Enhancing Methane Removal Efficiency of ZrMnFe Alloy by Partial Replacement of Fe with Co
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
2.3. Hydrogen Purification Performance Testing
3. Results and Discussion
3.1. Annealed Alloy Characterization
3.2. Hydrogen Purification Performance
3.3. Co Element Catalytic Performance Verification
3.4. Reaction Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, K.; Hara, H.; Nagaishi, S.; Shi, L.; Yamashita, D.; Kamataki, K.; Itagaki, N.; Koga, K.; Shiratani, M. Identification and Suppression of Si-H2 Bond Formation at P/I Interface in a-Si:H Films Deposited by SiH4 Plasma CVD. Plasma Fusion Res. 2019, 14, 4406141. [Google Scholar] [CrossRef]
- Liguori, S.; Kian, K.; Buggy, N.; Anzelmo, B.H.; Wilcox, J. Opportunities and challenges of low-carbon hydrogen via metallic membranes. Prog. Energy Combust. Sci. 2020, 80, 100851. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, I.; Yamani, Z.H.; Qurashi, A. Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason. Sonochem. 2017, 34, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Brunbauer, F.; Chatterjee, C.; Cicala, G.; Cicuttin, A.; Crespo, M.; D’ago, D.; Torre, S.D.; Dasgupta, S.; Gregori, M.; Levorato, S.; et al. Study of nanodiamond photocathodes for MPGD-based detectors of single photons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1048, 168014. [Google Scholar] [CrossRef]
- Brunbauer, F.; Chatterjee, C.; Cicala, G.; Cicuttin, A.; Ciliberti, P.; Crespo, M.; D‘ago, D.; Torre, S.D.; Dasgupta, S.; Gregori, M.; et al. Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC. J. Instrum. 2020, 15, C09052. [Google Scholar] [CrossRef]
- Arrhenius, K.; Büker, O.; Fischer, A.; Persijn, S.; Moore, N.D. Development and evaluation of a novel analyser for ISO14687 hydrogen purity analysis. Meas. Sci. Technol. 2020, 31, 075010. [Google Scholar] [CrossRef]
- Ali, A.Y.; Holmes, N.P.; Ameri, M.; Feron, K.; Thameel, M.N.; Barr, M.G.; Fahy, A.; Holdsworth, J.; Belcher, W.; Dastoor, P.; et al. Low-Temperature CVD-Grown Graphene Thin Films as Transparent Electrode for Organic Photovoltaics. Coatings 2022, 12, 681. [Google Scholar] [CrossRef]
- Anoikin, E.; Muhr, A.; Bennett, A.; Twitchen, D.; de Wit, H. Diamond optical components for high-power and high-energy laser applications. In Proceedings of the Components and Packaging for Laser Systems, San Francisco, CA, USA, 20 February 2015; p. 93460T. [Google Scholar] [CrossRef]
- Mosińska, L.; Popielarski, P.; Fabisiak, K.; Dychalska, A. Effects of hydrogen termination of CVD diamond layers. Opt. Mater. 2020, 101, 109676. [Google Scholar] [CrossRef]
- Suzuki, T. Method for Manufacturing Semiconductor Device and Semiconductor Device. U.S. Patent 202217690788, 2022. [Google Scholar]
- Park, Y.; Kang, J.-H.; Moon, D.-K.; Jo, Y.S.; Lee, C.-H. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture. Chem. Eng. J. 2020, 408, 127299. [Google Scholar] [CrossRef]
- Gong, Y.; Long, W.; Fan, W.; Zhao, X.; Zhao, W.; Long, C.; Pan, C. Process Analysis and Optimization of TSA Hydrogen Drying Device. Gas Heat 2018, 38, 64–67. [Google Scholar]
- Lee, T.H.; Balçık, M.; Lee, B.K.; Ghanem, B.S.; Pinnau, I.; Park, H.B. Hyperaging-induced H2-selective thin-film composite membranes with enhanced submicroporosity toward green hydrogen supply. J. Membr. Sci. 2023, 672, 121438. [Google Scholar] [CrossRef]
- Dunikov, D.; Blinov, D. Extraction of hydrogen from a lean mixture with methane by metal hydride. Int. J. Hydrogen Energy 2020, 45, 9914–9926. [Google Scholar] [CrossRef]
- James, D.W.; Morgan, G.A. Evaluation of getters for methane and ammonia decomposition. Fusion Eng. Des. 2018, 133, 1–5. [Google Scholar] [CrossRef]
- Agueda, V.I.; Delgado, J.A.; Uguina, M.A.; Brea, P.; Spjelkavik, A.I.; Blom, R.; Grande, C. Adsorption and Diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 Metal-Organic Framework Extrudates. Chem. Eng. Sci. 2015, 124, 159–169. [Google Scholar] [CrossRef]
- Relvas, F.; Whitley, R.D.; Silva, C.; Mendes, A. Single-Stage Pressure Swing Adsorption for Producing Fuel Cell Grade Hydrogen. Ind. Eng. Chem. Res. 2018, 57, 5106–5118. [Google Scholar] [CrossRef]
