Next Article in Journal
Two New Aluminoborates with 3D Porous-Layered Frameworks
Next Article in Special Issue
Ultrastructural, Energy-Dispersive X-ray Spectroscopy, Chemical Study and LC-DAD-QToF Chemical Characterization of Cetraria islandica (L.) Ach
Previous Article in Journal
Rapid Detection of Benzo[a]pyrene in Extra Virgin Olive Oil Using Fluorescence Spectroscopy
Previous Article in Special Issue
HPTLC Analysis and Chemical Composition of Selected Melaleuca Essential Oils
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Apiaceae Medicinal Plants in China: A Review of Traditional Uses, Phytochemistry, Bolting and Flowering (BF), and BF Control Methods

1
State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
2
Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen 518120, China
3
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
*
Authors to whom correspondence should be addressed.
Molecules 2023, 28(11), 4384; https://doi.org/10.3390/molecules28114384
Submission received: 30 April 2023 / Revised: 20 May 2023 / Accepted: 25 May 2023 / Published: 27 May 2023

Abstract

:
Apiaceae plants have been widely used in traditional Chinese medicine (TCM) for the removing dampness, relieving superficies, and dispelling cold, etc. In order to exploit potential applications as well as improve the yield and quality of Apiaceae medicinal plants (AMPs), the traditional use, modern pharmacological use, phytochemistry, effect of bolting and flowering (BF), and approaches for controlling BF were summarized. Currently, about 228 AMPs have been recorded as TCMs, with 6 medicinal parts, 79 traditional uses, 62 modern pharmacological uses, and 5 main kinds of metabolites. Three different degrees (i.e., significantly affected, affected to some extent, and not significantly affected) could be classed based on the yield and quality. Although the BF of some plants (e.g., Angelica sinensis) could be effectively controlled by standard cultivation techniques, the mechanism of BF has not yet been systemically revealed. This review will provide useful references for the reasonable exploration and high-quality production of AMPs.

Graphical Abstract

1. Introduction

Apiaceae (syn. Umbelliferae) is one of the largest angiosperm families. It includes 300 genera (3000 species) globally and 100 genera (614 species) in China [1]. Apiaceae plants have been widely used in healthcare, nutrition, the food industry, and other fields [2]. Currently, 55 genera (230 species) of Apiaceae plants have been used as medicinal plants, and over 20 species have been widely used as traditional Chinese medicines (TCMs) [3]. Extensive studies have demonstrated that Apiaceae medicinal plants (AMPs) present a variety of pharmacological properties for the treatment of central nervous system, cardiovascular, and respiratory system diseases, amongst others [1,4]. These pharmacological activities are largely associated with metabolites such as polysaccharides, alkaloids, phenylpropanoids (simple phenylpropanoids and coumarins), flavonoids, and polyene alkynes [1,5,6].
In China, Apiaceae plants have been primarily used as traditional medicines for relaxing tendons, activating blood, relieving superficial wounds, treating colds, etc. [1,2]. For example, rhizomatous and whole plants are mainly used for the treatment of common colds, coughs, asthma, rheumatic arthralgia, ulcers, and pyogenes infections; fruits are mainly used for regulating vital energy, promoting digestion, relieving abdominal pain, and treating parasites [1,2].
The occurrence of bolting and flowering (BF) plays a critical role in the transition from vegetative growth to reproductive development in the plant life cycle [7]. However, BF significantly reduces the accumulation of metabolites in vegetative organs, which ultimately leads to the lignification of rhizomes and/or roots such as sugar beet [8], lettuce [9], and Chinese cabbage [10]. In particular, it common that BF significantly reduces the yield and quality of the rhizomatous AMPs [11]. Extensive studies have demonstrated that BF is regulated by both internal factors (e.g., germplasm resource, seedling size, and plant age) and external factors (e.g., vernalization, photoperiodism, and environmental stresses) [12]. To date, the BF of most rhizomatous AMPs have not been effectively controlled [11,13].
In order to form a comprehensive understanding of the current status of AMPs in China, herein, the progress on traditional use, phytochemistry, BF, and controlling approaches are summarized. This review will provide useful references for the efficient cultivation and quality improvement of AMPs.

2. Materials and Methods

Information on AMPs was attained using scientific databases (i.e., PubMed, Web of Science, Springer, and CNKI), using the following keywords: Apiaceae plant, traditional use, phytochemistry, BF, and lignification. Additional information was collected from ethnobotanical studies that mainly focused on the “Flora of China” and local classical literature, such as “Divine Husbandman’s Classic of the Materia Medica (Shen Nong Ben Cao Jing)”, “Compendium of Materia Medica”, “Illustrated Book on Plants”, “Collection of National Chinese Herbal Medicine”, and “Pharmacopoeia of the People’s Republic of China” (2020). The names of all plants correspond to the database Catalogue of Life China. Chemical structures were drawn using ChemDraw 21.0.0 software.

3. Apiaceae Medicinal Plants (AMPs)

Apiaceae plants have been traditionally used as medicines in China for ca. 2400 years (Figure 1). In 390–278 BC, three Apiaceae plants, including Angelica dahurica, Ligusticum chuanxiong, and Cnidium monnieri, were first recorded as medicines in “Sorrow after Departure” [1,2]. With the progress of Chinese civilization, ca. 100 Apiaceae plants were historically recorded as medicines. Specifically, 12 AMPs (e.g., Angelica decursiva, Bupleurum chinense, and Centella asiatica) were recorded in the known herbal text of China, the “Divine Husbandman’s Classic of the Materia Medica (Shen Nong Ben Cao Jing)” in 1st and 2nd century AD [14]. In 1578 and 1848, 24 and 31 AMPs were respectively recorded in the “Compendium of Materia Medica and Illustrated Book on Plants” [15]. In the 21st century, the number of AMPs has been continually increasing, up to 93 species recorded in the “Flora of China” in 2002 [16], and 96 species in the “Collection of National Chinese Herbal Medicine” in 2014 [17]. In recent years, 22 species were recorded in the “Pharmacopoeia of the People’s Republic of China” [18]. Specifically, 18 species are used with rhizomes and/or roots (Table 1).

4. Classification of AMPs Species

To our best knowledge, a total of 228 AMPs used as TCMs were collected from previously published studies and books (Table 1). Based on the traditionally used medicinal parts, the 228 AMPs were categorized into six classes, including 51 species (21 genera) used with the whole plants (i.e., rhizome and/or root, stem, and leaf), 184 species (44 genera) used with rhizomes and/or roots, 5 species (5 genera) used with stems, 9 species (8 genera) used with leaves, 17 species (14 genera) used with fruits, and 1 species (single genus) used with seeds.
Specifically, the 51 species (21 genera) used with the whole plants include Anethum, Anthriscus, Apium, Bupleurum, Centella, Conium, Coriandrum, Cryptotaenia, Eryngium, Ferula, Foeniculum, Hydrocotyle, Oenanthe, Peucedanum, Pimpinella, Pleurospermum, Pternopetalum, Sanicula, Sium, Spuriopimpinella, and Torilis genera. In particular, Sanicula (e.g., S. astrantiifolia, S. caerulescens, S. chinensis), Hydrocotyle (e.g., H. himalaica, H. hookeri, and H. nepalensis), and Pimpinella (e.g., P. candolleana, P. coriacea, and P. diversifolia) genera plants are usually used as whole plants.
The 184 species (44 genera) used with the rhizomes and/or roots, which make up the majority of AMPs, include Angelica, Anthriscus, Apium, Archangelica, Bupleurum, Carum, Changium, Chuanminshen, Cicuta, Cnidium, Conioselinum, Daucus, Eriocycla, Ferula, Foeniculum, Glehnia, Heracleum, Hymenidium, Kitagawia, Levisticum, Libanotis, Ligusticopsis, Ligusticum, Meeboldia, Nothosmyrnium, Oenanthe, Osmorhiza, Ostericum, Peucedanum, Phlojodicarpus, Physospermopsis, Pimpinella, Pleurospermum, Pternopetalum, Sanicula, Saposhnikovia, Selinum, Semenovia, Seseli, Seselopsis, Spuriopimpinella, Tongoloa, Torilis, and Vicatia genera. Specifically, Angelica (e.g., A. biserrata, A. dahurica, and A. sinensis), Bupleurum (e.g., B. bicaule, B. chinense, and B. scorzonerifolium), and Ligusticum (L. chuanxiong, L. jeholense, and L. sinense) genera plants are usually used as rhizomes and/or roots.
The 5 species (5 genera) used with the stems include Aegopodium (A. alpestre), Coriandrum (C. sativum), Foeniculum (F. vulgare), Ligusticum (L. chuanxiong), and Oenanthe (O. javanica); the 9 species (8 genera) used with the leaves include Aegopodium (A. alpestre), Anethum (A. graveolens), Angelica (A. morii), Anthriscus (A. nemorosa and A. sylvestris), Carum (C. carvi), Daucus (D. carota), Foeniculum (F. vulgare), and Ligusticum (L. chuanxiong); the 17 species (14 genera) used with the fruits include: Ammi (A. majus), Carum (C. buriaticum and C. carvi), Cnidium (C. monnieri), Coriandrum (C. sativum), Cuminum (C. cyminum), Cyclorhiza (C. peucedanifolia), Daucus (D. carota L. and D. carota var. Carota), Pimpinella (P. anisum), Trachyspermum (T. ammi), and Visnaga (V. daucoides) genera; the single genera used with the seeds is Ferula (F. bungeana) (Table 1).

5. Traditional Uses

As is shown in Table 1, distinct traditional uses of the 228 AMPs were recorded. Based on their clinical agents, a total of 79 traditional uses are enriched, with 40 species contributing to the treatment of relieving pain, 36 species to the treatment of dispelling wind; and 21 species to the treatment of eliminating dampness (Figure 2).
Moreover, the AMPs were also widely used as “ethnodrugs” for ethnic minorities in China. For example, Carum carvi was used as Tibetan medicine for the treatment of dispelling wind and eliminating dampness, as well as treating cat fever and joint pain [86]; Trachyspermum ammi [236] was used as Uygur medicine for the treatment of eliminating cold damp, dispelling coldness, and promoting digestion; Angelica acutiloba was used in Korean medicine for the treatment of strengthening the spleen, enriching blood, stopping bleeding, and promoting coronary circulation [237]; Angelica sinensis was used as medicine for the Tujia minority for the treatment of enriching the blood, treating dysmenorrheal, and relaxing the bowel [238]; and Chuanminshen violaceum was used as a geo-authentic medicine of Sichuan province for the treatment of moistening the lungs, treating phlegm, and nourishing the spleen and stomach [89].
Meanwhile, AMPs combined with other herbs have also been applied for thousands of years [239]. For example, the Decoction of Notopterygium for Rheumatism is a famous Chinese prescription and is composed of Notopterygium incisum, Angelica biserrata, Ligusticum sinense, Eryngium foetidum, and Ligusticum chuanxiong, etc.; it has been widely used for the treatment of exopathogenic wind-cold, rheumatism, headache, and pantalgia [94]. The Xinyisan that is composed of Yulania liliiflora, Actaea cimicifuga, Angelica dahurica, Eryngium foetidum, Ligusticum sinense, etc., has been widely used for the treatment of deficiency of pulmonary qi and nasal obstruction due to wind-cold pathogens and damp-heat in the lung channel [94,168]. The Shiquan Dabu Wan of Angelica sinensis that is recorded in the “Pharmacopoeia of the People’s Republic of China” has been mainly used for the treatment of pallor, fatigability, and palpitations [240]. The Juanbi Tang of Notopterygium incisum and Angelica biserrata that is recorded in “Medical Words” (Qing dynasty) has been mainly used for treatment of arthralgia due to wind cold-dampness [121].

6. Modern Pharmacological Uses

Modern pharmacological research on the 228 AMPs is summarized in Table 1. Based on the pharmacological effects, a total of 62 modern uses are identified (Figure 3), with 36 species showing anti-inflammatory activity, 20 species showing antioxidant activity, and 16 species showing antitumor activity. In addition, other modern uses are also identified, such as antitumor, bacteriostatic, and analgesic. These modern pharmaceutical properties have been demonstrated to be associated with bioactive metabolites, and several metabolites have been found to be co-existent in the TCMs [241,242].
Specifically, sesquiterpene-coumarin, such as (3′S, 5′S, 8′R, 9′S, 10′R)-kellerin, gummosin, galbanic acid, and methyl galbanate from Ferula sinkiangensis resin, showed anti-neuroinflammatory effects and might be a potential natural therapeutic agent for Alzheimer’s disease [243]. The supercritical carbon dioxide extracts from Apium graveolens showed antibacterial effects, with the highest inhibitory activity against Bacillus cereus [244,245]. In vitro, the antitumor activity of AMPs have been identified; for example, the ferulin B and C in Ferula ferulaeoides rhizomes could restrain the multiplication of HepG2 stomach cancer cell lines, and 2,3-dihydro-7-hydroxyl-2R*, 3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo [3,2-c] coumarin could restrain the proliferation of HepG2, MCF-7, and C6 cancer cell lines [107,246]. In addition, the osthole in Angelica biserrata could restrain the multiplication of human gastric cancer cell lines MKN-45 and BGC-823, human lung adenocarcinoma cell line A549, human mammary carcinoma cell line MCF-7, and human colon carcinoma cell line LOVO [247]. The antioxidative activity of AMPs has been also identified; for example, the imperatorin, oxypeucedanin hydrate, and bergaptol in Angelica dahurica exhibited DPPH scavenging activity [30], hydromethanolic extracts from Pimpinella anisum exhibited free radical scavenging activity [248], and water-soluble polysaccharides in Chuanminshen violaceum scavenged DPPH, hydroxyl, and superoxide anion radicals [91].

7. Phytochemistry

As is shown in Table 1, hundreds of bioactive metabolites have been identified from the 228 AMPs [1,249]. Based on their chemical structures, these metabolites can be categorized into five main classes: (1) polysaccharides, (2) alkaloids, (3) phenylpropanoids, (4) flavonoids, and (5) terpenoids (Figure 4).
Among the 22 AMPs recorded in the “Pharmacopoeia of the People’s Republic of China” [18], 18 secondary metabolites in the 17 AMPs (e.g., Angelica biserrata, Bupleurum chinense DC., and Centella asiatica) (Figure 5) were described as quality control indicators, which include: 10 phenylpropanoids (i.e., osthole, columbianadin, imperatorin, isoimperatorin, nodakenin, ferulic acid, trans-anethole, notopterol, praeruptorin A, and praeruptorin B), 4 terpenoids (i.e., saikosaponin a, saikosaponin d, asiaticoside, and madecassoside), 2 chromones (i.e., prim-O-glucosylcimifugin and 5-O-methylvisammioside), and 2 phthalides (i.e., ligustilide and levistilide A); a specific quality marker has not been reported for the other 5 AMPs (e.g., Changium smyrnioides, Daucus carota L., and Glehnia littoralis) (Table 2).

7.1. Polysaccharides

Polysaccharides are the largest components of biomass and account for ca. 90% of the carbohydrates in plants [250]. Studies have demonstrated that polysaccharides in medicinal plants are indispensable bioactive compounds, presenting uniquely pharmacological effects such as immunomodulatory, hypoglycemic, antitumor, anti-diabetic, and antioxidant effects, amongst others, with few side effects or adverse drug reactions [251,252]. To date, polysaccharides in the 228 AMPs have also been identified, showing multiple pharmacological effects. For example, polysaccharides in Angelica sinensis present hematopoietic, antitumor, and liver protection effects [239,253]; polysaccharides in Angelica dahurica protect spleen lymphocytes, natural killer cells, and procoagulants [254,255]; and polysaccharides in Bupleurum chinense and Bupleurum smithii present the effect of macrophage modulation, kidney protection, and inflammatory alleviation [256,257,258].

7.2. Alkaloids

About 27,000 alkaloids presenting as water-soluble salts of organic acids, esters, and combined with tannins or sugars have been found in plants [259]. Many alkaloids are valuable medicinal agents that can be utilized to treat various diseases, including malaria, diabetes, cancer, cardiac dysfunction, blood clotting–related diseases, etc. [260,261,262]. Alkaloids in the 228 AMPs mainly exist in the Ligusticum, Apium, Conium, and Cuminum genera [249]. Pharmacological studies have demonstrated that alkaloids in Ligusticum chuanxiong show the activity of inhibiting myocardial fibrosis, protecting ischemic myocardium, and relieving cerebral ischemia-reperfusion injury [151,263,264]. A novel alkaloid 2-pentylpiperidine known as conmaculatin in Conium maculatum shows strong peripheral and central antinociceptive activity [265]. Some alkaloids have been identified to show antidepressant activity, such as berberine in Berberis aristata, strictosidine acid in Psychotria myriantha, and Anonaine in Annona cherimolia; these could be explored as an emerging therapeutic alternative for the treatment of depression.

7.3. Phenylpropanoids

Phenylpropanoids are a large class of secondary metabolites biosynthesized from amino acids, phenylalanine, and tyrosine [266]. Over 8000 aromatic metabolites of the phenylpropanoids have been identified in plants. These include simple phenylpropanoids (propenyl benzene, phenylpropionic acid, and phenylpropyl alcohol), coumarins, lignins, lignans, and flavonoids [267].

7.3.1. Simple Phenylpropanoids

To date, limited simple phenylpropanoids have been identified from AMPs, including three phenylpropanoids (trans-isoelemicin, sarisan, and trans-isomyristicin) in the roots of Ligusticum mutellina [268]. Ferulic acid, one of the phenylpropionic acids, is an important bioactive metabolite of AMPs; it mainly exists in Angelica, Ligusticum, Ferula, and Pleurospermum genera [239,269,270]. Pharmacological studies have demonstrated that the ferulic acid in Angelica sinensis shows strong properties in inhibiting platelet aggregation, increasing coronary blood flow, and stimulating smooth muscle [271,272]; the ferulic acid in Angelica acutiloba shows antidiabetic, immunostimulant, antiinfammatory, antimicrobial, anti-arrhythmic, and antithrombotic activity [273]; and the ferulic acid in Ligusticum tenuissimum shows anti-melanogenic and anti-oxidative effects [274].

7.3.2. Coumarins

Coumarins are the most widespread in 20 genera of AMPs (e.g., Angelica, Bupleurum, and Peucedanum) and mainly include simple coumarins, pyranocoumarins, and furocoumarins [56,275,276]. In recent years, distinct coumarins have been identified from AMPs, such as 99 coumarins in Ferula [277], 116 coumarins in Angelica decursiva and Peucedanum praeruptorum [180], and 9 coumarins in Angelica dahurica [278]. Furthermore, 8 coumarins were selected as quality markers, including osthole (1) in Angelica biserrata and Cnidium monnieri; columbianadin (2) in Angelica biserrata; imperatorin (3) in Angelica dahurica and Angelica dahurica cv. Hangbaizhi; isoimperatorin (4) in Angelica dahurica, Angelica dahurica cv. Hangbaizhi, Notopterygium franchetii, and Notopterygium incisum; nodakenin (5) in Angelica decursiva, Notopterygium franchetii, and Notopterygium incisum; notopterol (8) in Notopterygium franchetii and Notopterygium incisum; and praeruptorin A (9) and praeruptorin B (10) in Peucedanum praeruptorum (see Table 2 and Figure 5) [18].
To date, various biological activities of coumarins have been demonstrated, including antifungal, antimicrobial, antiviral, anti-cancerous, antitumor, anti-inflammatory, anti-filarial, enzyme inhibitory, antiaflatoxigenic, analgesic, antioxidant, and oestrogenic [279,280,281,282]. For example, coumarins are recognized as the main bioactive constituents in Peucedani genus and play critical roles in relieving cough and asthma, strengthening heart function, as well as preventing and treating cardiovascular diseases such as nodakenin, (+)-praeruptorin B, and praeruptorin C [283]; imperatorin oxypeucedanin hydrate, xanthotoxol, bergaptol, 5-methoxy-8-hydroxypsoralen, isoimperatorin, phelloptorin, and pabularinone in Angelica dahurica exhibit moderate DPPH scavenging activity, strong ABTS·+ scavenging activity, and significant inhibition on HepG2 cells, which could be explored as new and potential natural antioxidants and cancer prevention agents [30]; pabulenol and osthol extracts from Angelica genuflexa show anti-platelet and anti-coagulant components [38]; and decursinol angelate in Angelica gigas shows platelet aggregation and blood coagulation activity [38].

