification for
the highly sensitive detection of exosomes [108]. The sensor achieved double nanoparticle
amplification and improved sensitivity by controlling the attachment of Au NPs through
electronic coupling between the gold and Au NPs, as well as the coupling effect in the
plasmonic nanostructure. The detection limit was lowered to 5 × 103 particles/mL. Non-
specific adsorption of Au NPs on the SPR chip surface was also suppressed by coating the
gold film surface with 11-mercapto-1-undecanol (MCU), enabling the regeneration of the
SPR sensor.

Liu et al., developed a local surface plasmon resonance (LSPR) sensor chip for the
detection of exosomal biomarkers in small quantities (Figure 8) [109]. Self-assembled
silver nanoparticles on a Ag@Au NIs sensor chip were utilized for the specific bio-binding
of biotinylated antibodies, enabling the detection of exosomal surface biomarkers. The
Ag@Au NIs LSPR biosensor with biotinylated antibody functionalization (BAF) sensitively
detected CD63 (an exosomal biomarker) and monocarboxylate transporter 4 (MCT4) in
malignant glioblastoma-derived exosomes, with a range of 4 × 10−4~50 µg/mL and a limit
of detection of 0.4 ng/mL.

The use of MNPs’ optical properties for detecting cancer biomarkers is an emerging
detection technology based on the principles of nanomaterial SERS and SPR. In specific tu-
mor marker detection methods, the intensity and frequency of optical signals are observed
to detect and diagnose cancer biomarkers with high sensitivity, improving the accuracy
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and reliability of early cancer detection. Additionally, MNPs’ surfaces can be recognized
by specific biomolecules, enabling the selective detection of specific cancer biomarkers
and reducing misdiagnosis rates. Compared with traditional cancer diagnosis techniques,
the MNP-based optical detection of cancer biomarkers is relatively simple, requiring only
simple chemical experiments and optical measurements. MNP preparation and biofunc-
tionalization technologies are relatively mature, resulting in detection results with good
repeatability and stability. However, its drawbacks are also apparent, as MNP preparation
and functionalization are costly and time-consuming, leading to higher economic burden.
The application of MNPs is limited by specific surface modification and functionalization,
resulting in limitations in detecting certain types of tumor markers. MNP detection results
require multiple experiments for verification to ensure accuracy and reliability. Overall, the
use of MNPs’ optical properties for detecting cancer biomarkers has many advantages, but
the application scope and reliability need further validation and exploration.
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5. Conclusions and Prospect

Early and precise cancer diagnosis is a crucial factor in prolonging the survival rate of
cancer patients and mitigating their suffering. Conventional methods for tumor biomarker
detection are associated with limitations that include restricted sensitivity, potentially re-
sulting in missed detection of early-stage cancer biomarkers, leading to incorrect diagnosis
or delayed treatment. Furthermore, the low specificity of these methods means that certain
tumor biomarkers may also appear in other diseases or healthy individuals, making it
challenging to determine abnormal expression as a tumor biomarker. These methods
also require a multitude of steps and complex operations, which increases the time and
technical requirements and elevates the likelihood of misjudgment. Finally, the results may
be impacted by various factors, such as disease, external interference, and physiological
state, leading to ambiguous or unreliable outcomes. The development of nanotechnol-
ogy has facilitated the extensive utilization of MNPs in diverse domains, encompassing
biosensing and oncological interventions. This review focuses on the rapid development
of MNP-based in vitro biosensors for cancer diagnosis in recent years and compares some
promising technologies (Table 5).