- Pan, C.S. Research on Hydrogen Purification and Recovery Performance of Zr-Based Metal Hydrides. Ph.D. Thesis, General Research Institute for Nonferrous Metals, Beijing, China, 2015. [Google Scholar]
- Al-Mufachi, N.; Rees, N.; Steinberger-Wilkens, R. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renew. Sustain. Energy Rev. 2015, 47, 540–551. [Google Scholar] [CrossRef]
- Mi, C.M. Research and Application of 9N Gas Purifier for Electronic Industry. J. Build. Mater. Decor. 2013, 1, 79–93. [Google Scholar]
- Wan, Y.J. Getters; Jiangsu Science and Technology Press: Nanjing, China, 1983; pp. 54–56. [Google Scholar]
- Yao, Y.; Huang, Z.; Song, J.F. Study on the Kinetics of Water Decomposition by ZrMnFe Micro Powder. In Proceedings of the 2015 International Conference on Sustainable Energy and Environmental Engineering (SEEE 2015), Bangkok, Thailand, 25 October 2015. [Google Scholar]
- Klein, J.E. SAES® ST909 Bench Scale Methane Cracking Tests. Fusion Sci. Technol. 2002, 41, 998–1003. [Google Scholar] [CrossRef]
- Baker, J.D.; Meikrantz, D.H.; Pawelko, R.J.; Anderl, R.A.; Tuggle, D.G. Tritium Purification via Zirconium-Manganese-Iron Alloy Getter St 909 in Flow Processes. J. Vac. Sci. Technol. A Vac. Surf. Film. 1995, 27, 8–13. [Google Scholar] [CrossRef]
- Hsu, R.H.; Hölder, J.S. Testing of a Prototype SAES St909 Getter Bed for Conditioning Gas to a Tritium Stripper System. Fusion Sci. Technol. 2005, 48, 171–174. [Google Scholar] [CrossRef]
- Klein, J.E.; Hölder, J.S. SAES St 909 Getter Testing at the Savannah River National Laboratory. Absorption 2005, 45, 1–5. [Google Scholar]
- Klein, J.E.; Hölder, J.S. Screening Tests for Improved Methane Cracking Materials. Fusion Sci. Technol. 2008, 54, 611–614. [Google Scholar] [CrossRef]
- Yu, Y.F.; Ye, Y.M.; Hu, S.L. Research on performance of ZrTiNiMn alloy for decomposition of methane in hydrogen. Rare Met. Cem. Carbides 2020, 48, 62–67. [Google Scholar]
- Shan, C.H.; Bai, R.P.; Lan, Y. Progress in Theoretical Studies on the Participation of Transition Metals in C-H Bond Activation Modes. Acta Phys. Chim. Sin. 2019, 35, 940–953. [Google Scholar] [CrossRef]
- Song, L.Z. Study Micro-Mechanism of CH4 Dissociation on Metal Surfaces. Ph.D. Thesis, Taiyuan University of Technology, Taiyuan, China, 2012. [Google Scholar]
- Ramaprabhu, S. Structural and Hydrogen Solubility Studies on ZrMnFe1-x Cox (X=0.2, 0.3 and 0.5) Alloys. Interna-Tional J. Hydrog. Energy 2000, 25, 879–885. [Google Scholar] [CrossRef]
- Wallace, W.E.; Yu, G.Y. Zirconium-Manganese-Iron Alloys. U.S. Patent 4567032, 28 January 1986. [Google Scholar]
Sample | Zr | Mn | Fe | Co | Zr | Mn | Fe | Co |
---|---|---|---|---|---|---|---|---|
Theoretical Value /wt% | Actual Value /wt% | |||||||
ZrMnFe | 45.16 | 27.20 | 27.64 | / | 444.19 | 28.37 | 27.44 | / |
ZrMnFe0.9Co0.1 | 45.09 | 27.16 | 24.84 | 2.91 | 46.35 | 25.12 | 25.64 | 2.89 |
ZrMnFe0.8Co0.2 | 45.02 | 27.11 | 22.05 | 5.82 | 43.81 | 27.89 | 22.25 | 6.05 |
ZrMnFe0.7Co0.3 | 44.95 | 27.07 | 19.26 | 8.71 | 44.15 | 27.38 | 19.94 | 8.53 |
ZrMnFe0.6Co0.4 | 44.88 | 27.03 | 16.49 | 11.60 | 43.55 | 27.34 | 16.99 | 12.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Du, M.; Li, S.; Li, Z.; Hao, L. Enhancing Methane Removal Efficiency of ZrMnFe Alloy by Partial Replacement of Fe with Co. Molecules 2023, 28, 4373. https://doi.org/10.3390/molecules28114373
Chen S, Du M, Li S, Li Z, Hao L. Enhancing Methane Removal Efficiency of ZrMnFe Alloy by Partial Replacement of Fe with Co. Molecules. 2023; 28(11):4373. https://doi.org/10.3390/molecules28114373
Chicago/Turabian StyleChen, Shumei, Miao Du, Shuai Li, Zhinian Li, and Lei Hao. 2023. "Enhancing Methane Removal Efficiency of ZrMnFe Alloy by Partial Replacement of Fe with Co" Molecules 28, no. 11: 4373. https://doi.org/10.3390/molecules28114373
APA StyleChen, S., Du, M., Li, S., Li, Z., & Hao, L. (2023). Enhancing Methane Removal Efficiency of ZrMnFe Alloy by Partial Replacement of Fe with Co. Molecules, 28(11), 4373. https://doi.org/10.3390/molecules28114373