7.4. Flavonoids

Flavonoids are a group of the most abundant secondary metabolites in plants [266]. Generally, flavonoids can be further categorized into eight subgroups, including flavones (e.g., apigenin, luteolin, and baicalein), flavonols (e.g., kaempferol, quercetin, and myricetin), flavanones (e.g., naringenin, hesperitin, and liquiritigenin), flavanonols (e.g., dihydrokaempferol, dihydromyricetin, and dihydroquercetin), isoflavones (e.g., daidzein, purerarin, and peterocarpin), aurones, anthocyanidins, and proanthocyanidins [284,285,286]. In recent years, flavonoids have been identified from AMPs, such as 6 flavonoids (e.g., luteolin, isoquercitrin, and rutin) in Ferula [107], 12 flavonoids (e.g., quercetin-3-O-rutinoside, kaempferol-3,7-di-O-rhamnoside, quercetin-3-O-arabinoside) in Bupleurum [287], and 18 flavonoids (e.g., rutin, quercetin, and quercitrin) in Hydrocotyle [135].
To date, various biological activities of flavonoids have been demonstrated, including antioxidant, antiinflammatory, antidiabetic, anticancer, antiobesity, and cardioprotective [284,288]. For example, the apigenin in Apium graveolens shows anticancer properties [21], flavonoids in Pimpinella diversifolia DC., Anthriscus sylvestris, and Sanicula astrantiifolia show antioxidant effects [197,289], and quercetin and its metabolites show vasodilator effects, with selectivity toward the resistance vessels [290].

7.5. Terpenoids

About 25,000 terpenoids have been reported in plants; they are diverse secondary metabolites containing three subgroups, including monoterpenoids, sesquiterpenes, and triterpenoids [291]. To date, terpenoids have been also identified in AMPs, such as 4 terpenoids (e.g., angelicoidenol, pregnenolone, and β-sitosterol) in Pleurospermum [142], 75 terpenoids (e.g., myrcene, farnesene, and xiongterpene) in Ligusticum [141], 109 terpenoids (e.g., nerolidol, guaiol, and ferulactone A) in Ferula [277], and 13 triterpenoids (e.g., ranuncoside, oleanane, and barrigenol) in Hydrocotyle sibthorpioides Lam. [136]. Specifically, saikosaponin triterpenes constitute the main class of secondary metabolites in the genus Bupleurum, with more than 90 saponins (e.g., saikosaponin a, b, and c) isolated [64,292].
Studies have found that terpenoids possess various biological activities, including anti-inflammatory, anti-oxidative, anti-fibrosis, antitumor, anti-Alzheimer’s disease, and anti-depression activities [293,294]. For example, the xiongterpene in Ligusticum chuanxiong shows insecticide effects [151], the asiaticoside in Centella asiatica shows antitumor properties [295], and the saikosaponin d in Bupleurum chinense DC. and Bupleurum scorzonerifolium show the effects of reducing blood glucose, inhibiting inflammation, and reducing insulin resistance [296].

7.6. Other Compounds

Chromones and phthalides also exist in AMPs and show pharmacological properties. Specifically, phthalides (e.g., ligustilide, n-butylidenephthalide, and Z-ligustilide) in Angelica sinensis show the effect of inhibiting vasodilation, decreasing platelet aggregation, as well as exerting analgesic, anti-inflammatory, and anti-proliferative effects [239]; butylphthalide in Ligusticum sinense shows anti-inflammatory and antithrombus effects, dilates blood vessels, and improves brain microcirculation and anti-myocardial ischemia [155].
In terms of chromones, 3 chromones (i.e., 5 thydroxy 2 [(angebyloxy) mehyI] fuan [3, 2′: 6, 7] chrmone, angeliticin A, and noreugenin) in Angelica polymorpha [297], 10 chromones (e.g., cnidimoside A, cnidimol B, and peucenin) in Cnidiummonnieri (L.) Cuss. [93], and 22 chromones (e.g., edebouriellol, hamaudol, and 3′(R)-(+)-hamaudol) in Saposhnikovia divaricate [218] have been identified. Studies have found that two chromones 3′S-(-)-O-acetylhamaudol and (±)-hamaudol in Angelica morii show the effect of inhibiting Ca2+ influx of vascular smooth muscle [298], prim-O-glucosylcimifugin and 5-O-methylvisammioside show antipyretic, analgesic, and anti-inflammatory effects [299], and chromones in Bupleurum multinerve show analgesic effects [300].

8. Effect of Bolting and Flowering (BF) on Yield and Quality

Previous studies have repeatedly emphasized that BF reduces the yield and quality of plants, especially in rhizomatous medicinal plants [11]. Here, a total of 38 rhizomatous plants that have been reported in the 228 AMPs are associated with BF (Table 3). Based on the effect degree of BF on the yield and quality, 38 rhizomatous AMPs belonging to 17 genera can be categorized into 3 classes: (1) BF significantly affects the yield and quality of 14 AMPs (i.e., Angelica acutiloba, Angelica biserrata, Angelica dahurica, Angelica dahurica cv. Hangbaizhi, Angelica decursiva, Angelica polymorpha, Angelica sinensis, Daucus carota, Heracleum hemsleyanum, Heracleum rapula, Libanotis iliensis, Libanotis seseloides, Peucedanum praeruptorum, and Saposhnikovia divaricata), and their rhizomes and/or roots are wholly lignified and cannot be used for clinical application; (2) BF affects the yield of 11 AMPs (i.e., Angelica gigas, Bupleurum chinense, Bupleurum scorzonerifolium, Changium smyrnioides, Chuanminshen violaceum, Glehnia littoralis, Ligusticum chuanxiong, Ligusticum jeholense, Ligusticum sinense, Notopterygium franchetii, and Notopterygium incisum), though their rhizomes or roots can be used as medicine to some extent; (3) BF has no significant effect on the yield and quality of 13 AMPs (i.e., Angelica sylvestris, Cicuta virosa, Ferula ferulaeoides, Ferula fukanensis, Ferula lehmannii, Ferula olivacea, Ferula sinkiangensis, Ferula teterrima, Levisticum officinale, Libanotis buchtormensis, Libanotis lancifolia, Libanotis spodotrichoma, and Pimpinella candolleana), and their rhizomes or roots can be used as medicine (Figure 6).
For example, for class (1) after BF, there was a 8.3- and 16.1-fold reduction of dry weight and quality marker ferulic acid content in Angelica sinensis [301] and a 1.5- and 1.5-fold reduction of dry weight and quality marker isoimperatorin content in Angelica dahurica [302]. For class (2), there was a 1.34-fold reduction of saikosaponinsands, while no significant change of dry weight in Bupleurum chinense was seen [303,304]; and a 2.0- and 1.7-fold reduction of dry weigh and polysaccharide content in Changium smyrnioides [305]. For class (3), there was no reduction of the yield and quality of the 13 AMPs at the harvest stages [19].

9. Approaches to Control BF

Generally, most Apiaceae plants are “low-temperature and long-day” perennial herbs; in other words, the plants must experience vernalization (i.e., an extended period of cool weather at 0 to 10 °C) and long days (>12 h daylight) to induce BF. Examples include Angelica sinensis [325], Daucus carota [326], and Coriandrum sativum [327].
Table 4 shows the approaches to inhibit BF of 24 AMPs. For example, the bolting rate of Angelica sinensis can be significantly decreased by planting the green stem cultivar (Mingui 2) instead of the purple stem cultivar (Mingui 1) [328], selecting smaller seedlings (i.e., root-shoulder diameter <0.55 cm) instead of larger seedlings [329,330], storing the seedlings at freezing temperature (i.e., <0 °C) during the overwinter stage [325], shading the plants under sunshade (i.e., >40%) during growth stage [331], and providing the plants with good growth conditions (e.g., plant intensity, nutrient and water balance) [332]. The bolting rate of Angelica dahurica can be significantly decreased through planting pure breeds [333], selecting immature seeds for seeding [308], increasing potassic fertilizer while decreasing nitrogen and phosphorus fertilizers [334], and planting using standard techniques [335]. The bolting rate of Saposhnikovia divaricata can also be significantly decreased by controlling the sunshade [336], sowing date [337], and planting density [338], and preventing excessive growth [336].
To inhibit the occurrence of BF in AMPs, several measures can be used, including breeding new cultivars, controlling the seedling age and size to delay the transition from vegetative growth to flowering, storing seedlings at freezing temperatures to avoid vernalization, growing the plants under sunshade to avoid long-day photoperiodism, and planting with standard techniques to reduce pests and diseases (Figure 7).

10. The Mechanism of BF Inducing the Rhizome Lignification

Extensive experiments have demonstrated that BF induces the lignification of fleshy rhizomes and enhances the degradation of metabolites [11,13,328]. Studies on anatomical structures reveal that the ratio of secondary phloem to secondary xylem respectively changes from 2:1 to 1:10 and 2/5–1/2 to 1/2–3/4 for the rhizomes of Angelica sinensis and Angelica dahurica before and after BF; meanwhile, the number of secretory cells producing essential oils significantly decreased [368,369]. Studies have found that the Early Bolting In Short Day (EBS) acts as a negative transcriptional regulator, preventing premature flowering of Arabidopsis thaliana, and co-enrichment of a subset of EBS-associated genes with H3K4me3, H3K27me3, and Polycomb repressor complex 2 has been observed [370]; a potential genetic resource for radish late-bolting breeding with introgression of the RsVRN1In-536 insertion allele into the early-bolting genotype could contribute to delayed bolting time of Raphanus sativus [371]; and peroxidases (PRXs) involved in lignin monomer biosynthesis were found to be down-regulated in Peucedanum praeruptorum at the bolting stage [372].
As is known, lignin biosynthesis belongs to the general phenylpropanoid pathway, which starts from phenylalanine and is catalyzed by a series of enzymes [13,373]. Specifically, phenylalanine is catalyzed to form p-Coumaroyl CoA sequentially through the three enzymes phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL). Lignin biosynthesis is synthesized via three sub-pathways, including the following: (1) lignins are catalyzed to from p-Coumaroyl CoA sequentially through the three enzymes cinnamoyl-CoA reductases (CCR), cinnamyl alcohol dehydrogenases (CAD), and laccases (LACs), and then coniferyl aldehyde is catalyzed to from p-Coumaroyl CoA sequentially through the four enzymes hydroxycinnamoyl shikimate/quinate transferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeoyl-CoA 3-O-methyltransferase (CCOMT), and CCR; (2) lignins are catalyzed to from coniferyl aldehyde sequentially through the two enzymes CAD and LAC; (3) lignins are catalyzed to from coniferyl aldehyde sequentially through the three enzymes ferulate 5-hydroxylase (F5H), caffeic acid 3-O-methyltransferase (COMT), and LACs (Figure 8).
Although lignin biosynthesis has been depicted, studies on the mechanism of BF inducing rhizome lignification are still limited. To date, the mechanism of BF affecting Angelica sinensis has been revealed, with the expression level of genes (e.g., PAL1, 4CLs, HCT, CAD1, and LACs) significantly upregulated at the stem-node forming and elongating stage compared with the stem-node pre-differentiation stage, leading to the reduction of accumulation of secondary metabolites (i.e., ferulic acid and flavonoids) [13].

11. Conclusions and Future Aspects

In this review, we summarized the history of AMPs as TCMs, the classification of AMPs species, their traditional use, modern pharmacological use, and phytochemistry; the effect of BF on yield and quality, approaches to control BF, and the mechanisms of BF, inducing rhizome lignification. Although ca. 228 AMPs, 79 traditional uses, 62 modern uses, and 5 main kinds of metabolites have been recorded, the potential properties remain to be exploited. Although BF significantly reduces the yield and quality of AMPs, effective measures to inhibit BF have not been applied in the field, and the mechanisms of BF have not been systemically revealed for most AMPs. Thus, in order to effectively control the BF of AMPs to improve their quality and yield, on the one hand, standard cultivation techniques of AMPs should be applied; on the other hand, new cultivars should be developed by modern biotechnology such as the CRISPR/Cas9 system.