MNPs are a new generation of biomaterials with broad application prospects and a
profound impact compared with traditional early cancer diagnosis techniques. In the field
of tumor biomarker detection, MNP-based biosensors demonstrate high sensitivity, rapid
detection, good specificity, and ease of operation. However, the MNP-based nanomedicine
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field needs to address challenges and solve problems to achieve large-scale clinical applica-
tions. Primarily, although electrochemical sensors, chemical catalytic sensors, fluorescence
sensors, and other sensor technologies based on MNPs demonstrate expansive detection
capabilities and low detection thresholds for certain prototypical tumor biomarkers, it is
imperative to acknowledge that the microenvironment of the biomarkers targeted by these
sensors is relatively pristine and markedly distinct from that of physiological fluids. There-
fore, the use of these sensors for early cancer diagnosis in actual cancer patients still has a
long way to go, which is an important consideration for future researchers. Secondarily,
the attainment of high specificity and sensitivity in detecting cancer-related tissues and
organs through single biomarkers proves to be a complex task, thereby necessitating expe-
ditious research into the physiological mechanisms of biomarkers, the exploration of novel
biomarkers, and the integration of multiple biomarkers for clinical detection purposes. In
the forthcoming times, scholars must prioritize enhancing the precision and sensitivity of
biomarker detection, while concurrently monitoring market and application requirements,
and devising compact, versatile, cost-effective, and expeditious platforms for biomarker
detection. Thirdly, the current research on the intracellular and extracellular functional
mechanisms of MNP sensors is severely insufficient. Hence, it is necessary to study the
reaction mechanism of MNPs based on factors such as their chemical composition, size,
shape, and synthesis method and apply the obtained rules to designing new biosensors,
fully unlocking the potential of MNPs.

Table 5. Comparison of tumor marker detection techniques.

Technology Basic Principle Advantage Disadvantage

Electrochemical sensors

Converts an interaction signal
between a biometric element

and a recognition target into a
detectable electrical signal

High selectivity; mass
production and integration;
rapid and low cost; simple

and suitable for complicated
situation

Lack of specificity for the
captured cancer cells; lack of
ability to detect intracellular

protein markers

Fluorescence
Change of fluorescence

spectrum and fluorescence
intensity

High selectivity and stability;
simplicity and rapidity; good

accuracy; biocompatible

Spectral overlap;
photobleaching; nonspecific

binding labeling

SERS
Difference in Raman

scattering spectra of different
molecule

High selectivity and
sensitivity; noninvasive and

nondestructive

Expensive and complicated
equipment; batch-to-batch

reproductivity of SERS
substrate

SPR

Refractive index changes
occurring from the capture of
a molecule on the plasmonic

surface

Real-time; free-label; high
accuracy; suitable for different

biofluids

Limited detection;
interference from complex

samples

As a new generation of biomaterials, MNPs offer significant advantages over tradi-
tional tumor diagnosis technologies, such as high sensitivity, fast detection, good specificity,
and simplicity. Nevertheless, challenges remain in achieving widespread clinical appli-
cation. First, while MNP-based sensors provide a broad detection range and low limits
for tumor markers, the microenvironment of detected markers differs from real-life body
fluids, limiting early cancer diagnosis. Second, single biomarker detection is not sufficient,
necessitating research on the physiological mechanism of markers, development of new
markers, and multimarker clinical testing. In the future, biosensors will need to improve
sensitivity and accuracy, address market needs, and develop a miniaturized, multifunc-
tional, economical, and portable platform. Lastly, research on the functional mechanisms
of MNP sensors is lacking, requiring the investigation of reaction mechanisms and the
development of novel biosensors that maximize MNPs’ potential.

Currently, there are several drawbacks that hinder the further large-scale development
of MNPs in the field of tumor biomarker detection, including high cost, limited selectivity,



Molecules 2023, 28, 4370 15 of 19

and poor biocompatibility. To address these issues, this paper suggests several improve-
ments. First, enhancing the synthetic process of nanomaterials to streamline the procedure,
amplifying the preparation efficacy, implementing integrated methodologies, exploring
MNPs’ reuse and recovery, curtailing waste and environmental contamination, and di-
minishing production expenses. Second, researching new types of MNPs with improved
selectivity for tumor biomarkers, reduced cross interference, increased biocompatibility,
and safety. In this regard, it is possible to expand the application potential of inexpensive
metals, such as iron, copper, and zinc, which are stable, safe, and nontoxic and easily un-
dergo biological modification. Lastly, amalgamating MNP biosensors with other detection
modalities, such as optical, electrochemical, and magnetic resonance techniques, can expe-
dite the miniaturization and user-friendliness of MNP sensors, and heighten the precision
and selectivity of tumor biomarker detection via the integration of diverse methodologies.
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