Author Contributions

M.L. (Meiling Li) collected and analyzed the references, drew the chemical structures, and wrote the manuscript; M.L. (Min Li) checked the classification and traditional use of Apiaceae medicinal plants; L.W. checked the language and modern pharmacological use; M.L. (Mengfei Li): conceptualization, methodology, supervision, writing—review and editing; J.W.: conceptualization and project administration. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China (32160083), earmarked funding for CARS (CARS-21), and Gansu Education Science and Technology Innovation Project (2022CXZXS-022).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wei, J.; Gao, Y.Z.; Zhou, J.; Liu, Z.W. Collection and sorting of medicinal plants in Chinese Apiaceae (Umbelliferae). China J. Chin. Mater. Med. 2019, 44, 5329–5335. [Google Scholar]
  2. Yuan, C.Q. Ethnobotanical research on Umbelliferous plants in China. Chin. J. Ethnomed. Ethnoph. 1999, 4, 221–224+248. [Google Scholar]
  3. Zhao, Z.L.; Yan, Y.P. Pharmaceutical Botany, 2nd ed.; Scientific & Technical Publishers: Shanghai, China, 2020. [Google Scholar]
  4. Cai, S.Q. Pharmacognostics; People’s Medical Publishing House: Beijing, China, 2011. [Google Scholar]
  5. Li, B.; Zhang, W.H.; Gong, H.D. Researches on forage plant resources of Umbelliferae in Gansu. J. Mudanjiang Norm. Univ. 2022, 2, 57–61. [Google Scholar]
  6. Liu, Y.; Liu, M.; Liu, M.Y. Resource plants of Apiaceae (Umbelliferae) in China. Terr. Nat. Res. Study 2002, 4, 76–78. [Google Scholar]
  7. Kitashiba, H.; Yokoi, S. Genes for Bolting and Flowering. In The Radish Genome; Nishio, T., Kitashiba, H., Eds.; Springer International Publishing: Cham, Swizerland, 2017; pp. 151–163. [Google Scholar]
  8. Mutasa-Göttgens, E.S.; Qi, A.; Zhang, W.; Schulze-Buxloh, G.; Jennings, A.; Hohmann, U.; Müller, A.E.; Hedden, P. Bolting and flowering control in sugar beet: Relationships and effects of gibberellin, the bolting gene B and vernalization. AoB Plants 2010, 2010, plq012. [Google Scholar] [CrossRef] [PubMed]
  9. Ning, K.; Han, Y.Y.; Chen, Z.J.; Luo, C.; Wang, S.L.; Zhang, W.J.; Li, L.; Zhang, X.L.; Fan, S.X.; Wang, Q. Genome-wide analysis of MADS-box family genes during flower development in lettuce. Plant Cell Environ. 2019, 42, 1868–1881. [Google Scholar] [CrossRef] [PubMed]
  10. Wen, F.Y.; Zhang, B.; Liu, X.H.; Zhao, B.; Song, L.J.; Luo, Z.M. Research on bolting character and its genetic of Chinese cabbage. Acta Agric. Bor. Sin. 2006, 21, 68–71. [Google Scholar]
  11. Zhao, D.Y.; Hao, Q.X.; Kang, L.P.; Zhang, Y.; Chen, M.L.; Wnag, T.L.; Guo, L.P. Advance in studying early bolting of Umbelliferae medicinal plant. China J. Chin. Mater. Med. 2016, 41, 20–23. [Google Scholar]
  12. Lincoln, T.; Eduardo, Z. Plant Physiology, 5th ed.; Sinauer Associates: New York, NY, USA, 2010. [Google Scholar]
  13. Li, M.L.; Cui, X.W.; Jin, L.; Li, M.F.; Wei, J.H. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. Plant Physiol. Biochem. 2022, 170, 171–179. [Google Scholar] [CrossRef]
  14. Shang, Z.J. Collation and Annotation of Sheng Nong’s Herbal Classic; Academy Press: Beijing, China, 2008. [Google Scholar]
  15. Li, S.Z. Compendium of Materia Medica; China Yanshi Publishing House: Beijing, China, 2012. [Google Scholar]
  16. Flora of China. Flora of China; Science Press: Beijing, China, 2002. [Google Scholar]
  17. Wang, G.Q. The Compilation of National Chinese Herbal Medicine; People’s Medical Publishing House: Beijing, China, 2014. [Google Scholar]
  18. Pharmacopoeia of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
  19. Nanjing University of Chinese Medicine. Dictionary of Chinese Medicine; Shanghai Scientific & Technical Publishers: Shanghai, China, 2006. [Google Scholar]
  20. Sun, G.R.; Xu, P.; Chang, K. GC/MS analysis of volatile components from Aegopodiumalpestre Seeds. J. Anhui Agric. Sci. 2009, 37, 18–19. [Google Scholar]
  21. Zhou, H.; Lu, X.Y.; Tian, Y.; Huang, C.J. Advances in studies on chemical constituents and pharmacological activities of Apium L. Amino Acids Biot. Resour. 2006, 28, 6–9. [Google Scholar]
  22. Chahal, K.K.; Kumar, A.; Bhardwaj, U.; Kaur, R. Chemistry and biological activities of Anethum graveolens L. essential oil: A review. J. Pharm. Phytochem. 2017, 6, 295–306. [Google Scholar]
  23. Park, M.A.; Sim, M.J.; Kim, Y.C. Anti-photoaging effects of Angelica acutiloba root ethanol extract in Human dermal fibroblasts. Toxicol. Res. 2017, 33, 125–134. [Google Scholar] [CrossRef] [PubMed]
  24. Yan, Z.K.; Niu, Z.D.; Pan, N.; Xu, G.J.; Yang, X.W. Analysis of exsential oils in roots and fruits of Angelica in Northeast China. China J. Chin. Mater. Med. 1990, 15, 35–37. [Google Scholar]
  25. Sui, C.X. Study on chemical composition of Angelica serrata. Heilongjiang Med. J. 2010, 23, 263. [Google Scholar]
  26. Wu, Z.Y. Essentials of China Meteria Medica (I); Shanghai Scientific & Technical Publishers: Shanghai, China, 1988. [Google Scholar]
  27. Zhou, L.L.; Zeng, J.G. Research advances on chemical constituents and pharmacological effects of Angelica pubescens. Mod. Chin. Med. 2019, 21, 1739–1748. [Google Scholar]
  28. Meng, H.L.; Wen, G.S.; Yang, S.C. Research progress of the medicinal plant Heracleum apaensis. Res. Prac. Chin. Med. 2008, 22, 62–65. [Google Scholar]
  29. Liu, M.; Hu, X.; Wang, X.; Zhang, J.J.; Peng, X.B.; Hu, Z.G.; Liu, Y.F. Constructing a core collection of the medicinal plant Angelica biserrata using genetic and metabolic data. Front. Plant Sci. 2020, 11, 600249. [Google Scholar] [CrossRef]
  30. Bai, Y.; Li, D.H.; Zhou, T.T.; Qin, N.B.; Li, Z.L.; Yu, Z.G.; Hua, H.M. Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J. Funct. Foods 2016, 20, 453–462. [Google Scholar] [CrossRef]
  31. Choi, I.H.; Lim, H.H.; Song, Y.K.; Lee, J.W.; Kim, Y.S.; Ko, I.G.; Kim, K.J.; Shin, M.S.; Kim, K.H.; Kim, C.J. Analgesic and anti-inflammatory effect of the aqueous extract of root of Angelica Dahurica. Orient. Pharm. Exp. Med. 2008, 7, 527–533. [Google Scholar] [CrossRef]
  32. Lechner, D.; Stavri, M.; Oluwatuyi, M.; Pereda-Miranda, R.; Gibbons, S. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry 2004, 65, 331–335. [Google Scholar] [CrossRef] [PubMed]
  33. Saiki, Y.; Morinaga, K.; Okegawa, O.; Sakai, S.; Amaya, Y.; Ueno, A.; Fukushima, S. On the coumarins of the roots of Angelica dahurica Benth. et Hook. Yakugaku Zasshi 1971, 91, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
  34. Wei, W.; Wu, X.W.; Deng, G.G.; Yang, X.W. Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica cv. Hangbaizhi. Phytochemistry 2016, 123, 58–68. [Google Scholar] [CrossRef] [PubMed]
  35. Wei, W.; Yang, X.W.; Zhou, Y.Y. Chemical constituents from n-Butanol soluble parts of roots of Angelica dahurica cv. Hangbaizhi. Mod. Chin. Med. 2017, 19, 630–634. [Google Scholar]
  36. Zhao, D.; Islam, M.N.; Ahn, B.R.; Jung, H.A.; Kim, B.W.; Choi, J.S. In vitro antioxidant and anti-inflammatory activities of Angelica decursiva. J. Ophthalmic Nurs. Technol. 2012, 35, 179–192. [Google Scholar] [CrossRef]
  37. Ahn, M.J.; Lee, M.K.; Kim, Y.C.; Sung, S.H. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharm. Biomed. Anal. 2008, 46, 258–266. [Google Scholar] [CrossRef]
  38. Lee, Y.Y.; Lee, S.; Jin, J.L.; Yun-Choi, H.S. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Arch. Pharm. Res. 2013, 26, 723–726. [Google Scholar] [CrossRef]
  39. Gu, X.Y.; Zhang, H.Q.; Wang, N.H. The chemical constituents of root of Angelica laxifoliata Diels. J. Plant Resour. Environ. 1999, 8, 1–5. [Google Scholar]
  40. Song, P.P.; Xu, Z.R.; Wang, N.H. Studies on the chemical constituents in roots of Angelica tianmuensis and A. megaphylla. J. Chin. Med. Mater. 2010, 33, 1249–1251. [Google Scholar]
  41. Wang, Y. Optimization of extraction technology of ferulic acid from A. megaphylla. J. Jiangxi Univ. TCM 2018, 30, 97–100. [Google Scholar]
  42. Sun, S.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Structural determination of chromone from Angelica morri Hayata. Chin. J. Nat. Med. 2005, 3, 97–100. [Google Scholar]
  43. Sun, S.; Liu, B.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Chemical Study on Angelica morri Hayata. J. China Pharm. Univ. 2002, 33, 181–183. [Google Scholar]
  44. Tang, L.X. Identification of pharmacokinetics of Angelica grosserrata Maximi. Strait Pharm. J. 1999, 11, 48–49. [Google Scholar]
  45. Song, P.P.; Lv, Y.; Xu, Z.L.; Jiang, Q.; Wang, N.H. Chemical Constituents of Angelica nitida roots. J. Chin. Med. Mater. 2014, 37, 55–57. [Google Scholar]
  46. Yang, Y.; Zhang, Y.; Ren, F.X.; Yu, N.J.; Xu, R.; Zhao, Y.M. Chemical constituents from the roots of Angelica polymorpha Maxim. Acta Pharm. Sin. 2013, 48, 718–722. [Google Scholar]
  47. Zhan, Y.H. Chinese Materia Medica Resources in Shennongjia; Hubei Science and Technology Press: Wuhan, China, 1994; p. 418. [Google Scholar]
  48. Kataki, M.S.; Kakoti, B.B. Women’s ginseng (Angelica sinensis): An ethnopharmacological dossie. Curr. Tradit. Med. 2015, 1, 26–40. [Google Scholar] [CrossRef]
  49. Upton, R. American Herbal Pharmacopoeia and Therapeutic Compendium: Dang Gui Root-Angelica Sinensis (Oliv.); American Herbal Pharmacopoeia and Therapeutic Compendium: Scotts Valley, CA, USA, 2003. [Google Scholar]
  50. Zhou, A.L.; Du, F.M. Separation of coumarin components from Angelica omeiensis root. Chin. Trad. Herb. Drugs. 1982, 13, 6–8. [Google Scholar]
  51. Rao, G.X.; Liu, Q.X.; Dai, Z.J.; Yang, Q.; Dai, W.S. Textual research and discussing mlodern variety of Peucedanum praeruptorum Dunn, Chinese herb. J. Yunnan Coll. Tradit. Chin. Med. 1995, 18, 1–6+11. [Google Scholar]
  52. Tan, H.; Ma, C.Y.; Geng, Y. Advancement in studies of chemical constituents and pharmacological activities of Anthriscus sylvestris. Chin. Arch. Tradit. Chin. Med. 2017, 35, 1194–1196. [Google Scholar]
  53. Liu, Y.S. The research and function of Oenanthe javanice. J. Sichuan TCM 2004, 22, 25–26. [Google Scholar]
  54. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Frau, M.A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: Chemical composition and antifungal activity. Nat. Prod. Res. 2012, 27, 1521–1527. [Google Scholar] [CrossRef]
  55. Zhang, H.Q.; Yuan, C.Q.; Wang, N.H. The chemical constituents of the root of Archangelica brevicaulis (Rupr.) Rchb. J. Plant Resour. Environ. 1999, 8, 22–25. [Google Scholar]
  56. Pan, S.L.; Shun, Q.S.; Bai, Q.M. The Coloured Atlas of the Medicinal from Genus Bupleurum in China; Shanghai Scientific and Technological Literature Press: Shanghai, China, 2002. [Google Scholar]
  57. Yang, Z.Y.; Liu, S.F.; Chao, Z.; Pan, S.L. The content of saikosaponin a, c and d in four species of Bupleurum in Xinjiang by HPLC. China J. Chin. Mater. Med. 2008, 33, 460–461. [Google Scholar]
  58. Wei, X.M.; Yan, H.; Lu, Y.Y.; Ma, S.Y.; Cheng, X.L.; Wei, F. HPLC simultaneous determination of 6 main saponins in Bupleurum bicaule Helm. J. Pharm. Anal. 2018, 38, 618–622. [Google Scholar]
  59. Zhu, Z.J.; Pan, R.L.; Si, J.Y.; Fu, Y.; Huang, Q.Q. Study on the chemical constituents of Bupleurum bicaule Helm. Nat. Prod. Res. Dev. 2008, 20, 833–835. [Google Scholar]
  60. Jin, H.F.; Jiang, Y.; Luo, S.Q. Studies on the chemical constituents of roots of Bupleurum longicaule Wall. ex DC. var. francheti de Boiss and B. chaishoui Shan et Sheh. China J. Chin. Mater. Med. 1996, 21, 739–741+762. [Google Scholar]
  61. Zhu, Z.B.; Liang, Z.S.; Han, R.L.; Dong, J.E. Growth and saikosaponin production of the medicinal herb Bupleurum chinense DC. under different levels of nitrogen and phosphorus. Ind. Crops. Prod. 2009, 29, 96–101. [Google Scholar] [CrossRef]
  62. Zhu, Z.B.; Liang, Z.S.; Han, R.L.; Wang, X. Impact of fertilization on drought response in the medicinal herb Bupleurum chinense DC.: Growth and saikosaponin production. Ind. Crops. Prod. 2009, 29, 629–633. [Google Scholar] [CrossRef]
  63. Huang, H.Q.; Wang, X.H.; Fu, H.; Wang, Y.; Yang, S.H. Research progress on medicinal plant resources of Bupleurum L. Chin. Tradit. Herb. Drugs 2017, 48, 2989–2996. [Google Scholar]
  64. Ou, X.L.; Huang, T.Y. Research progress on chemical constituents of Bupleurum. J. Chin. Med. Mater. 2021, 44, 749–755. [Google Scholar]
  65. Li, G.H.; Luo, Y.Y.; Wang, Y.; Yuan, C.Q.; Wang, N.H. Analysis of saikosaponins in medicinal Bupleurum spp. J. Plant Resour. Environ. 1996, 5, 59–60. [Google Scholar]
  66. Shih, Y.C.; Lee, L.T.; Hu, N.Y.; Tong, T.S. Method for Treating or Relieving Inflammatory Bowel Disease. U.S. Patent 2013022694-A1, 24 January 2013. [Google Scholar]
  67. Liu, Z.B.; SUn, Y.S.; Wang, J.H.; Li, S.H.; Huang, H.M. HPLC detemnation of saikosaponins a, c, and d in different parts of Bupleurum falcatum. Chin. J. Pham. Anal. 2011, 31, 225–227. [Google Scholar]
  68. Ma, X.C.; Chen, S.P.; Wang, J.H.; Li, J.Y.; Xie, Y.L. Planting density oa affects dry material accumulation and saikosaponin contents of Bupleurum falcatum L. J. Shandong Agric. Univ. (Nat. Sci.). 2011, 42, 65–69. [Google Scholar]
  69. Feng, S.J. Brief Report on Chemical Constituents of Bupleurum chinensis. Chin. Tradit. Herb. Drugs 1981, 12, 30. [Google Scholar]
  70. Zhang, G.X.; Wang, H.; Yin, X.; Kong, W.J.; Wang, Q.L.; Chen, Y.; Wei, J.H.; Liu, J.X.; Guo, X.W. Characterization of the complete chloroplast genome of Bupleurum hamiltonii N. P. Balakr. (Apiaceae) and its phylogenetic implications. Mitochondrial DNA B 2021, 6, 447–449. [Google Scholar] [CrossRef] [PubMed]
  71. Liu, L.J.; Tian, Z.K.; Wang, X.K. Study on volatile oil composition of Bupleurum komarovianum Lincz. Chin. Pharm. J. 1993, 28, 239. [Google Scholar]
  72. Tian, Z.K.; Ma, Y.L.; Liu, L.J.; An, F.T.; Wang, X.K.; Wang, L. Studies on the saponin components of Bupleurum Komarovianum Lincz. J. Shenyang Coll. Pharm. 1993, 10, 82–84+93. [Google Scholar]
  73. Shi, B.; Liu, W.; Wei, S.P.; Wu, W.J. Chemical composition, antibacterial and antioxidant activity of the essential oil of Bupleurum longiradiatum. Nat. Prod. Commun. 2010, 5, 1139–1142. [Google Scholar] [CrossRef] [PubMed]
  74. Yan, J.; Wei, Y.F.; Gu, R.; Kang, M. Content determination of saikosaponin a, c, d in overground and underground part of 4 species of Bupleurum Radix from Sichuan by HPLC. Chin. J. Exp. Tradit. Med. For. 2014, 20, 73–76. [Google Scholar]
  75. Yan, J.; Wei, Y.F.; Zhou, Y.L.; Long, F.; Kang, L.; Chen, W.; Xu, Y. Study on HPLC characteristic map of the overground part of Bupleurum from Sichuan. J. Chin. Med. Mater. 2019, 42, 773–777. [Google Scholar]
  76. Yan, J.; Yan, Y.M.; Wei, Y.F.; Wu, W.J. Chemical constituents of acrial part of Bupleunum malconense. Chin. Tradit. Herb. Drugs 2017, 48, 1282–1285. [Google Scholar]
  77. Aoyagi, H.; Kobayashi, Y.; Yamada, K.; Yokoyama, M.; Kusakari, K.; Tanaka, H. Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl. Microbiol. Biotechnol. 2001, 57, 482–488. [Google Scholar] [PubMed]
  78. Ma, Y.; Liu, K.K.; Pu, X.; Cui, Z.J.; Wang, Z.H.; Zhao, W.L.; Guo, Y.X.; Jin, L. Investigation on the Resources of Bupleurum in Central Gansu. Mod. Chin. Med. 2022, 24, 2119–2125. [Google Scholar]
  79. Guo, S.Q.; Chi, X.X.; Bai, Y.J.; Wang, H.G. Determination of saikosaponin d in Bupleurum Sibircum Vest by HPLC. Chin. J. Ethnomed. Ethnoph. 2020, 29, 44–47. [Google Scholar]
  80. Song, Z.Z.; Jia, Z.J. Studies on the Chemical Components of Bupleurum Sibiricum Vest (I). J. Lanzhou Univ. (Nat. Sci.) 1992, 28, 99–103. [Google Scholar]
  81. Liu, L.Z.; Ji, X.J.; Xu, L.X.; Zhang, Y.; Zhang, F.J.; Li, D.C.; Ya, B.Q. Quality standards of Bupleuri Smithii Radix. Chin. J. Exp. Tradit. Med. For. 2014, 20, 105–109. [Google Scholar]
  82. Zhang, T.T.; Gao, S.; He, J.H. Research progress on chemical composition and pharmacological action of Bupleurum smithii Wolff. J. Chin. Med. Mater. 2013, 36, 1542–1545. [Google Scholar]
  83. Li, Y.L.; Han, Q.; Lv, J.X.; Wang, J.X.; Zhao, Y.Y. Study on chemical constituents of the essential oil of Bupleurum yinchowense. Chin. Tradit. Herb. Drugs. 1997, 28, 650–651. [Google Scholar]
  84. Liu, X.L.; Shang, Z.J. Reopening discussion on original plants of “Yinzhouchaihu”. J. Chin. Med. Mater. 1994, 17, 40–42+56. [Google Scholar]
  85. Pang, M.; Cui, X.M. Extraction of Carum carvi L. essential oil by supercritical carbon dioxide and its composition analysis. Food Mach. 2022, 38, 175–179+194. [Google Scholar]
  86. Shen, N.D.; Wei, M.Q.; Li, N. Progress of Carum carvi L.’s economic value and researching on it’s development and utilization. J. Qinghai Norm. Univ. (Nat. Sci.) 2010, 1, 54–56. [Google Scholar]
  87. Xiang, J.M.; Xiao, W.; Xu, L.J.; Xiao, P.G. Research progress in Centella asiatica. Mod. Chin. Med. 2016, 18, 233–238+258. [Google Scholar]
  88. Ji, X.; Xuan, H.B.; Huang, B.K. Overview of studies on active constituents and pharmacological actions of Changium smyrnioides. J. Pharm. Pract. 2015, 33, 102–105+137. [Google Scholar]
  89. Chen, D.D.; Peng, C. Research progress of Chuanmingshen violaceum. China Pharm. 2011, 20, 1–2. [Google Scholar]
  90. Chen, H.L.; Su, X.L.; Deng, Y.; Yu, T.; Zhang, H.B.; Zhang, M. Chemical constituents from the bioactive extract of Chuanminshen violaceum. Chin. Tradit. Pat. Med. 2008, 30, 1334–1336. [Google Scholar]
  91. Fan, J.; Feng, H.B.; Yu, Y.; Sun, M.X.; Liu, Y.R.; Li, T.Z.; Sun, X.; Liu, S.J.; Sun, M.D. Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohydr. Polym. 2017, 157, 629–636. [Google Scholar] [CrossRef] [PubMed]
  92. Wang, H.M.; Feng, J. Study on chemical components of volatile oil of Cicuta virosa L. root. J. Tianjin Med. Univ. 2000, 6, 376–377. [Google Scholar]
  93. Tian, B.; Qu, X.L.; Lin, Y.P.; Yuan, Q.H.; Song, Y. Research progress on chemical constituents and pharmacological effects of Cnidium monnieri (L.) Cuss. Pharm. Clin. Chin. Mater. Med. 2020, 11, 70–73+80. [Google Scholar]
  94. Wang, Y.P.; Wang, Y.H.; Zhan, Z.L.; Li, G. Herbal textual research on Ligustici Rhizoma et Radix in famous classical formulas. Chin. J. Exp. Tradit. Med. For. 2022, 28, 68–81. [Google Scholar]
  95. Xue, Y.C.; Wang, N.H.; Zhang, H.Q. Studies on the chemical constituents of the root of Conioselinum vaginatum (Spreng.) Thell. J. China Pharm. Univ. 1996, 27, 267–270. [Google Scholar]
  96. Ran, X.D. Chinese Medicine; Harbin Publishing House: Harbin, China, 1993; p. 1226. [Google Scholar]
  97. Vetter, J. Poison hemlock (Conium maculatum L.). Food Chem. Toxicol. 2004, 42, 1373–1382. [Google Scholar] [CrossRef]
  98. Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef]
  99. Li, S.H.; Niu, Y.Y. Study on chemical constituents in Cryptotaenia japonica. Chin. Tradit. Herb. Drugs 2012, 43, 2365–2368. [Google Scholar]
  100. Lu, J.; Zhang, J.Q.; Zhao, P.R.; Liu, T.; Wen, Y.; Li, Z.H. Study on chemical compositions, antioxidant activity and antibacterial activity of essential oil from Cryptotaenia japonica. Non. For. Res. 2017, 35, 100–104. [Google Scholar]
  101. Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
  102. Zhong, W.J.; Cao, L.; Zhong, W.H.; Liang, J.; Zhong, G.Y. Analysis of varieties and standards of Umbelliferae medicinal plants used in Tibetan medicine. World Sci. Tech./Mod. Tradit. Chin. Med. Mat. Med. 2016, 18, 582–589. [Google Scholar]
  103. Cui, C.Y.; Xiao, L.; Yang, Y.T.; Li, Q. Research progress in chemical constituents and pharmacological activities of Carotae fructus. Liaoning Chem. Ind. 2020, 49, 651–654. [Google Scholar]
  104. Wu, Y.; Xu, Z.L.; Li, H.; Meng, X.Y.; Bao, Y.L.; Li, Y.X. Components of essential oils in different parts of Daucus carota L. var. sativa Hoffm. Chem. Res. Chin. Univ. 2006, 22, 328–334. [Google Scholar] [CrossRef]
  105. Guan, L.L.; Pang, Y.X.; Zhang, Y.B.; Yu, F.L.; Zhang, X.R.; Chen, Z.X. Research progress on Eryngium foetidum L.—A Chinese minority medicine. Chin. J. Trop. Agric. 2013, 33, 23–26. [Google Scholar]
  106. Sun, T.Z.; Jia, Y.M.; Bao, Z.Y. Recent clinical application and development suggestions of Ferula breals kuan. China Int. TCM Expo. TCM Acad. Exch. Conf. 2003, 2, 59–60. [Google Scholar]
  107. Yang, X.W. Bioactive Material Basis of Medicinal Plants in Genus Ferula. Mod. Chin. Med. 2018, 20, 123–144. [Google Scholar]
  108. Xinjiang Institute Biological Soil Desert Research. Medicinal Flora of Xinjiang; Place Xinjiang People’s Publishing House: Urumchi, China, 1977; pp. 116–117. [Google Scholar]
  109. Yang, M.H.; Tang, D.P.; Sheng, P. Research progress of Ferula ferulaeoides. Chin. J. Mod. Appl. Pharm. 2020, 37, 2031–2041. [Google Scholar]
  110. Aybek, R.; NIlufar, M.; Keyser, S. Determination of volatile oil and ferulic acid in different parts of wild Ferula sinkiangensis K. M. Shen and Ferula fukanensis K. M. Shen Cultivars. Med. Plant 2018, 9, 36–38. [Google Scholar]
  111. Li, J.; Xu, H.Y.; Jia, X.G.; Tian, S.G. Research progress on chemical constituents and biological activities of Ferula L. J. Xinjiang Med. Univ. 2012, 35, 1159–1161. [Google Scholar]
  112. Zhang, Y.L.; Kai, S.; Su, L.M.; Wang, G.P. Advances in studies of Ferula fukanensis. J. Xinjiang Univ. (Nat. Sci. Ed.). 2007, 24, 156–159. [Google Scholar]
  113. Li, X.Y.; Li, G.Y.; Wang, H.Y.; Wang, Y.; Wang, J.H. Chemical constituents from FerulaLehmannii Boiss. Mod. Chin. Med. 2010, 12, 17–20. [Google Scholar]
  114. Huang, Y.T.; Yue, L.J.; Shen, X.Y.; Wang, K.; Liu, C.L. Chemical constituents and pharmacological activities of Ferula sinkiangensis K.M. Shen: Research advances. J. Int. Pharm. Res. 2017, 44, 495–499. [Google Scholar]
  115. Lai, X.H.; Yang, X.R. Research progress on endangered medicinal plants Ferula sinkiangensis. Mod. Agric. Sci. Technol. 2022, 11, 43–47+51. [Google Scholar]
  116. Yang, J.R.; Li, G.Q.; Li, Z.H.; Qin, H.L. Chemical constituents from Ferula teterrima. Nat. Prod. Res. Dev. 2006, 18, 246–248. [Google Scholar]
  117. Su, H.H.; Zhan, L.L.; Ma, J.S. Extraction, component analysis of volatile oil from Foeniculi Fructus and its application in animal husbandry. Heilongjlang Anim. Sci. Vet. Med. 2022, 15, 37–40+46. [Google Scholar]
  118. Pavela, R.; Žabka, M.; Bednář, J.; Tříska, J.; Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod. 2016, 83, 275–282. [Google Scholar] [CrossRef]
  119. Ren, B.W.; Cai, X.T.; Li, D.L. Research progress on chemical constituents and pharmacological effects of Glehnia littoralis. Light Text. Ind. Fujian Light Text Ind. Fujian 2022, 8, 9–17. [Google Scholar]
  120. Gao, B.X.; Lan, Z.Q.; Deng, J.J.; Wu, T.T.; Man, X.K.; Lu, X.M. HPLC fingerprint of Heracleum candicans roots. Chin. J. Exp. Tradit. Med. For. 2015, 21, 61–63. [Google Scholar]
  121. Du, X.; Wang, Y.P.; Qian, Z.X.; Yang, H.J.; Liu, H.H.; Zhan, Z.L. Herbal textual research on Angelicae Pubescentis Radix and Notopterygii Rhizoma et Radix in famous classical formulas. Chin. J. Exp. Tradit. Med. For. 2023, 9, 68–83. [Google Scholar]
  122. Zhao, Y.; He, X.J.; Zhang, Q.Y.; Ma, Y.H.; Miao, A.Q. Anatomical studies on medicinal part of Heracleum. J. China West Norm. Univ. (Nat. Sci.). 2004, 25, 63–67. [Google Scholar]
  123. Ma, X.; Song, P.S.; Zhu, J.R.; Zhao, J.B.; Zhang, B.C. Analysis of volatile oil from Radix Angelicae Pubescentis and Radix Heraclei in Gansu by GC-MS. Chin. J. Mod. Appl. Pharm. 2005, 22, 44–46. [Google Scholar]
  124. Zhang, C.Y.; Zhang, B.G.; Yang, X.W. GC-MS analysis of essential oil from the radix of Heracleum hemsleyanum Diels. Res. Inf. Tradit. Chin. Med. 2005, 7, 9–12. [Google Scholar]
  125. Sun, H.D. The study of the Chinese drugs of Umbelliferae V The chemical components of Heracleumt henryi Woff. Acta Bot. Yunnancia 1982, 3, 279–281. [Google Scholar]
  126. Feng, J.T.; Zhu, M.J.; Yu, P.R.; Li, Y.P.; Han, J.H.; Hao, H.J.; Ding, H.X.; Zhang, X. Screening on the resouses of botanical fungicides in Northwest China. J. Northwest A&F Univ. (Nat. Sci. Ed.). 2002, 30, 129–133+137. [Google Scholar]
  127. Zhang, Z.X.; Feng, J.T.; Zhang, X. GC-MS analysis of volatile oils from Heracleam moelendorffii. Appl. Chem. Ind. 2006, 35, 809–810+813. [Google Scholar]
  128. IMM; PUMCH; College, I.o.M.M.C.A.o.M.S.P.U.M. Chinese Traditional Medicine; People’s Medical Publishing House: Beijing, China, 1982. [Google Scholar]
  129. Chinese Materia Madica. Chinese Materia Madica; Shanghai Scientific & Technical Publishers: Shanghai, China, 1999.
  130. Sun, H.D.; Lin, Z.W.; Niu, F.D. The study of the Chinese drugs of Umbelliferae I, Study on chemical composition of Angelrca apaensis Shan, Heracleum rapula, and Heracleum scabriduum. Acta Bot. Sin. 1978, 20, 244–254. [Google Scholar]
  131. Wei, C.C.; Guan, W.J.; Hu, D.D.; Zhou, J.; Li, X. Chemical constituents from Heracleum scabridum. J. Chin. Med. Mater. 2017, 40, 1105–1108. [Google Scholar]
  132. Lin, Z.W.; Gao, L.; Rao, G.X.; Pu, F.D.; Sun, H.D. Coumarins of Heracleum stenopterum. Acta Bot. Yunnancia 1993, 15, 315–316. [Google Scholar]
  133. Rao, G.X.; Wu, Y.; Dai, W.S.; Pu, F.D.; Lin, Z.W.; Sun, H.D. Coumarins of Heracleum yunngningense Hand.-Mass. China J. Chin. Mater. Med. 1993, 18, 736–737+763. [Google Scholar]
  134. Dong, G.T.; Song, L.K.; Tang, H.; Wang, Y.; Wang, X.N. Determination of asiaticoside and madecassoside in Hydrocotyle. Chin. Wild Plant Res. 2012, 31, 47–50. [Google Scholar]
  135. Xiong, J.; She, J.M.; Liu, H.W.; Cao, L.Q.; Xiao, Y. Advances of chemical constituents and pharmacological effects of Hydrocotyle genus. Asia-Pac. Tradit. Med. 2019, 15, 179–183. [Google Scholar]
  136. Xu, Y.F.; Chen, Y.H.; Yang, S.P. Review of chemical constituents and pharmacological effects of Hydrocotyle genus. Fujian Sci. Tech. Trop. Crops 2013, 38, 59–61. [Google Scholar]
  137. Central Information Station of Chinese Herbal Medicine of State Medicine Administration. Handbook of Effective Components of Plant Medicine; People’s Medical Publishing House: Beijing, China, 1986.
  138. Kang, W.Y.; Zhao, C.; Mu, S.Z.; Yang, X.S.; Hao, X.S. Chemical composition analysis of volatile oil of Hydrocotyle sibthorpioides Lam. Chin. Tradit. Herb. Drugs 2003, 34, 116–117. [Google Scholar]
  139. He, X.P.; Wang, X.Y. Research progress of Tibetan materia medica Pleurospermum hookerivar. Asia-Pac. Tradit. Med. 2018, 14, 22–24. [Google Scholar]
  140. Yuan, M.; Li, Y.Z.; Xu, M.; Zhao, X.H. Pharmacodynamic study on anti-inflammatory and analgesic effects of Tibetan medicine Pleurospermum hookeri var. thomsonii. Nat. Prod. Res. Dev. 2012, 24, 972–975. [Google Scholar]
  141. Zhao, L.Q. Research advancementon terpenoids in Ligusticum and their biological activity. Lishizhen Med. Mater. Med. Res. 2006, 17, 16–18. [Google Scholar]
  142. Li, T.; Wang, T.Z.; Wu, W.B. Plants of the Pleurospermum with potential medicinal value. J. Chin. Med. Mater. 2002, 25, 12–13. [Google Scholar]
  143. Liu, Y.; Wei, H.Y.; Yao, S.H.; Zheng, X.Z. Comparison of pharmacological effects of traditional Chinese medicine Qianhu expectorant. Hunan Guiding J. TCMP 1997, 3, 40–42. [Google Scholar]
  144. Wang, H.H.; Hu, S.F. Research in Levisticum officinale Koch. China Med. Her. 2011, 8, 11–12. [Google Scholar]
  145. Ge, X.X.; Rao, C.; Bian, M.; Cao, L. Analysis of essential oil from the roots of Libanotis buchtormensis and antibacterial activity test. J. Nanjing Norm. Univ. (Eng. Technol. Ed.). 2015, 15, 67–72. [Google Scholar]
  146. Tang, X.S.; Yang, D.M.; Zhu, K.X. Analysis of essential oil from Libanotis laticalycina Shan et Sheh. by CC-MS. China J. Chin. Mater. Med. 1992, 17, 40–42+48. [Google Scholar]
  147. Wang, J.H.; Lou, Z.C. Plant origin of commercial drug Saposhnikovia divaricata. J. Tradit. Chin. Med. Bull. 1988, 13, 9–10+62. [Google Scholar]
  148. Huang, Y.Z.; Pu, F.D. Study on the chemical components of the essential oil from Ligusticum brachylobum Franch. China J. Chin. Mater. Med. 1990, 15, 38–39+63. [Google Scholar]
  149. Yunnan Institute of Materia Medica. Illustrated Handbook for Natural Medicine in Yunnan (IV); Yunnan Science and Technology Press: Kunming, China, 2007; p. 93. [Google Scholar]
  150. Li, X.F.; Qiu, B. Studies on pharmacognosy of radix Ligusticum Brachylobum Franch. J. Guangzhou Univ. TCM 2020, 37, 1151–1154. [Google Scholar]
  151. Zhang, X.J.; Zhang, Y.L.; Zuo, D.D. Research progress on chemical constituents and pharmacological effects of Ligusticum chuanxiong Hort. Inf. Tradit. Chin. Med. 2020, 37, 128–133. [Google Scholar]
  152. Lu, X.Y.; Sun, Q.S.; Zhang, M.N.; Zhao, J.Z. Isolation and identification of chemical constituents from rhizome and root of Ligusticumn jeholense Nakaiet Kitag. J. Shenyang Pharm. Univ. 2010, 27, 434–435+439. [Google Scholar]
  153. Zhang, M.F.; Shen, Y.Q. Study on pharmacology and meridians of Ligusticum. Shanghai Pharma. 2006, 27, 415–418. [Google Scholar]
  154. Rao, G.X.; Dai, Y.H.; Wang, L.X.; Cai, F.; Lin, Z.W.; Sun, H.D. Chemical constituents from Ligusticum pteridophyllum. Acta Bot. Yunnanica 1991, 13, 233–236. [Google Scholar]
  155. Tang, Z. Studies on chemical constituents and pharmacology of Ligusticum sinense Oliv. Guide China Med. 2011, 9, 34–35. [Google Scholar]
  156. Wang, W.N.; Sun, Q.S.; Liang, J.; Zhang, Z.C. A pharmacognostic study of Ligusticum tenuissimum (nakai) Kitag. J. Shenyang Coll. Pharm. 1991, 8, 182–187. [Google Scholar]
  157. Tang, G.L.; Huang, F.; Gao, T.Y.; Wu, Q.M.; Yu, W.; Qiu, H.; Jiang, G.H. Simultaneous determination of five components in Notopterygium franchetii H. de Boiss. by HPLC. Pharm. Clin. Chin. Mater. Med. 2018, 9, 14–17. [Google Scholar]
  158. Zhang, L.L. Pharmacological effects and application of traditional Chinese medicine Notopterygium. China Contin. Med. Educ. 2015, 7, 191–192. [Google Scholar]
  159. Ye, H.G.; Li, C.Y.; Ye, W.C.; Zeng, F.Y.; Liu, F.F.; Liu, Y.Y.; Wang, F.G.; Ye, Y.S.; Fu, L.; Li, J.R. Common Chinese Materia Medica, Medicinal Angiosperms of Umbelliferae. In Common Chinese Materia Medica: Volume 6; Ye, H.G., Li, C.Y., Ye, W.C., Zeng, F.Y., Eds.; Springer Nature: Singapore, 2022; pp. 199–296. [Google Scholar]
  160. Guo, X.Q.; Wei, L.H.; Dai, T.T.; Wu, Q. The detection of the chemical components in Oenanthe javanica and its hypoglycemic activity. Food Mach. 2017, 33, 155–157+173. [Google Scholar]
  161. Li, Y.T.; Zhu, C.H.; Sun, F.F.; Wei, X. Modern research progress of Ostericum citriodorum. Guangdong Chem. Ind. 2020, 47, 97–100. [Google Scholar]
  162. Tian, W.Y.; Lan, F.; Li, S.P.; Luo, J.Y. Preliminary pharmacological study of Angelicae citriodora Hance. Chin. Pharmacol. Bull. 1989, 5, 249. [Google Scholar]
  163. Zhang, J.; Li, R.M.; Wei, G. Study on chemical constituents of volatile oil of Ostericum citriodorum. Chin. Tradit. Herb. Drugs 2009, 40, 1221–1222. [Google Scholar]
  164. Xue, Y.C.; Xian, Q.M.; Zhang, H.Q. Chemical constituents of the essential oil from the root of Ostericum grosseserratum (Maxim.) Kitag. J. Plant Resour. Environ. 1995, 4, 61–63. [Google Scholar]
  165. Xue, Y.C.; Zhang, H.Q.; Wang, N.H.; Yuan, C.Q. Studies on chemical constituents of the roots of Ostericum grosseserratum (Maxim.) Kitag. China J. Chin. Mater. Med. 1992, 17, 354–356+383. [Google Scholar]
  166. Ebadollahi, A. Plant essential oils from Apiaceae family as alternatives to conventional insecticides. Ecol. Balk. 2013, 5, 149–172. [Google Scholar]
  167. Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry 2021, 187, 112714. [Google Scholar] [CrossRef]
  168. Wang, Y.H.; Zhao, J.C.; Weng, Q.Q.; Jin, Y.; Zhang, W.; Peng, H.S. Textual research on classical prescriptions of Saposhnikoviae Radix. Mod. Chin. Med. 2020, 22, 1331–1339. [Google Scholar]
  169. Ji, L.; Pan, J.G.; Yang, J.; Xiao, Y.Q. GC-MS analysis of essential oils from the roots of Saposhnikovia divaricata (Turcz.) Schischk, Libanotis laticalycina Shan et Sheh, Seseli yunnanense Franch. and Peucedanum dielsianum Fedde ex Wolff. China J. Chin. Mater. Med. 1999, 24, 678–680+702. [Google Scholar]
  170. Yan, Y.N.; Ding, S.F.; Guo, Y.W.; Tian, H.K.; Zuo, M.J. Study on customary medication in windbreak area I-Pharmacokinetics and chemical constituents of Saposhnikovia divaricata. Northwest Pharm. J. 1988, 3, 31–34. [Google Scholar]
  171. Kong, L.Y.; Pei, Y.H.; Yu, R.M.; Li, X.; Zhu, Y.R. Overview of the chemical and pharmacological research of the Chinese medicine Peucedanum pareruptorum and P. Decursivum. World Notes Plant Med. 1991, 6, 243–254. [Google Scholar]
  172. Li, W.; Feng, S.H.; Hu, F.D.; Chen, E.L. Goumarins from Peucedanum harry-smithiivar subglabrum. China J. Chin. Mater. Med. 2009, 34, 1231–1234. [Google Scholar]
  173. Shi, Y.R.; Kong, L.Y. Exploration of thinking and method in study of active components of Chinese medicine by taking radix Peucedani for example. Mod. Tradit. Chin. Med. Mater. Mater.-World Sci. Technol. 2005, 7, 38–46+137. [Google Scholar]
  174. Song, P.S.; Ding, Y.H.; Zhang, B.C.; Yang, J.; Jing, F.L.; Cheng, J.S.; Wang, A.P.; Song, L.; Lin, F. Investigation and identification of Peucedanum praeruptorum in Gansu. J. Chin. Med. Mater. 1994, 17, 13–14+55. [Google Scholar]
  175. Li, L.H.; Zhang, H.B.; Yang, C.Z.; Cai, D.L. Analysis of volatile oils from different parts of Peucedanum japonicum by GC-MS. Subtrop. Plant Sci. 2015, 44, 279–283. [Google Scholar]
  176. Xu, X.; Li, H.F. Analysis of medicinal value of Peucedanum japonicum. Asia-Pac. Tradit. Med. 2016, 12, 45–47. [Google Scholar]
  177. Barot, K.P.; Jain, S.V.; Kremer, L.; Singh, S.; Ghate, M.D. Recent advances and therapeutic journey of coumarins: Current status and perspectives. Med. Chem. Res. 2015, 24, 2771–2798. [Google Scholar] [CrossRef]
  178. Lei, H.P.; Zou, S.Y.; Zhang, H.; Ge, F.H. Composition analysis of volatile oil from three kinds of Peucedanum. J. Chin. Med. Mater. 2016, 39, 795–798. [Google Scholar]
  179. Huang, P.; Zheng, X.Z.; Lai, M.X.; Rao, W.Y.; Nishi, M.; Nakanishi, T. Studies on chemical constituents of Peucedanum medium Dunn var. garcile Dunn ex Shan at Sheh. China J. Chin. Mater. Med. 2000, 25, 222–224. [Google Scholar]
  180. Song, Z.Q.; Li, B.; Tian, K.Y.; Hong, L.; Wu, W.; Zhang, H.Y. Research progress on chemical constituents and pharmacological activities of Peucedanum praeruptorum Dunn. Chin. Tradit. Herb. Drugs 2021, 3, 1–16. [Google Scholar]
  181. Dai, W.S.; Rao, G.X.; Liu, Q.X.; Yang, Q.; Dai, Y.H.; Sun, H.D. Chemical constituents of Peucedanum rubricaule. J. Yunnan Coll. Tradit. Chin. Med. 1995, 18, 1–4. [Google Scholar]
  182. Rao, G.X.; Huang, H.; Sun, H.D. Terpenoids from Peucedanum rubricaule. Nat. Prod. Res. Dev. 2006, 18, 69–70. [Google Scholar]
  183. Rao, G.X.; Sun, H.D.; Lin, Z.W.; Hu, R.Y. Studies on the chemical constituents of the traditional Chinese medicine “yun qian-hu” (Peucedanum Rubricaule Shan et Shch. Acta Pharm. Sin. 1990, 26, 30–36. [Google Scholar]
  184. Yu, Z.P.; Li, J.J.; Rao, G.X.; Yu, Z.R. Brief pharmacological studied on Peucedanum Praerptorum Dunn habitually used in Southwest Arep. J. Yunnan Coll. Tradit. Chin. Med. 1995, 18, 7–11. [Google Scholar]
  185. Rao, G.X.; Liu, Q.X.; Dai, W.S.; Sun, H.D. Chemical constituents of Peucedanum turgeniifolium. Nat. Prod. Res. Dev. 1997, 9, 9–11. [Google Scholar]
  186. Wu, X.L.; Kong, L.Y.; Min, Z.D. The chemical constituents of Peucedanum wawrii (Wolff) Su root. J. Plant Resour. Environ. 2000, 9, 6–8. [Google Scholar]
  187. Abuaini, T.; Wang, Y.; Aili, S. Study on quality standards of Pimpinella anisum L. fruits. J. Med. Pharm. Chin. Minor. 2013, 8, 51–52. [Google Scholar]
  188. Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
  189. Chinese Materia Madica-Uyghur Traditional Medicine. Chinese Materia Madica, Uyghur Traditional Medicine; Scientific & Technical Publishers: Shanghai, China, 2005; pp. 301–302.
  190. Editorial Board of Chinese Medical Encyclopedia. Chinese Medical Encyclopedia, Uyghur Traditional Medicine; Scientific & Technical Publishers: Shanghai, China, 2005. [Google Scholar]
  191. Gu, Y.S.; Gu, Y.F. The Science of Common Medicinal Materials in Uygur Medicine (Rudin); Xinjiang Science and Technology Health Publishing House: Urumchi, China, 1993; pp. 60–61. [Google Scholar]
  192. Sun, W.J.; Sheng, J.F. Concise Handbook of Natural Active Ingredients; China Medical Science Press: Beijing China, 1996. [Google Scholar]
  193. Wei, Y.; Zhang, X.; Wei, L.; Yang, X.S. Analysis of volatile oil in herb of Pimpinella candolleana. J. Guiyang Univ. Chin. Med. 2005, 27, 56–57. [Google Scholar]
  194. Zhao, C.; Chen, H.G.; Cheng, L.; Zhou, X.; Yang, Z.B.; Zhang, Y.S. Analysis of volatile oil in herb of Pimpinella candolleana by SPME-GC-MS. China J. Chin. Mater. Med. 2007, 32, 1759–1762. [Google Scholar]
  195. Hu, L.F.; Lv, W.Y.; Zhou, L.; Li, X. Antifungal activities of five umbelliferae plant extracts against plant pathogens. Hubei Agric. Sci. 2012, 51, 3490–3491. [Google Scholar]
  196. Dong, L.S.; Zhao, Z.H. Identification of raw drugs of Chinese herb Pimpinella diversifolia. J. Guiyang Univ. Chin. Med. 1991, 13, 62–64. [Google Scholar]
  197. Dong, Q.; Li, J.; Liu, Y.F.; Yang, G.X.; Hu, Y.Y.; Jiang, Y.L.; Liu, Q. Study on the medicinal effect of extracts from Pimpinella diversifolia. China Pract. Med. 2021, 16, 197–200. [Google Scholar]
  198. Xu, X.W.; Lin, G.Y.; Lin, C.L. Study on the chemical components of essentiale oil from Zhejiang Pimpinella diversifolia. China Pharm. 2012, 21, 3–4. [Google Scholar]
  199. Cui, X.M.; Shi, H.L.; Ren, H.; Hu, J.; Meng, M.X.; Chen, J.; Meng, X.; Chen, Z.Y. Content determination of nine constituents in different medicinal parts of Pimpinella thellungiana. Chin. J. Exp. Tradit. Med. For. 2019, 25, 97–103. [Google Scholar]
  200. Huanglong County Leading Group of Prevention and Control of Endemic Diseases in Yanan Region. A comprehensive analysis of 92 cases of Keshan disease treated with Pimpinella magna. Shaanxi Med. J. 1972, 1, 34–35. [Google Scholar]
  201. Jin, Z.G.; Wang, M.S. Advances in studies of herbal Pimpinella thellugiana Wolff. J. Shangluo Univ. 2008, 22, 43–46. [Google Scholar]
  202. Liu, R.; Tai, G.; Pei, X.L.; Wang, R.; Zhang, S.R.; Pei, M.R. Determination of nine components in Yanghongshan by UPLC. Chin. J. Pharm. Anal. 2020, 40, 1097–1103. [Google Scholar]
  203. Wang, J.Q.; Zhao, X.M.; Duan, X.Z. The effect of Pimpinella thellungiana on immune function of patients with coronary heart disease. Shaanxi Med. J. 1986, 15, 58–60. [Google Scholar]
  204. Liu, Q.G.; Zhang, Z.T.; Chen, Z.G. Study on the active components of volatile oil from the seeds of Pleurospermum giraldii Diels. Chin. Tradit. Herb. Drugs 1998, 29, 516–517. [Google Scholar]
  205. Zhang, Z.T. L-carvone the principal constituent of volatile oil from Pleurospermum giraldii Diels seeds effects on the smooth musice of intestine and womb for rats. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.). 2000, 28, 77–79. [Google Scholar]
  206. Zhang, Z.T.; Liu, Q.G.; He, Y.; Chen, Z.G.; Gao, Z.W. Study on the chemical components from the seeds of Pleurospermum giraldii Diels. Chin. Tradit. Herb. Drugs 1998, 29, 800–801. [Google Scholar]
  207. Revolutionary Committee of Health Bureau of Yunnan Province. Chinese Herbal Medicine in Yunnan; Yunnan People’s Publishing House: Kunming, China, 1971; pp. 98–99. [Google Scholar]
  208. Liu, M.Y.; Yu, L.F.; Yang, F.; Liu, P.H. Study on the adsorption of bile salts and cholesterol by water soluble constituents from Sanicula Astrantiifolia. J. Qujing Norm. Univ. 2016, 35, 37–41. [Google Scholar]
  209. Liu, P.H.; Yang, G.H.; Tian, X.L.; Zhang, Y.G.; Li, F.S.; Wang, F. Antioxidating effects of Inula nervosa Wall. ex DC. on the edible oils and its antimicrobial activity. Sci. Technol. Food Ind. 2011, 32, 187–189. [Google Scholar]
  210. Xu, G.M.; Wang, Z.M.; Liu, N.Z.; He, W.J.; Peng, S.; Zhou, X.J. Study on chemical constituents from ethyl acetate extraction of Sanicula lamelligera. J. Chin. Med. Mater. 2015, 38, 1661–1664. [Google Scholar]
  211. Zhou, X.J.; Zeng, N.; Jia, M.R. Screening of effective ingredients for relieving cough and resolving phlegm in the herba Saniculae. Chin. J. Ethnomed. Ethnoph. 2005, 72, 46–49+62. [Google Scholar]
  212. Liu, B. China Checklist of Higher Plants; Biodiversity Committee of Chinese Academy of Sciences, Ed.; 2022 Annual Checklist; Catalogue of Life China: Beijing, China, 2022. [Google Scholar]
  213. Karagoz, A.; Turan, K.; Arda, N.; Okatan, Y.; Kuru, A. ln vitro virucidal effect of Sanicula europaea L. extract. Turk. J. Biol. 1997, 21, 181–188. [Google Scholar] [CrossRef]
  214. Turan, K.; Kuru, A. Antiviral activity of water extract of Sanicula europaea L. leaves on the bacteria-bacteriophage system. Turk. J. Biol. 1996, 20, 225–234. [Google Scholar] [CrossRef]
  215. Hiller, K.; Linzer, B.; Pfeifer, S.; Tökes, L.; Murphy, J. On the saponins from Sanicula europaea L. On the knowledge of the contents of some Saniculoideae. Pharmazie 1968, 23, 376–387. [Google Scholar] [PubMed]
  216. Legin, N.I.; Koliadzhyn, T.I.; Grytsyk, L.M.; Grytsyk, A.R. Investigation of the elemental composition of Sanicula Europaea L. and Astrantia Major L. Med. Clin. Chem. 2018, 20, 112–116. [Google Scholar]
  217. Matsushita, A.; Miyase, T.; Noguchi, H.; Velde, D.V. Oleanane saponins from Sanicula elata var. chinensis. J. Nat. Prod. 2004, 67, 377–383. [Google Scholar] [CrossRef]
  218. Chang, L.; Jing, W.G.; Cheng, X.L.; Wei, F.; Ma, S.C. Research progress on chemical constituents and pharmacological effects of Saposhnikoviae Radix and predictive analysis on quality marker (Q-Marker). Mod. Chin. Med. 2022, 24, 2026–2039. [Google Scholar]
  219. Liu, S.L.; Jiang, C.X.; Zhao, Y.; Xu, Y.H.; Wang, Z.; Zhang, L.X. Advance in study on chemical constituents of Saposhnikovia divaricate and their pharmacological effects. Chin. Tradit. Herb. Drugs 2017, 48, 2146–2152. [Google Scholar]
  220. Gui, J.S.; Wei, Q.H. Pharmacodynamic comparison between Seseli mairei and Saposhnikvia divaricata. J. Yunnan Coll. Tradit. Chin. Med. 1991, 14, 3–6. [Google Scholar]
  221. Gui, J.S.; Wei, Q.H.; Yang, S.D. Discussion on varieties of Yunnan Fangfeng. J. Yunnan Coll. Tradit. Chin. Med. 1991, 14, 23–25. [Google Scholar]
  222. Zong, Y.L.; Lin, Y.P.; Ding, Q.E.; He, H.; Rao, G.X. Studies on the chemical constituents of the aerial parts of Seselimairei. J. Chin. Med. Mater. 2007, 30, 42–44. [Google Scholar]
  223. Lin, Y.P.; Wang, J.; Hu, C.Y.; Rao, G.X. Chemical constituents from the roots of Seseli yunnanense. J. Chin. Med. Mater. 2017, 40, 2586–2589. [Google Scholar]
  224. Xu, Y.; Chen, N.X. Comparative identification of Ligusticum sinense and Sium suave. Heilongjiang J. Tradit. Chin. Med. 1998, 5, 47–48. [Google Scholar]
  225. Qin, N.; Su, Y.F.; Wang, Y.D.; Shi, J.G.; Yue, F.X.; Wu, Z.H.; Gao, X.M. Chemical constituents from Tongoloa silaifolia. Biochem. Syst. Ecol. 2012, 44, 380–382. [Google Scholar] [CrossRef]
  226. Qin, N.; Su, Y.F.; Wang, Y.D.; Zhang, H.; Wu, Z.H.; Gao, X.M. Chemical Constituents of Tongoloa silaifolia. Nat. Prod. Res. Dev. 2013, 25, 201–203. [Google Scholar] [CrossRef]
  227. Xu, H.N.; Mu, Y.; Zhang, Z.H.; Zhang, Z.; Zhang, D.Y.; Tan, X.Q.; Shi, X.B.; Liu, Y. Extraction and identification of volatiles from Artemisia argyi and Torilis scabra and their effects on preference of Bemisia tabaci MED (Hemiptera: Aleyrodidae) adults. Acta Entomol. Sin. 2022, 65, 343–350. [Google Scholar]
  228. Bairwa, R.; Sodha, R.S.; Rajawat, B.S. Trachyspermum ammi. Pharmacogn. Rev. 2012, 6, 56. [Google Scholar] [CrossRef] [PubMed]
  229. Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med. 2009, 9, 30. [Google Scholar] [CrossRef] [PubMed]
  230. Kaur, G.J.; Arora, D.S. Bioactive potential of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi belonging to the family Umbelliferae-Current status. J. Med. Plants Res. 2010, 4, 87–94. [Google Scholar]
  231. Shankaracharya, N.B.; Nagalakshmi, S.; Naik, J.P.; Rao, L.J.M. Studies on chemical and technological aspects of ajowan (Trachyspermum ammi (L.) Syn. Carum copticum Hiern) seeds. J. Food Sci. Technol. 2000, 37, 277–281. [Google Scholar]
  232. Dong, S.T.; Zhang, X.Q.; Hu, Y.; Gong, X.M.; Yang, H.Q. Chemical constituents, quality control and pharmacology research progress of Xigui Chin. J. Ethnomed. Ethnoph. 2018, 27, 40–42. [Google Scholar]
  233. Zhang, W.M.; Duan, Z.H.; Sun, F.; Rao, G.X. The chemical constituents from the roots of Vicatia thibetica. Nat. Prod. Res. Dev. 2004, 16, 218–219. [Google Scholar]
  234. Zhou, N.; Duan, Y.M.; Chen, Q.; Ma, X.K. Study on pharmacognosy of Xigui. J. Anhui Agric. Sci. 2007, 35, 2307–2425. [Google Scholar]
  235. Hong, Q.Y.; Zhang, J.J.; Wang, C.; Wang, L.Y.; Zhang, R.; Le, N. Discussion on the Chinese medicine properties of foreign botanical medicine Ammi visnaga L. China J. Tradit. Chin. Med. Pharm. 2022, 37, 2284–2288. [Google Scholar]
  236. Ma, Q.D.; Li, G.Y.; Wang, J.H. Research progress on pharmacological activity of Uygur medicine Trachyspermum ammi fruits. J. Nongken Med. 2011, 33, 180–184. [Google Scholar]
  237. Yao, H.J.; Zhao, C.Y.; Jiang, L.Q.; Lv, H.Z. Study of Pharmacognostical and HPLC Fingerprint on Angelica acutiloba of Korean Drugs. J. Chin. Med. Mater. 2018, 41, 1384–1390. [Google Scholar]
  238. Fang, Z.X. Annals of Tujia Medicine; The Medicine Science and Technology Press of China: Beijing, China, 2007. [Google Scholar]
  239. Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef]
  240. Shan, H.Y.; Jiao, T.Y. Determination of ferulic acid in shiquan dabu capsules by HPLC. Chin. Med. Mod. Distance Educ. China 2011, 9, 138–139. [Google Scholar]
  241. Huang, T.; Liu, D.; Cui, X.; Li, M.; Jin, L.; Paré, P.W.; Li, M.; Wei, J. In vitro bioactive metabolite production and plant regeneration of medicinal plant Angelica sinensis. Ind. Crops Prod. 2023, 194, 116276. [Google Scholar] [CrossRef]
  242. Liu, H.B.; Lu, A.J.; Liu, B.; Zhou, J.J. Exploring relationship between traditional effects of traditional Chinese medicine and modern pharmacological activities by “co-effect compounds”. China J. Chin. Mater. Med. 2005, 30, 76–79. [Google Scholar]
  243. Xing, Y.C.; Li, N.; Zhou, D.; Chen, G.; Jiao, K.; Wang, W.L.; Si, Y.Y.; Hou, Y. Sesquiterpene coumarins from Ferula sinkiangensis act as neuroinflammation inhibitors. Planta Med. 2016, 83, 135–142. [Google Scholar] [CrossRef]
  244. Kokotkiewicz, A.; Luczkiewicz, M. Chapter 37—Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 325–338. [Google Scholar]
  245. Mišić, D.; Zizovic, I.; Stamenić, M.; Ašanin, R.; Ristić, M.; Petrović, S.D.; Skala, D. Antimicrobial activity of celery fruit isolates and SFE process modeling. Biochem. Eng. J. 2008, 42, 148–152. [Google Scholar] [CrossRef]
  246. Meng, H.; Li, G.Y.; Huang, J.; Zhang, K.; Wang, H.Y.; Wang, J.H. Sesquiterpene coumarin and sesquiterpene chromone derivatives from Ferula ferulaeoides (Steud.) Korov. Fitoterapia 2013, 86, 70–77. [Google Scholar] [CrossRef]
  247. Lin, L.; Qian, X.P.; Hu, J.; Hu, W.J.; Zhang, G.D.; XIe, L.; Yu, L.X. Experimental study of Angelica pubescens and Osthole isolated from Angelica pubescens anti-tumor activity in vitro. Mod. Oncol. 2013, 21, 1930–1931. [Google Scholar]
  248. Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod. 2016, 79, 188–194. [Google Scholar] [CrossRef]
  249. Yuan, C.Q. Synopsis of Chinese medicinal plants of Umbelliferae. Bull. Chin. Mater. Med. 1986, 11, 5–9. [Google Scholar]
  250. BeMiller, J.N. Polysaccharides: Occurrence, Structures, and Chemistry. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; BeMiller, J.N., Ed.; AACC International Press: Cambridge, UK, 2019; pp. 75–101. [Google Scholar]
  251. Li, L.; Zhou, Y.; Zhang, L. Effect of Polysaccharide of radix sileris on enhancing macrophagocyte’s antineoplastic function. J. Beijing Univ. TCM 1999, 22, 38–40. [Google Scholar]
  252. Zheng, Y.; Bai, L.; Zhou, Y.; Tong, R.; Zeng, M.; Li, X.; Shi, J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int. J. Biol. Macromol. 2019, 121, 1240–1253. [Google Scholar] [CrossRef]
  253. Bi, S.J.; Fu, R.J.; Li, J.J.; Chen, Y.Y.; Tang, Y.P. The bioactivities and potential clinical values of Angelica sinensis polysaccharides. Nat. Prod. Commun. 2021, 16, 1–18. [Google Scholar] [CrossRef]
  254. Dong, X.D.; Liu, Y.N.; Zhao, Y.; Liu, A.J.; Ji, H.Y.; Yu, J. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2021, 193, 219–227. [Google Scholar] [CrossRef] [PubMed]
  255. Wang, J.M.; Lian, P.L.; Yu, Q.; Wei, J.F.; Kang, W.Y. Purification, characterization and procoagulant activity of polysaccharides from Angelica dahurice roots. Chem. Cent. J. 2017, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
  256. Liu, Z.Z.; Weng, H.B.; Zhang, L.J.; Pan, L.Y.; Sun, W.; Chen, H.X.; Chen, M.Y.; Zeng, T.; Zhang, Y.Y.; Chen, D.F.; et al. Bupleurum polysaccharides ameliorated renal injury in diabetic mice associated with suppression of HMGB1-TLR4 signaling. Chin. J. Nat. Med. 2019, 17, 641–649. [Google Scholar] [CrossRef] [PubMed]
  257. Wu, J.; Zhang, Y.Y.; Guo, L.; Li, H.; Chen, D.F. Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating toll-like receptor 4 signaling. PLoS ONE 2013, 8, e78051. [Google Scholar] [CrossRef] [PubMed]
  258. Zhang, Z.D.; Li, H.; Wan, F.; Su, X.Y.; Lu, Y.; Chen, D.F.; Zhang, Y.Y. Polysaccharides extracted from the roots of Bupleurum chinense DC. modulates macrophage functions. Chin. J. Nat. Med. 2017, 15, 889–898. [Google Scholar] [CrossRef]
  259. Kukula-Koch, W.A.; Widelski, J. Chapter 9—Alkaloids. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 163–198. [Google Scholar]
  260. Ain, Q.U.; Khan, H.; Mubarak, M.S.; Pervaiz, A. Plant alkaloids as antiplatelet agent: Drugs of the future in the light of recent developments. Front. Pharmacol. 2016, 7, 292. [Google Scholar] [CrossRef]
  261. Khan, H. Anti-inflammatory potential of alkaloids as a promising therapeutic modality. Lett. Drug Des. Discov. 2016, 14, 240–249. [Google Scholar] [CrossRef]
  262. Perviz, S.; Khan, H.; Pervaiz, A. Plant alkaloids as an emerging therapeutic alternative for the treatment of depression. Front. Pharmacol. 2016, 7, 28. [Google Scholar] [CrossRef]
  263. Pu, Z.H.; Dai, M.; Peng, C.; Xiong, L. Research progress on material basis and pharmacological action of Ligusticum chuanxiong alkaloids. J. Funct. Foods 2020, 31, 1020–1024. [Google Scholar]
  264. Zhou, Y.; Liu, X.; Wang, L.Y. Effects of Chuanxiong alkaloid on myocardial fibrosis in rats. J. Beihua Univ. (Nat. Sci.). 2022, 23, 200–203. [Google Scholar]
  265. Radulović, N.; Đorđević, N.; Denić, M.; Pinheiro, M.M.G.; Fernandes, P.D.; Boylan, F. A novel toxic alkaloid from poison hemlock (Conium maculatum L., Apiaceae): Identification, synthesis and antinociceptive activity. Food Chem. Toxicol. 2012, 50, 274–279. [Google Scholar] [CrossRef] [PubMed]
  266. Deng, Y.X.; Lu, S.F. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
  267. Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Phenylpropanoids. In Lessons on Caffeine, Cannabis & Co: Plant-Derived Drugs and their Interaction with Human Receptors; Springer International Publishing: Cham, Switzerland, 2018; pp. 171–178. [Google Scholar]
  268. Spitaler, R.; Ellmerer-Müller, E.P.; Zidorn, C.; Stuppner, H. Phenylpropanoids and Polyacetylenes from Ligusticum mutellina (Apiaceae) of Tyrolean Origin. Sci. Pharm. 2002, 70, 101–109. [Google Scholar]
  269. Wang, D.D.; Liu, H.B.; Song, H.L.; Yang, W.X.; Jia, X.G.; Tian, S.G. Determination of ferulic acid content in roots and leaves of Ferula fukanensis K. M. Shen. by HPLC. J. Xinjiang Med. Univ. 2012, 35, 1139–1142. [Google Scholar]
  270. Wen, Q.; Wang, X.Y. Determination the content of ferulic acid in Pleurospermum Hoffm. by HPLC. Chin. J. Ethnomed. Ethnopumnacy 2018, 27, 49–51. [Google Scholar]
  271. Lu, G.H.; Chan, K.; Leung, K.; Chan, C.L.; Zhao, Z.Z.; Jiang, Z.H. Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. J. Chromatogr. A 2005, 1068, 209–219. [Google Scholar] [CrossRef]
  272. Zhang, K.X.; Shen, X.; Yang, L.; Chen, Q.; Wang, N.N.; Li, Y.M.; Song, P.S.; Jiang, M.; Bai, G.; Yang, P.R.; et al. Exploring the Q-markers of Angelica sinensis (Oliv.) Diels of anti-platelet aggregation activity based on spectrum–effect relationships. Biomed. Chromatogr. 2022, 36, e5422. [Google Scholar] [CrossRef]
  273. Hwang, H.D.; Han, J.E.; Murthy, H.N.; Kwon, H.J.; Lee, G.M.; Shin, J.H.; Park, S.Y. Establishment of bioreactor cultures for the production of chlorogenic acid and ferulic acid from adventitious roots by optimization of culture conditions in Angelica acutiloba (Siebold & Zucc.) Kitag. Plant Biotechnol. Rep. 2022, 16, 173–182. [Google Scholar]
  274. Lim, E.Y.; Kim, J.G.; Lee, J.; Lee, C.; Shim, J.; Kim, Y.T. Analgesic effects of Cnidium officinale extracts on postoperative, neuropathic, and menopausal pain in rat models. Evid. Based Complement. Alternat. Med. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
  275. Qiu, G.Y.; Li, Y.; Li, X.C.; Cheng, X.L.; Wei, F.; Kang, S.; Ma, S.C. Research on chemical constituents and quality control methods of Peucedani medicinal materials. Chin. Pharm. Aff. 2019, 33, 446–459. [Google Scholar]
  276. Yuan, C.Q. Chemical classification of Umbelliferae: Coumarins. Foreign Med. Sci. Pharm. 1980, 5, 289–294. [Google Scholar]
  277. Xing, Y.C.; Li, N.; Xue, J. Progress on chemical constituents of Ferula genus. J. Shenyang Pharm. Univ. 2012, 29, 730–741. [Google Scholar]
  278. Xie, N.; Liu, Z.R.; Zhang, M.T.; Zhang, P.; Li, D.H.; Ma, X.; Guo, Z.H.; Zheng, Q.L. Determination of 9 chemical components of coumarins in Angelica dahurica by high performance liquid chromatography and its multivariate statistical analysis. PTCA (Part B Chem. Anal.) 2022, 58, 659–663. [Google Scholar]
  279. Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-Inflammatory/antioxidant activities. Curr. Pharm. Des. 2004, 10, 3813–3833. [Google Scholar] [CrossRef]
  280. Ngo, N.T.N.; Nguyen, V.T.; Vo, H.V.; Vang, O.; Duus, F.; Ho, T.D.H.; Pham, H.D.; Nguyen, L.H.D. Cytotoxic Coumarins from the Bark of Mammea siamensis. Chem. Pharm. Bull. 2010, 58, 1487–1491. [Google Scholar] [CrossRef]
  281. Reddy, N.S.; Mallireddigari, M.R.; Cosenza, S.; Gumireddy, K.; Bell, S.C.; Reddy, E.P.; Reddy, M.V.R. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg. Med. Chem. Lett. 2004, 14, 4093–4097. [Google Scholar] [CrossRef]
  282. Sahni, T.; Sharma, S.; Verma, D.; Kaur, P. Overview of coumarins and its derivatives: Synthesis and biological activity. Lett. Org. Chem. 2021, 18, 880–902. [Google Scholar] [CrossRef]
  283. Wang, S.; Shi, Y.H.; Wang, R.; Hu, S.W.; Luo, J.; Kuang, G.; Chen, S.C. Advances in chemical compositions, analytical methods and pharmacological effects of coumarins in Peucedani Radix. Shanghai J. Tradit. Chin. Med. 2022, 56, 89–99. [Google Scholar]
  284. Ballard, C.R.; Maróstica, M.R. Chapter 10—Health Benefits of Flavonoids Health Benefits of Flavonoids. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 185–201. [Google Scholar]
  285. Gebhardt, Y.; Witte, S.; Forkmann, G.; Lukačin, R.; Matern, U.; Martens, S. Molecular evolution of flavonoid dioxygenases in the family Apiaceae. Phytochemistry 2005, 66, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
  286. Kim, M.R.; Lee, J.Y.; Lee, H.H.; Aryal, D.K.; Kim, Y.G.; Kim, S.K.; Woo, E.-R.; Kang, K.W. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol. 2006, 44, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
  287. Zhang, T.T.; Zhou, J.S.; Wang, Q. HPLC analysis of flavonoids from the aerial parts of Bupleurum species. Chin. J. Nat. Med. 2010, 8, 107–113. [Google Scholar] [CrossRef]
  288. Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef] [PubMed]
  289. Wang, Y.F.; Ma, C.Y.; Xiong, X.; Ding, Z.L. Study on antioxidative activity of total flavonoids from Anthriscus sylvestris in vitro and vivo. West. J. Tradit. Chin. Med. 2014, 27, 11–13. [Google Scholar]
  290. Pérez-Vizcaíno, F.; Ibarra, M.; Cogolludo, A.L.; Duarte, J.; Zaragozá-Arnáez, F.; Moreno, L.; López-López, G.; Tamargo, J. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in Rat conductance and resistance arteries. J. Pharmacol. Exp. Ther. 2002, 302, 66–72. [Google Scholar] [CrossRef]
  291. Yonekura-Sakakibara, K.; Saito, K. Functional genomics for plant natural product biosynthesis. Nat. Prod. Rep. 2009, 26, 1466. [Google Scholar] [CrossRef]
  292. Pan, S.L. Bupleurum Species: Scientific Evaluation and Clinical Applications; Taylor & Francis Group: London, UK, 2006. [Google Scholar]
  293. Qin, H.Z.; Lin, S.; Deng, L.Y.; Zhu, H. Advances in pharmacological effects and mechanisms of asiaticoside. China Pharm. 2021, 32, 2683–2688. [Google Scholar]
  294. Yuan, R.L.; Zhang, Y.W.; Shen, J.Y.; Wang, D.; Chen, Q.; Wang, T.; Liu, M.Y. Research progress in the effect and mechanism of medicinal plants derived terpenoids on cholestatic liver injury. Cent. South Pharm. 2022, 20, 877–887. [Google Scholar]
  295. Zhou, X.; Ke, C.L.; Lv, Y.; Ren, C.H.; Lin, T.S.; Dong, F.; Mi, Y.J. Asiaticoside suppresses cell proliferation by inhibiting the NF-KB signaling pathway in colorectal cancer. Int. J. Mol. Med. 2020, 46, 1525–1537. [Google Scholar]
  296. Song, P.; Na, N.; Wang, Y. Effects of saikosaponin D on insulin resistance and FoxO1/PGC-1α pathway in type 2 diabetic rats. Chin. J. Immunol. 2022, 11, 1–15. [Google Scholar]
  297. Li, Y.N.; Yang, S.J.; Bai, S.Y. Studies on chemical constituents from roots of Angelica polymorpha. China J. Chin. Mater. Med. 2009, 34, 854–857. [Google Scholar]
  298. Sun, S.; Ling, X.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Chromones from Angelica morri Hayata. J. China Pharm. Univ. 2003, 34, 125–127. [Google Scholar]
  299. Xue, B.Y.; Li, W.; Li, L.; XIiao, Y.Q. A pharmacodynamic research on chromone glucosides of Saposhnikovia divaricata. China J. Chin. Mater. Med. 2000, 25, 297–299. [Google Scholar]
  300. Shan, Y.; Feng, X.; Dong, Y.F.; Chang, Q.Y. The advance on the research of chemical constituents and pharmacological activities of Bupleurum. Chin. Wild Plant Res. 2004, 23, 5–7+14. [Google Scholar]
  301. Li, M.F.; Li, X.Z.; Wei, J.H.; Zhang, Z.; Chen, S.J.; Liu, Z.H.; Xing, H. Selection of high altitude planting area of Angelica sinensis based on biomass, bioactive compounds accumulation and antioxidant capacity. Chin. Tradit. Herb. Drugs 2020, 51, 474–480. [Google Scholar]
  302. Zhang, Z.M.; Zhai, Z.X.; Guo, Y.H.; Fu, X.M.; Deng, S.J.; Bu, Y.Y.; Zhao, Z.M.; Zhao, Y.H.; Yang, C.Q.; Tu, P.F.; et al. Dynamic characteristic of dry matter accumulation and isoimperatorin in Angelica dahurica. Chin. Tradit. Herb. Drugs 2005, 36, 902–904. [Google Scholar]
  303. Yu, Y.; Wang, X.Q.; Bao, Y.X.; Zhang, Y.G.; Hou, B.S. Studies on laws of growth and development of Bupleurum chinense. J. Jilin Agric. Univ. 2003, 25, 523–527. [Google Scholar]
  304. Zhao, J.Y.; Zhang, W.Y.; Li, Y.; Gong, J.R. Elevation effect on saikosaponin content in Bupleurum chinense DC taproots and lateral roots. J. Beijing Norm. Univ. (Nat. Sci.). 2017, 53, 603–608. [Google Scholar]
  305. Guo, Q.S.; Wang, C.L.; Li, Y.S.; Du, Q.; Qin, M.J. Dynamic study on dry material accumulation and amylose content of cultivated Changium smyrnioides. China J. Chin. Mater. Med. 2007, 32, 24–26. [Google Scholar]
  306. Wang, R.H. Key points of cultivation techniques of Angelica sinensis. N. Agric. 2021, 3, 45–46. [Google Scholar]
  307. Yan, Y.C.; Liao, W.; Li, X.L.; Guo, Q.; Chen, P. Experimental study on the main factors and planting scheme optimization in Angelica pubescens Maxim. cultivation. Hubei J. Tradit. Chin. Med. 2012, 34, 65–66. [Google Scholar]
  308. Wei, Z.Q.; Xiao, J.Y.; Han, F. Breeding of retained species of Angelica dahurica. Spec. Econ. Anim. Plant. 2007, 10, 36–37. [Google Scholar]
  309. Zhou, S.R.; Li, B.L. Cultivation of Glehnia littoralis. Spec. Econ. Anim. Plant. 2008, 1, 37–38. [Google Scholar]
  310. Zhou, F.M. Wu Yiluo and new compilation of materia medica. J. Zhejiang Chin. Med. Univ. 1989, 2, 37. [Google Scholar]
  311. Lee, S.H.; Lee, S.H.; Hong, C.O.; Hur, M.; Han, J.W.; Lee, W.M.; Yi, L.; Koo, S.C. Evaluation of the availability of bolting Angelica gigas Nakai. Plant Resour. Soc. Korea 2019, 32, 318–324. [Google Scholar]
  312. Xue, Z.L. Introduction and acclimatization of wild Libanotis buchtormensis. Shaanxi For. Sci. Tech. 2011, 3, 95–96. [Google Scholar]
  313. Li, M.F.; Kang, T.L.; Jin, L.; Wei, J.H. Research progress on bolting and flowering of Angelica sinensis and regulation pathways. Chin. Tradit. Herb. Drugs 2020, 51, 5894–5899. [Google Scholar]
  314. Wang, C.L. Understory planting management techniques of Anthriscus sylvestris. For. Prod. Spec. China 2018, 3, 42–43. [Google Scholar]
  315. Chen, J.; Wang, W.L.; Sun, Y.Y.; Song, J.Z. Effects of yield and quality by mowing bolting Bupleurum chinense from different origins. Bull. Agric. Sci. Technol. 2021, 7, 218–220. [Google Scholar]
  316. Wang, C.L.; Guo, Q.S.; Cheng, B.X.; Wang, C.Y.; Zhou, Y.H. Change of chemical constituents in Changium smymioides at different ages. China J. Chin. Mater. Med. 2010, 35, 2945–2949. [Google Scholar]
  317. Jiang, G.H.; Ma, Y.Y.; Hou, J.; Jia, M.R.; Ma, L.; Fan, Q.J.; Tang, L. Investigation, collection and conservation of Ligusticum Chuanxiong germplasm resources. Chin. Tradit. Herb. Drugs 2008, 39, 601–604. [Google Scholar]
  318. Sun, P.; Tong, W.; Ye, X.; Zhang, C.; Huang, H.Y. Correlation analysis between the growth dynamics and quality of Chuanmingshen violaceum during the late cultivation period. Nat. Prod. Res. Dev. 2017, 29, 1154–1159. [Google Scholar]
  319. Zhao, Y.H.; He, G.F.; Che, S.L. High yield cultivation technology of Ligustium jeholense. Bull. Agric. Sci. Technol. 2013, 7, 215–216. [Google Scholar]
  320. Ou, C.G.; Mao, J.H.; Liu, L.J.; Li, C.J.; Ren, H.F.; Zhao, Z.W.; Zhuang, F.Y. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Plant Biol. (Stuttg.) 2016, 19, 286–297. [Google Scholar] [CrossRef]
  321. Huang, Z.X.; Ceng, Y.L. Review on the technology of propagation and cultivation for Notopterygium incisum Ting ex H. T. Chang. Anhiui Agric. Sci. Bull. 2018, 24, 45–48+50. [Google Scholar]
  322. Wang, Z.W.; Zhang, Y.F.; Lu, J.; Liu, X.L.; Yang, M.H.; Chen, L. Studies on the main biological characteristics and growth and development rules of Peucedanum praeruptum. China J. Chin. Mater. Med. 2007, 32, 145–146. [Google Scholar]
  323. Li, H.Y. Cultivation techniques for Saposhnikovia divaricata. Inn. Mong. Agric. Sci. Technol. 1995, 34. [Google Scholar]
  324. Liu, S.L.; Xu, Y.H.; Wang, X.H.; Lei, F.J.; Wang, Y.F.; Zhang, L.X. Research progress on the early bolting and flowering of Saposhnikovia divaricate root. Ginseng Res. 2016, 6, 52–56. [Google Scholar]
  325. Liu, X.X.; Luo, M.M.; Li, M.F.; Wei, J.H. Depicting precise temperature and duration of vernalization and inhibiting early bolting and flowering of Angelica sinensis by freezing storage. Front Plant Sci. 2022, 13, 853444. [Google Scholar] [CrossRef]
  326. Yan, W.; Hunt, L.A. Reanalysis of vernalization data of Wheat and Carrot. Ann. Bot. 1999, 84, 615–619. [Google Scholar] [CrossRef]
  327. Liu, J.H.; Guo, W.C.; Li, Y. Cultivation management, storage, and consumption of Coriander sativum. Spec. Econ. Anim. Plant. 2017, 11, 48–51. [Google Scholar]
  328. Huang, L.Q.; Jin, L. Suitable Technology for Production and Processing of Angelica Sinensis; China Pharmaceutical Science and Technology Press: Beijing, China, 2018. [Google Scholar]
  329. Qiu, D.Y.; Lin, H.M.; Fang, Z.S.; Li, Y.D. Effects of seedlings with different root diameters on Angelica sinensis early bolting and physiological changes during the medicine formation period. Acta Prat. Sin. 2010, 19, 100–105. [Google Scholar]
  330. Wang, W.J. Analysis and control of early bolting characteristic of Angelica sinensis. J. Northwest Univ. (Nat. Sci. Ed.) 1977, 7, 32–39. [Google Scholar]
  331. Yao, L. Effect of shading during the nursery of Angelica sinensis on bolting rate and economic characters. Gansu Agric. Sci. Technol. 2005, 10, 54–55. [Google Scholar]
  332. Li, Y.D.; Liu, F.Z.; Chen, Y.; Chai, Z.X. Standardied planting technique and the main diseases and pests of Radix Angelicae sinensis. Res. Prac. Chin. Med. 2005, 19, 23–26. [Google Scholar]
  333. Yang, F.R.; Yang, H.Y.; Guo, D.Z. Preliminary study on the early bolting of Angelica dahurica and prevention methods. J. Chin. Med. Mater. 2001, 24, 708. [Google Scholar]
  334. Pu, S.C.; Shen, M.L.; Deng, C.F.; Zhang, W.W.; Wei, Z.Q. Effects of N, P and K rates and their proportions on curtail earlier bolting of Angelica dahurica var. formosana. J. Southwest Univ. (Nat. Sci. Ed.). 2011, 33, 168–172. [Google Scholar]
  335. Yi, S.R.; Han, F.; Huang, Y.; Wei, Z.Q.; Xiao, Z.; Quan, J.; Cao, H.Q. Study on new technology of three-stage breeding of Angelica dahurica. Hunan Agric. Sci. 2011, 11, 15–16. [Google Scholar]
  336. Meng, X.C.; Cao, L.; Lou, Z.H. Preliminary study on investigation for bolting reason and inhibition of Saposhinikovia Divaricata. Spec. Wild Econ. Anim. Plant Res. 2004, 4, 18–20+23. [Google Scholar]
  337. Wang, Z.H.; Zhu, J.H.; Feng, S.X.; Wang, H.W. Effects of sowing date and eradication of reed head on bolting and yield of Saposhnikovia divaricata. Hubei Agric. Sci. 2013, 52, 4977–4979. [Google Scholar]
  338. Tong, W.S.; Huang, Q.Y.; Chang, Y. Effect of planting density on bolting, yield and effective ingredient of S. divaricata. J. Northeast Agric. Univ. 2010, 41, 73–77. [Google Scholar]
  339. Zhang, Y.M.; Yang, J.M.; Xu, W.M.; Wang, Z.G.; Yu, H.J. Study on the skill of Angelica acutiloba ConHolling boltiog and effect of the root. Ginseng Res. 2016, 4, 36–38. [Google Scholar]
  340. Chen, X.F.; Lu, J.; Ding, D.R.; Shen, M.L.; Xie, D.M.; Li, H.F. Effect of sowing time on early bolting of Angelica dahurica. China J. Chin. Mater. Med. 1999, 24, 211–212. [Google Scholar]
  341. Ding, D.R.; Lu, J.; Chen, X.F.; Shen, M.L.; Xie, D.M.; Li, H.F.; Ren, D.J. Effects of fertilizer types on early bolting and yield of Angelica dahurica. China J. Chin. Mater. Med. 1999, 24, 23–24. [Google Scholar]
  342. Jiang, Y.J.; Jiang, M.Y.; Rao, F.; Huang, W.J.; Chen, C.; Wu, W. Bioinformatics analysis on the CONSTANS-like protein family in Angelica dahurica var. formosana. Mol. Plant Breed. 2021, 19, 3923–3931. [Google Scholar]
  343. He, J.Z. Preliminary Study on Premature Bolting Mechanism and the Activity of Skin-Whitening of Angelica dahurica; Sichuan Agricultural University: Chengdu, China, 2018. [Google Scholar]
  344. Wang, W.J.; Zhang, Z.M. Bolting characteristics and control pathways of Angelica sinensis. Acta Bot. Bor. Occ. Sin. 1982, 2, 95–104. [Google Scholar]
  345. Li, M.S. On the control bolting in the early stage of Angelica sinensis (Oliv.) diels. Acta Bot. Bor. Occ. Sin. 1983, 3, 70–76. [Google Scholar]
  346. Lin, H.M.; Qiu, D.Y.; Chen, Y. Effect of root diameter on early bolting rate and yield in seedling of Angelica sinensis. Chin. Tradit. Herb. Drugs 2007, 38, 1386–1389. [Google Scholar]
  347. Wang, W.J. Technology and principle of seedling frozen storage of Angelica sinensis. China J. Chin. Mater. Med. 1979, 3, 1–5. [Google Scholar]
  348. Zhang, E.H. A study on inhibitory effect of plant growth retardants on earlier bolting of Chinese Angelica. China J. Chin. Mater. Med. 1999, 24, 18–20+63. [Google Scholar]
  349. Li, J.; Li, M.L.; Zhu, T.T.; Zhang, X.N.; Li, M.F.; Wei, J.H. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. Plant Biol. (Stuttg.) 2021, 23, 574–582. [Google Scholar] [CrossRef]
  350. Li, M.F.; Li, J.; Wei, J.H.; Pare, P.W. Transcriptional controls for early bolting and flowering in Angelica sinensis. Plants 2021, 10, 1931. [Google Scholar] [CrossRef]
  351. Mao, J.H.; Mao, S.M.; Zhuang, F.Y.; Ou, C.G.; Zhao, Z.W.; Bao, S.Y. Heredity and environmental regulation of premature bolting in carrot. Acta Agric. Bor. Sin. 2013, 28, 67–72. [Google Scholar]
  352. Yang, Y.G.; Zhang, H.S.; Li, Y.L.; Wang, X.W.; Yu, J.H.; Wang, X.L. Endogenous hormone content of fleshy root in relation to early bolting in summer cultivated carrot on plateau. Acta Hortic. Sin. 2010, 37, 1102–1108. [Google Scholar]
  353. Chen, Y.H.; Zhang, Y.L.; Wang, Y.; Zhang, Y.P.; Wang, Y.; Li, J.Q.; Liu, X.P. Analysis and regulation of main factors affecting flower bud differentiation and bolting in carrot. Inn. Mong. Agric. Sci. Technol. 2002, 6, 45–54. [Google Scholar]
  354. Zheng, C.Y.; Li, M.L.; Zhu, D.L.; Hou, L.P.; Song, H.X. Effects of sowing time in spring on the yield and quality of carrot. J. Shanxi Agric. Sci. 2018, 46, 926–927+941. [Google Scholar]
  355. Wang, B.S.; Chen, Y.M.; Lian, Y.; Zhang, Y.P.; Liu, X.R.; Yu, Y. Effects of different sowing dates on early bolting and economic traits of carrots. Vegetables 2022, 4, 28–31. [Google Scholar]
  356. Bao, S.Y.; Mao, J.H.; Ou, C.G.; Zhuang, F.Y.; Zhao, Z.W. Genetic analysis and OTL mapping of early bolting of Daucus carota L. Acta Hortic. Sin. 2011, 38, 2522. [Google Scholar]
  357. Jian, Q.P.; Zheng, Y.; Zhao, R.Q.; Chen, Y.L.; Liu, Z.P.; Xian, Z.Q.; Wan, M.; Jia, F.M.; Wang, G.Q.; Huang, C. Effects of different sowing periods on early bolting and yield of Peucedanum praeruptorum. J. Mt. Agric. Biol. 2020, 39, 67–70. [Google Scholar]
  358. Xu, G.; Li, P.M.; Yang, Y.; Luo, S.; Luo, C.; Deng, C.F. Effects of different sowing periods on early bolting, yield and quality of Peucedantun praeruptorum. Mod. Agric. Sci. Technol. 2021, 20, 55–57. [Google Scholar]
  359. Liu, S.L.; Wang, X.H.; Gao, Y.G.; Zhao, Y.; Zhang, A.H.; Xu, Y.H.; Zhang, L.X. Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in Saposhnikovia divaricata. Chin. J. Nat. Med. 2018, 16, 446–455. [Google Scholar] [CrossRef] [PubMed]
  360. Sun, H.M. Cultivation and propagation of Bupleurum chinense DC. Fore. Pharm. 1981, 2, 39–40. [Google Scholar]
  361. Li, M.; Zhang, Q.F.; Pu, G.B.; Liu, Y.Y.; Liu, Q.; Bu, X.; Zhang, Y.Q. Cloning and spatio-temporal expression analysis of flowering genes in Bupleurum chinense DC. Acta Pharm. Sin. 2021, 56, 1188–1196. [Google Scholar]
  362. Chen, Y.Y.; Hu, S.Q.; Tao, S.; Yuan, C.; Xiong, M.; Peng, F.; Zhang, C. Research progress on key technology of Ligusticum chuanxiong cultivation. J. Chin. Med. Mater. 2018, 41, 1236–1240. [Google Scholar]
  363. Zhao, H.Y. Research progress on key techniques of Ligusticum chuanxiong cultivation. Farm. Consult. 2020, 1, 50. [Google Scholar]
  364. Song, T. Transcriptome Sequencing and Analysis of Rhizome and Leaf in Ligusticum chuanxiong Hort; Southwest Jiaotong University: Chengdu, China, 2015. [Google Scholar]
  365. Feng, X.H.; Luo, X.G.; Wang, Y.; Li, J.; Liu, X.F. Study on the cultivation technology and field management of Ligusticum sinenses. Rural Sci. Technol. 2016, 11, 14–15. [Google Scholar]
  366. Zhao, W.; Yang, X.; Li, J.N.; Yu, Y. Study on the influence on the vegetative characterg the root production and quality of Ligusticum jeholense by flowers buds pruning. Chin. Wild Plant Res. 2007, 26, 46–48. [Google Scholar]
  367. Yin, H.F.; Jin, X.J. Effect of controlling bolting on yield and quality from root of Notopterygium forbesii. J. Gansu Agric. Univ. 2009, 44, 77–80. [Google Scholar]
  368. Jing, R.Q.; Hu, Z.H. Effect of early bolting on the structure of medicinal parts of Angelica sinensis. Acta Bot. Bor. Occ. Sin. 1981, 1, 55–61. [Google Scholar]
  369. Ma, Y.Y.; Zhong, S.H.; Jia, M.R.; Xiong, Y.; Jiang, G.H.; Tang, S.W. Comparasion of macroscopic and microscopic characteristics of Chuan Bai zhi and Gong Bai zhi. Lishizhen Med. Mater. Med. Res. 2005, 16, 833–834. [Google Scholar]
  370. Yang, Z.l.; Qian, S.m.; Scheid, R.N.; Lu, L.; Chen, X.s.; Liu, R.; Du, X.; Lv, X.c.; Boersma, M.D.; Scalf, M.; et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat. Genet. 2018, 50, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
  371. Xu, L.; Wang, Y.; Dong, J.H.; Zhang, W.; Tang, M.J.; Zhang, W.L.; Wang, K.; Chen, Y.L.; Zhang, X.L.; He, Q.; et al. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnol. J. 2023, 1, 1–15. [Google Scholar] [CrossRef]
  372. Song, C.; Li, X.l.; Jia, B.; Liu, L.; Wei, P.p.; Manzoor, M.A.; Wang, F.; Li, B.Y.; Wang, G.l.; Chen, C.w.; et al. Comparative transcriptomics unveil the crucial genes involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Front Plant Sci. 2022, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
  373. Bohnert, H.J.; Nguyen, H.; Lewis, N.G. Bioengineering and Molecular Biology of Plant Pathways; Pergamon: Oxford, UK, 2008; Volume 1. [Google Scholar]
Figure 1. Apiaceae medicinal plants (AMPs).
Figure 1. Apiaceae medicinal plants (AMPs).
Molecules 28 04384 g001
Figure 2. Traditional use of the 228 AMPs.
Figure 2. Traditional use of the 228 AMPs.
Molecules 28 04384 g002
Figure 3. Modern pharmacological uses of the 228 AMPs.
Figure 3. Modern pharmacological uses of the 228 AMPs.
Molecules 28 04384 g003
Figure 4. Core structures of five different bioactive compounds identified from the 228 AMPs.
Figure 4. Core structures of five different bioactive compounds identified from the 228 AMPs.
Molecules 28 04384 g004
Figure 5. Structures of the 18 quality markers from the 22 AMPs in the “Pharmacopoeia of the People’s Republic of China” (2020) [18].
Figure 5. Structures of the 18 quality markers from the 22 AMPs in the “Pharmacopoeia of the People’s Republic of China” (2020) [18].
Molecules 28 04384 g005
Figure 6. Cluster of the 38 rhizomatous AMPs affected by bolting and flowering (BF). The red color indicates that BF significantly affects the yield and quality; the yellow color indicates that BF affects the yield, though the rhizomes or roots can be used as medicine to some extent; and the green color indicates that BF has no significant effect on the yield and quality. a: Angelica, b: Ferula, c: Libanotis, d: Ligusticum, e: Heracleum, f: Notopterygium, g: Bupleurum, h: Changium, i: Peucedanum, j: Saposhnikovia, k: Glehnia, l: Cicuta, m: Daucus, n: Levisticum, o: Anthriscus, p: Chuanminshen, and q: Pimpinella.
Figure 6. Cluster of the 38 rhizomatous AMPs affected by bolting and flowering (BF). The red color indicates that BF significantly affects the yield and quality; the yellow color indicates that BF affects the yield, though the rhizomes or roots can be used as medicine to some extent; and the green color indicates that BF has no significant effect on the yield and quality. a: Angelica, b: Ferula, c: Libanotis, d: Ligusticum, e: Heracleum, f: Notopterygium, g: Bupleurum, h: Changium, i: Peucedanum, j: Saposhnikovia, k: Glehnia, l: Cicuta, m: Daucus, n: Levisticum, o: Anthriscus, p: Chuanminshen, and q: Pimpinella.
Molecules 28 04384 g006
Figure 7. Approaches to control the BF of AMPs.
Figure 7. Approaches to control the BF of AMPs.
Molecules 28 04384 g007
Figure 8. Schematic representation of biosynthetic pathways of lignins. Abbreviations: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; HCT, hydroxycinnamoyl shikimate/quinate transferase; C3H, p-coumarate 3-hydroxylase; CCOMT, caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl-CoA reductases; CADs, cinnamyl alcohol dehydrogenases; LACs, laccases; F5H, ferulate 5-hydroxylase; COMT, caffeic acid 3-O-methyltransferase. The green color indicates the common phenylpropanoid pathway of phenylpropanoids, and the red color indicates the lignin biosynthetic sub-pathway. The ①, ② and ③ means different sub-pathways of lignin biosynthesis.
Figure 8. Schematic representation of biosynthetic pathways of lignins. Abbreviations: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; HCT, hydroxycinnamoyl shikimate/quinate transferase; C3H, p-coumarate 3-hydroxylase; CCOMT, caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl-CoA reductases; CADs, cinnamyl alcohol dehydrogenases; LACs, laccases; F5H, ferulate 5-hydroxylase; COMT, caffeic acid 3-O-methyltransferase. The green color indicates the common phenylpropanoid pathway of phenylpropanoids, and the red color indicates the lignin biosynthetic sub-pathway. The ①, ② and ③ means different sub-pathways of lignin biosynthesis.
Molecules 28 04384 g008
Table 1. The classification, traditional use, modern pharmacological use, and main metabolites of the 228 AMPs.
Table 1. The classification, traditional use, modern pharmacological use, and main metabolites of the 228 AMPs.
No.Plant SpeciesLocal Name in ChineseParts of Plant UsedTraditional UseModern Pharmacological UseMain MetabolitesReferences
1Aegopodium alpestre Ledeb.XiaoyeqinStems and leavesDispelling wind, relieving pain, and treating influenzaTreatment of rheumatic diseases, obesity, and hypotensiveApiole, undecane, and limonene[19,20,21]
2Ammi majus L.DaamiqinFruitsTreatment of vitiligo\Furanocoumarins[16]
3Anethum graveolens L.ShiluoFruits, leaves, or whole plantTreatment of bladder inflammation, liver diseases, and insomniaAntibacterial, antifungal, antioxidantAlkaloid, terpenoids, and flavonoids[22]
4Angelica acutiloba (Siebold & Zucc.) Kitag.Dongdanggui or ribendangguiRootsTreatment of menoxenia and anemiaHemogenic, analgesic, and sedative activitiesFerulic acid, ligustilide, and angelicide[23]
5Angelica amurensis Schischk.Heishuidanggui or chaoxiandangguiRoots\\α-pinene, limonene, and sabinene[1,24]
6Angelica anomala Avé-Lall.Xiayedanggui or yixingdangguiRootsDispelling wind, eliminating dampness, and relieving painAntioxidant, anti-inflammatory, and antitumorIsoimperatorin, umbelliferone, and adenosine[16,25,26,27]
7Angelica apaensis R. H. Shan & C. C. YuanFaluohai or abadangguiRootsRelieving pain, relieving cough and asthmaBacteriostat, anti-inflammatoryOxypeucedanin, isoimperatorin, and oxypeucedanin hydrate[19,28]
8** Angelica biserrata (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. ShanDuhuo or maodangguiRootsDispelling wind, eliminating dampness, and relieving painAntitumor, anti-inflammatory, and antioxidantCoumarins osthole, columbianadin, and volatile oils[29]
9Angelica cartilaginomarginata var. Foliosa C. C. Yuan & R. H. ShanShangaobenRoots\\\[17]
10** Angelica dahurica (Fisch. Ex Hoffm.) Benth. & Hook. F. Ex Franch. & Sav.BaizhiRootsTreatment of acne, erythema, and headacheAnti-inflammatory, anti-mutagenic, and antitumorScopoletin and psoralen[18,30,31,32,33]
11** Angelica dahurica cv. HangbaizhiHangbaizhiRootsTreatment of headache, toothache, abscess, and furunculosisEstrogenic, cytotoxic, and anti-inflammatoryIsoimperatorin, imperatorin, and phellopterin[18,34,35]
12Angelica dahurica var. Formosana (H. Boissieu) YenTaiwanduhuoRoots\Anti-staphylococcaFalcarindiol[33,34]
13** Angelica decursiva (Miq.) Franch. & Sav.ZihuaqianhuRootsA remedy for thick phlegm, asthma, and upper respiratory tract infectionsAntioxidant and anti-inflammatory potentialDecursin, decursidin, and nodakenetin[36]
14Angelica gigas NakaiChaoxiandangguiRootsTreatment of dysmenorrhea, amenorrhea, and menopauseAnti-platelet effectsDecursin and decursinol angelate[37,38]
15Angelica laxifoliata DielsShuyedangguiRootsDispelling wind and relieving painTreatment of wind-damp pain, lumbus, and kneesAngelicin, β-sitosterol, and laxifolin[16,26,39]
16Angelica megaphylla DielsDayedangguiRootsUsed as Angelica sinensisUsed as A. SinensisFerulic acid, ligustilide, and angelol[40,41]
17Angelica morii HayataFushenRoots and leavesTreatment of spleen and stomach, cold cough, and toothacheUsed for diarrhea caused by deficiency of spleen and for cough caused by weakness and chillImperatorin, isoimperatorin, and phellopterin[42,43,44]
18Angelica nitida H. WolffQinghaidangguiRootsNourishing the blood, regulating menstrual disorder, and relieving pain\Isoimperatorin, imperatorin, and cnidilin[45]
19Angelica polymorpha Maxim.Guaiqin or shanqincaiRootsDispelling wind and relieving painTreatment of stomachacheCoumarins, sesquiterpenoids, and alkaloids[19,46,47]
20** Angelica sinensis (Oliv.) DielsDangguiRootsNourishing the blood, regulating menstrual disorder, and relieving painCardio-cerebrovascular, anti-inflammatory, and antioxidantFerulic acid, alkylphthalides, and polysaccharides[18,48,49]
21Angelica sinensis var. Wilsonii EmeidangguiRootsUsed as Angelica sinensis, relieving painUsed as Angelica sinensisIsoimperatorin, coumarin, and oxypeucedanin[50]
22Angelica sylvestris L.LindangguiRootsRelieves rheumatism and sweating, provides detoxification\Cnidilide, sedanenolide, and ligustilide[19]
23Angelica tsinlingensis K. T. FuQinlingdangguiRoots\\\[1]
24Angelica valida DielsWuduhuo or yandangguiRoots\\\[1]
25Anthriscus nemorosa (M. Bieb.) Spreng.CiguoeshenRoots, whole plant, and leavesUsed as Peucedanum praeruptorum Used as Peucedanum praeruptorum \[51]
26Anthriscus sylvestris (L.) Hoffm.EshenRoots and leavesInvigorating spleen, replenishing qi, and expelling phlegmAntitumor, antioxidation, and antisenityPhenylpropanoids, flavonoids, and steroidal[19,52]
27Apium graveolens L.HanqinWhole plant, roots, and rhizomeDispelling wind, eliminating dampness, and detoxificationHypertension, hyperlipidemia, and dysuriaOrganic acids, apigenin, and volatile oils[19,53,54]
28Archangelica brevicaulisfDuanjinggudangguiRootsUsed as Angelica biserrata Used as Angelica biserrata Osthol, imperatorin, and archangelicin[16,55]
29Bupleurum angustissimum (Franch.) Kitag.XiayechaihuRoots\\Saikosaponins (a, c, and d), β -terpinene, and β -thujene[56]
30Bupleurum aureum Fisch.JinhuangchaihuRoots\\Saikosaponins (a, c, and d)[1,57]
31Bupleurum bicaule HelmZhuiyechaihuRootsUsed as Bupleurum scorzonerifoliumUsed as Bupleurum scorzonerifolium Saikosaponin d, prosaikogenin G, and prosaikogenin F[16,58,59]
32Bupleurum candollei Wall. Ex DC.ChuandianchaihuWhole plantDiminishing inflammation, detoxification, dispelling wind, and relieving convulsion\Saikosaponin and flavonoids[16,56]
33Bupleurum chaishoui R. H. Shan & M. L. ShehChaishouRoots and rhizomeUsed as Bupleurum chinenseUsed as Bupleurum chinenseSaikosaponins (a, c, and d)[60]
34** Bupleurum chinense DC.BeichaihuRootsTreatment of chronic hepatitis, kidney syndrome, and inflammatory diseases Anti-allergen, analgesic, and anti-inflammationSaikosaponins (a, c, and d)[18,61,62]
35Bupleurum chinense DC. F. Octoradiatum (Bunge) Shan et ShehBaihuashanchaihuRootsUsed as Bupleurum chinenseAnti-allergen, analgesic, and anti-inflammationSaikosaponins (a, c, and d)[63,64]
36Bupleurum chinense DC. F. Vanheurckii (Muell.-Arg.) Shan et Y. LiYantaichaihuRootsUsed as Bupleurum chinenseAnti-allergen, analgesic, and anti-inflammationSaikosaponins (a, c, and d)[63,64]
37Bupleurum commelynoideum var. Flaviflorum R. H. Shan & Yin LiHuanghuayazhichaihuRoots, rhizome, and whole plantAntipyretic-analgesic effect, choleretic, and hepatoprotectionTreating or relieving inflammatory bowel diseaseSaikosaponins (a, c, and d), β-pinene, and perillen[65,66]
38Bupleurum densiflorum Rupr.MihuachaihuRoots\\\[63]
39Bupleurum dielsianum H. WolffTaibaichaihuRoots\\\[63]
40Bupleurum euphorbioides NakaiDabaochaihuRoots\\Saikosaponins, perillen, and undecanal[56]
41Bupleurum exaltatum M. Bieb.XinjiangchaihuRoots\\\[64]
42Bupleurum falcatum L.SandaochaihuRoots\Treatment of colds and upper respiratory tract infectionsSaikosaponins (a, c, and d)[64,67,68]
43Bupleurum gansuense S. L. Pan et HsuGansuchaihuRoots\\\[56]
44Bupleurum hamiltonii N. P. Balakr.XiaochaihuRoots or whole plantAntipyretic-analgesic effect, treatment of chill and fever alternationTreatment of stomach pain, dysuria, and coughKaerophyllin, isokaerophyllin, and ethyl caffeic acid[69]
45Bupleurum hamiltonii var. Hamiltonii/Bupleurum tenueXiaochaihuRoots or whole plantUsed as Bupleurum hamiltonii N. P. Balakr.Used as Bupleurum hamiltonii N. P. Balakr.\[70]
46Bupleurum hamiltonii var. Humile (Franch.) R. H. Shan & M. L. ShehAixiaochaihuRoots\\\[64]
47Bupleurum huizei S. L. Pan sp. Nov.HuizechaihuRoots\\\[64]
48Bupleurum kaoi T. S. Liu, C. Y. Chao & T. I. ChuangTaiwanchaihu or gaoshichaihuRoots\Treatment of influenza and feverSaikosaponin a, c[64]
49Bupleurum komarovianum Lincz.ChangbaichaihuRootsUsed as Bupleurum chinenseUsed as Bupleurum chinenseSaikosaponins (a, c, and d) and volatile oils (1-caprylene, limonene, and thymol)[71,72]
50Bupleurum krylovianum Schischk. Ex KrylovAertaichaihuRoots\\Saikosaponins (a, c, and d)[56,57]
51Bupleurum kunmingense Yin Li & S. L. PanJiuyechaihuRoots\ImmunomodulatorySaikosaponins (a, c, and d), cyclohexanone, and 2- methyldodecane[56]
52Bupleurum longicaule var. Amplexicaule C. Y. WuBaojingchaihuRoots\\Saikosaponins (a, c, and d)[64]
53Bupleurum longicaule var. Franchetii H. BoissieuKongxinchaihuRoots or whole plant\\Saikosaponins (a, c, and d), cyclohexanone, and myrcene[56]
54Bupleurum longicaule var. Giraldii H. WolffQinlingchaihuRoots\\Saikosaponins (a, c, and d), narcissin, and rutin[56]
55Bupleurum longiradiatum Turcz.DayechaihuRootsTreatment of gout and inflammatory illnessAnti-inflammatory and/or antimicrobialThymol, butylidene phthalide, and 5-indolol[73]
56Bupleurum luxiense Yin Li & S. L. PanLuxichaihuRoots\\Saikosaponins (a, c, and d), n-heptaldehyde, and octanal[56]
57Bupleurum malconense R. H. Shan & Yin LiMaweichaihuWhole plantHepatoprotection and antipyretic effectAcute toxicitySaikosaponins (a, c, and d), rutin, and quercetin[74,75,76]
58Bupleurum marginatum var. MarginatumZichaihu or zhuyefangfengWhole plantHepatoprotection and antipyretic effectAnti-allergen, analgesic, and anti-inflammatorySaikosaponins (a, c, and d), rutin, and quercetin[74,75,77]
59Bupleurum marginatum var. Stenophyllum (H. Wolff) R. H. Shan & Yin LiZhaizhuyechaihuWhole plant\\Saikosaponins (a, c, and d), chikusaikoside I, II, and 2- methylcyclopentanone[56]
60Bupleurum marginatum Wall. Ex DC.ZhuyechaihuWhole plant and rootsHepatoprotection and antipyretic effectAnti-allergen, analgesic, and anti-inflammatorySaikosaponins (a, c, and d), rutin, and quercetin[74,75,77]
61Bupleurum microcephalum DielsMaweichaihuWhole plant and rootsHepatoprotection and antipyretic effectAnti-allergen, analgesic, and anti-inflammatorySaikosaponins (a, c, and d), rutin, and quercetin[74,75]
62Bupleurum petiolulatum var. tenerum R. H. Shan & Yin LiXijingyoubingchaihuWhole plantAntipyretic-analgesic effectAnti-inflammatory\[63,78]
63Bupleurum polyclonum Yin Li & S. L. PanDuozhichaihuRoots\AnticancerSaikosaponins (a, c, and d), 4′-O-saikosaponin-a, and fenchane[56]
64Bupleurum rockii H. WolffLijiangchaihuRoots\\Saikosaponins (a, c, and d), thymol, and β-guaiene[56]
65Bupleurum scorzonerifolium f. LongiradiatumChangsanhongchaihuRootsUsed as Bupleurum chinenseUsed as Bupleurum chinense\[19]
66Bupleurum scorzonerifolium f. PauciflorumShaohuahongchaihuRootsUsed as Bupleurum chinenseUsed as Bupleurum chinense\[19]
67** Bupleurum scorzonerifolium Willd.Hongchaihu or zhuyechaihuRootsAntipyresis, relief of liver issues and menstrual disordersUsed as Bupleurum chinenseRutin, quercetin, and kaempferol[18,19]
68Bupleurum sibiricum var. Jeholense (Nakai) Y. C. Chu ex R. H. Shan & Yin LiWulingchaihuRoots\\\[1]
69Bupleurum sibiricum VestXinganchaihuRootsUsed as Bupleurum chinenseUsed as Bupleurum chinenseSaikosaponin a, rutin, and quercetin[16,79,80]
70Bupleurum sichuanense S. L. Pan et Hsu.SichuanchaihuRoots\\Saikosaponins (a, c, and d)[56]
71Bupleurum smithii H. WolffHeichaihuRootsAntipyretic-analgesic effectAnti-inflammatory, immunomodulatory, and anti-hepatic injurySaponins, volatile oils, and lignans[81]
72Bupleurum smithii var. Parvifolium R. H. Shan & Yin LiXiaoyeheichaihuRootsRelief of liver issues and activation of yang energyAnti-inflammatory, immunomodulatory, and antitumorFalcarinol, saponins, and flavonoids[82]
73Bupleurum thianschanicum FreynTianshanchaihuRoots\\Saikosaponins (a, c, and d)[57]
74Bupleurum triradiatum Adams ex Hoffm.SanfuchaihuRoots\\\[1]
75Bupleurum wenchuanense R. H. Shan & Yin LiWenchuanchaihuRootsUsed as BupleurumUsed as BupleurumQuercetin-3-O-α-L-rhamnoside, quercetin, and rutin[16,75]
76Bupleurum yinchowense R. H. Shan & Yin LiYinzhouchaihu or hongchaihuRootsAntipyresis, relief of liver issues, and activation of yang energyUsed as BupleurumSaikosaponins (a, c, and d)[16,65,83,84]
77Carum buriaticum Turcz.TiangelvziRoots and fruits\\\[5]
78Carum carvi L.ZanghuixiangRoots, fruits, and leavesDispelling wind, eliminating dampness, invigorating the stomach, and treating heart diseaseAnti-bacterial, antioxidant, and antitumorCarvone, limonene, and dihydrocarvone[19,85,86]
79* Centella asiatica (L.) Urb.JixuecaoWhole plantClearing heat, promoting diuresis, and treating toxicityAnti-bacterial, anti-depressive, and neuroprotectiveAsiaticoside, madecassoside, and elemene[18,87]
80** Changium smyrnioides H. WolffMingdangshenRootsStrengthening with tonics, moistening lungs, clearing phlegm, and calming the liverImmunomodulatory, relieving fatigue, and enhancing adaptabilityCetylic acid, succinic acid, and imperatorin[18,88]
81Chuanminshen violaceum M. L. Sheh & R. H. ShanChuanmingshenRootsMoistening the lungs, clearning phlegm, harmonizing the stomach, and stimulating liquidsAntioxidant, enhancing immunity, and antimutationPolysaccharides, coumarins, and flavonoids[89,90,91]
82Cicuta virosa L.DuqinRoots and rhizomeExpelling phlegm and detoxificationTreatment of osteomyelitis, gout, and rheumatismP-cymene, cicutoxine, and L-limonene[17,92]
83* Cnidium monnieri (L.) Spreng.ShechuangFruitsDispelling wind, relieving convulsion, treating impotenceAntibacterial, antiviral, and antimutagenesisOsthole, limonene, and cnidimoside A[18,93]
84Cnidium officinaleDongchuanxiongRootsUsed as Cnidium monnieriUsed as Cnidium monnieri\[1]
85Conioselinum acuminatum (Franch.) LavrovaShuigaobenRoots\\Sabinene, α-pinene, and aromadendrene[11]
86Conioselinum anthriscoidesFuxiongFuxiongRoots\\β-bergamotene[11]
87Conioselinum tenuisectum (H. Boissieu) Pimenov & KljuykovXiliegaobenRoots\\\[94]
88Conioselinum vaginatum (Spreng.) Thell.Xinjianggaoben or qiaoshanxiongRootsDispelling wind, eliminating dampness, and relieving painTreatment of common cold due to wind-cold and gastro spasmDiligustilide, daucosterol, and palmitic acid[19,95]
89Conium maculatum L.DushenWhole plantRelieving pain and relieving muscular spasmTreatment of cancerConiine, N-methyl-coniine, conhydrine 2-(1-hydroxypropyl)-piperidine[16,96,97]
90Coriandrum sativum L.HusuiWhole plant, fruits, and stemsInvigorating the stomach and promoting eruptionAntibacterial, antifungal, and antioxidantPetroselinic acid, linoleic acid, and oleic acid[19,98]
91Cryptotaenia japonica Hassk.SanyeqinWhole plantTreatment of weakness, urinary closure, and swellingAntioxidant, protection of liver, and anticancerFriedelin, stigmasterol, and apigenin[19,99,100]
92Cuminum cyminum L.ZiranqinFruitsTreatment of indigestion and stomach/abdominal painAntibacterial, antioxidant, and radical-scavenging propertiesα-pinene, 1,8-cineole, and linalool[19,101]
93Cyclorhiza peucedanifolia (Franch.) ConstanceNanzhuyehuangenqinFruitsEnriching the blood, activating the blood, and regulating menstrual disorder\\[102]
94Daucus carota L.CarrotFruitsTreatment of ascariasis, enterobiasis, and tapeworm diseaseInsecticidal, anti-bacterial, and anticancerα-pinene, isophorone oxide, and and quercetrin[18,103]
95Daucus carotavar. CarotaWild carrotFruitsTreatment of ascariasis, enterobiasis, and tapeworm diseaseInsecticidal, anti-bacterial, and anticancerα-pinene, β-bisabolene, and luteolin[18,103]
96Daucus carota var. Sativus Hoffm.Wild carrotRoots and basal leavesStrengthening spleen, treatment of dyspepsia and chronic dysenteryEnhancing immunity, anticancer and anti-agingCarotene, (1R)-α-pinene, and β-carotene[19,104]
97Eriocycla albescens (Franch.) H. WolffDianqianghuoRoots\\\[1]
98Eryngium foetidum L.CiqinWhole plantDiuresis, treatment of dropsy and snakebiteBacteriostat, diminishing of inflammation, and promotion of detumescenceLanolin alcohol, carotene, and n-nonyl aldehyde[19,105]
99Ferula bungeana Kitag.YingaweiWhole plant and seedsHeat clearing and detoxifying, relieving pain and expelling phlegm, and arresting coughingTreatment of cold, bronchopneumonia, and pulmonary tuberculosisAnisole, d-fenchone, and limonen[19,106]
100Ferula caspica M. Bieb.LihaiaweiRoots and resinEliminating stagnated food, relieving dyspepsia, insecticideTreatment of toxicityUmbelliprenin, farnesyl alcohol, and umbelliferone[107]
101Ferula conocaula KorovinYuanzhuijingaweiResin, roots, and rhizomeEliminating stagnated food, insecticide, treatment of abdominal massAnticancer and treatment of influenzaUmbelliprenin, fezelol, and feterin [107]
102Ferula feruloides (Steud.) KorovinXiangaweiRoots and resinTreatment of chilliness, and heart and abdominal painInsecticidal, bacteriostat, and antitumorα-pinene, farnesene and toluene[108,109]
103** Ferula fukanensis K. M. ShenFukangaweiResinEliminating stagnated food, relieving dyspepsia, insecticideTreatment of stomach disease, rheumatism, and joint painFerulic acid, guaiol, and ethyl-p-hydroxybenzoate[18,19,110,111,112]
104Ferula jaeschkeana VatkeZhongyaaweiResin of overground partEliminating stagnated food, insecticide, treatment of tumors, wounds, and peptic ulcersAntifertilityJaeschkeanadiol, α-pinene, and β-pinene[107]
105Ferula krylovii KorovinTuoliaweiResin Eliminating stagnated food, insecticide\Fekrynol, ferukrin and fekrynol acetate[107]
106Ferula lehmannii Boiss.DaguoaweiResinDetoxification, deodorization, and insecticideTreatment of gastropathy, rheumatism, and arthralgiaLehmannolone, sinkianone, and lehmannolone A[16,113]
107Ferula moschata (Reinsch) Koso-Pol.ShexiangaweiRootsSedative, treatment of spasmolysis and hysteriaSuppresses the replication of human immunodeficiency virus in H9 lymphocytes and suppresses the production of cytokineFezelol, fesumtuorin A, and fesumtuorin B[107]
108Ferula olivacea (Diels) H. Wolff ex Hand.-Mazz.LanlvaweiResinWind-heat dispersing, expelling phlegm, and arresting cough\\[16]
109** Ferula sinkiangensis K. M. ShenXinjiangaweiResinEliminating stagnated food, detoxification, insecticideAntioxidant, antitumor, and antiviralFerulic acid, fekrynol, and lehmannolone[16,18,114,115]
110Ferula songarica Pall. Ex Schult.ZhungaeaweiResin and whole plantEliminating stagnated food, insecticide\2,4-dihydroxylacetophenone, 3,3′, 4,4′-biphenyltetracarboxylic acid, and Δ3-carene[116]
111Ferula teterrima Kar. & Kir.ChouaweiResinEliminating stagnated food, insecticideTreatment of malaria and dysenteryFeterin, badrakemin, and badrakemin acetate[116]
112* Foeniculum vulgare Mill.XiaohuixiangFruits, roots, stems, leaves, and whole plantDispelling wind, relieving pain, and harmonizing the stomachBacteriostat, anti-inflammatory, and insecticideTrans-anethole, estragole, and anisaldehyde[18,19,117,118]
113** Glehnia littoralis F. Schmidt ex Miq.BeishashenRootsHeat clearing and detoxifying, diminishing inflammation, expelling phlegm, and arresting coughAnti-inflammatory, bacteriostat, and antitumorPhenyllactic acid, catechol, and quercetin[18,119]
114Hansenia oviformis (R. H. Shan) Pimenov & KljuykovLuanyeqianghuoRhizome, roots, and leavesTreatment of rheumatic arthralgia, cold due to wind-cold, and headache\\[16,102]
115Heracleum barmanicum KurzYinduduhuoRootsTreatment of cold abdominalgia\\[16]
116Heracleum candicans Wall. Ex DC.BaiyunhuaRootsDispelling wind, eliminating dampness, and relieving painTreatment of cold headacheBergapten, heraclenin, and imperatorin[19,120]
117Heracleum dissectifolium K. T. FuDuolieduhuoRootsDispelling wind, eliminating dampness, and relieving pain\\[16]
118Heracleum fargesii H. BoissieuChengkouduhuoRoots\\\[17]
119Heracleum franchetii M. HiroeJianyeduhuoRoots and rhizome\\\[121,122]
120Heracleum hemsleyanumNiuweiduhuoRoots and rhizomeDispelling wind, eliminating dampness, and relieving painAntioxidant, anti-inflammatory, and antitumorβ-pinene, α-pinene, and (1S)-6,6-dimethyl-2-methylene-bicyclo [3.1.1] heptane[26,27,123,124]
121Heracleum hemsleyanum DielsBeiduhuo or dahuoRoots and rhizomeDispelling wind, eliminating dampness, and relieving painAntioxidant, anti-inflammatory, and antitumorOsthole, columbianadin, and columbianetin[26,27]
122Heracleum henryi H. WolffNanguaqiRootsClearing and activating the channels and collaterals, relieving pain and scattered stasis\Turgeniifolin B, turgeniifolin C, and bergapten[125]
123Heracleum millefolium var. MillefoliumQianyeduhuo or zangdangguiRoots and rhizomeDetumescence, treating masses, and treating leprosy\\[102,121,122]
124Heracleum moellendorffii HanceDuanmaoduhuoRoots and rhizomeClearing and activating the channels and collaterals, relieving pain and scattered stasisBacteriostatβ-pinene, α-pinene, and pentadecane [123,125,126,127]
125Heracleum oreocharis H. WolffShandiduhuoRoots\\\[122]
126Heracleum rapula Franch.BaiyunhuaRootsClearing and activating the channels and collaterals, relieving pain and scattered stasisBacteriostat, treatment of asthma, and chronic bronchitisOstholce, marmesin, and imperatorin[19,125,128]
127Heracleum scabridum Franch.Dianbaizhi or caoduhuoRoots, rhizome, and fruitsTreatment of common cold due to wind-cold, headache, cough, and asthma\Heraclenol, oxypeucedanin-hydrate, and byakangelicin[129,130,131]
128Heracleum souliei H. BoissieuXiaoduhuoRoots\\Bergapten[120,122]
129Heracleum stenopterum DielsXiachiduhuoRootsTreatment of cold and rheumatism\Bergapten, isopimpinellin, and sphondin[16,132]
130Heracleum tiliifolium H. WolffDuanyeduhuoRootsDispelling wind, eliminating dampness, and relieving pain\\[16]
131Heracleum vicinum H. BoissieuPingjieduhuoRootsUsed as Notopterygium incisum\\[121,122]
132Heracleum wenchuanense F. T. Pu & X. J. HeWenchuanduhuoRoots\\\[122]
133Heracleum wolongense F. T. Pu & X. J. HeWolongduhuoRoots\\\[1,122]
134Heracleum yungningense Hand.-Mazz.NiuweiduhuoRoots and rhizomeTreatment of waist and knee pain, limb spasm, and leucoderma\Pimpinellin, angelicin, and isobergapten[26,133]
135Hydrocotyle himalaica P. K. Mukh.BinghuatianhusuiWhole plantHeat clearing, detoxifying, and eliminating dampness\Asiaticoside, madecassoside, and quercetin[134,135]
136Hydrocotyle hookeri subsp. Chinensis (Dunn ex R. H. Shan & S. L. Liou) M. F. Watson & M. L. ShehTongqiancaoWhole plantRelieving pain, diuresis, and removing dampnessAntiviral, antitumor, and anti-bacterialFlavonoids, triterpenes, and volatile oils[16,129,135]
137Hydrocotyle nepalensis Hook.HongmaticaoWhole plantClearing heat and promoting diuresis, dissolving stasis, and hemostasis and detoxificationAntiviral, antitumor, and anti-bacterialFlavonoids, triterpenes, and volatile oils[16,135]
138Hydrocotyle sibthorpioides Lam.XiaojinqiancaoWhole plantHeat clearing, diuresis, and detumescenceAnti-ulcer, antilipemic, and antiviralQuercetin, isorhamnetin, and asiaticoside[135,136]
139Hydrocotyle sibthorpioides var. batrachium (Hance) Hand.-Mazz. Ex R. H. ShanTianhusui or potongqianWhole plantHeat clearing and detoxifying, eliminating dampness, and diuresisAnti-ulcer, spasmolysis, and anti-inflammatoryBenzene propane nitrile, phytol, and caryophyllene oxide[16,137,138]
140Hydrocotyle wilfordii Maxim.YutengcaoWhole plantAs Hydrocotyle nepalensis Hook.As Hydrocotyle nepalensis Hook.Asiaticoside, madecassoside, and quercetin[134,135]
141Hymenidium chloroleucum (Diels) Pimenov & KljuykovXizangdiangaobenRoots or whole plantRegulating flow of qi, invigorating the stomach, and activating bloodAnti-inflammatory, analgesia, and nutritious functionNobiletin, falcarindiol, and isoliquiritingenin[19,139,140]
142Hymenidium davidii (Franch.) Pimenov & KljuykovSongpanlengziqinRoots\\\[141]
143Hymenidium delavayi (Franch.) Pimenov & KljuykovLijianggaobenRoots\\\[1,6]
144Hymenidium lindleyanum (Klotzsch) Pimenov & KljuykovTianshanlengziqinRootsTreatment of hypertension, coronary heart disease, and altitude stress\Bergapten, isoimperatorin, and oxypeucedanin[142]
145Kitagawia formosana (Hayata) PimenovTaiwanqianhuRoots\\\[1]
146Kitagawia macilenta (Franch.) PimenovXilieqianhuRootsExpelling phlegm\\[143]
147Kitagawia terebinthacea (Fisch. Ex Trevir.) PimenovShifangfengRootsClearing heat and dispelling wind, calming the adverse-rising energy, and expelling phlegmTreatment of cold and cough, bronchitis, and cough during pregnancyIsoepoxybuterixin[19]
148Levisticum officinale W. D. J. KochOudangguiRootsDiuresis, invigorating the stomach, and expelling phlegmInhibition of rhythmic uterine contractions, Scavenging oxygen free radicals, and anti-lipid peroxidationLigustilide, α-phellandrene, and β-phellandrene[19,144]
149Libanotis buchtormensis (Fisch.) DC.YanfengRootsTreating wind chill, dispelling wind dampness, and relieving painBacteriostat, treatment of common cold due to wind-cold, generalized pain, and coughFalcarinone, isoimperatorin, and xanthotoxin[19,145]
150Libanotis iliensis (Lipsky) KorovinXiyefangfengRootsExpel wind-cold pathogens, thermolysis, and relieving painTreatment of common cold due to wind-cold and rheumatic arthritisArchangelin and iliensin[19]
151Libanotis lancifolia K. T. FuYanfengRootsDivergent wind chill, dispelling wind-damp, and relieving painBacteriostat, treatment of common cold due to wind-cold, generalized pain, and coughFalcarinone, isoimperatorin, and xanthotoxin[19,145]
152Libanotis laticalycina R. H. Shan & M. L. ShehShuifangfengRootsDispelling wind, antispasmodic, and relieving painAnalgesic, sedative, and anti-inflammatoryOctanal, hexanal, and 2-pentylfuran[16,146,147]
153Libanotis seseloides (Fisch. & C. A. Mey. Ex Turcz.) Turcz.XiangqinRootsEliminating dampness, activating spleen, and promote blood circulationTreatment of obstruction, dysentery, and soresEdultin[19]
154Libanotis sibirica (L.) C. A. Mey.BeixiangqinRoots\\\[1]
155Libanotis spodotrichoma K. T. FuChangchongqiRootsTreating wind chill, dispelling wind dampness, and relieving painBacteriostat, treatment of common cold due to wind-cold, generalized pain, and coughFalcarinone, isoimperatorin, and xanthotoxin[19,145]
156Ligusticopsis brachyloba (Franch.) LeuteMaoqianhuRootsSudation, relieving pain, and dispelling windTreatment of headache, dizziness, arthralgia, and tetanusα-pinene, β-pinene, and sabinene[148,149,150]
157Ligusticopsis daucoides (Franch.) Lavrova & KljuykovYubaogaobenRoots\\\[1,94]
158Ligusticopsis likiangensis (H. Wolff) Lavrova & KljuykovMeimaigaobenRoots\\\[1,94]
159** Ligusticum chuanxiong Hort. ChuanxiongRoots, rhizome, stems, and leavesActivating blood, relieving pain, and dispelling windAnti-inflammatory, antioxidant, and antitumorAbietene, tetramethylpyrazine, and glucose[18,19,151]
160** Ligusticum jeholense Nakai et Kitag.LiaogaobenRoots and rhizomeDispelling wind, dispersing cold, and eliminating dampnessAnti-inflammatory, sedative, and anti-ulcerFerulic acid, isoferulic acid, and daucosterol[18,19,152,153]
161Ligusticum pteridophyllum Franch.JueyegaobenRootsDispelling wind, relieving pain, and eliminating dampnessTreatment of cold due to wind-cold and migraineAsaricin, β-sitosterol, and daucosterol[26,154]
162** Ligusticum sinense Oliv.BaogenRoots, rhizome, and tuberExpelling wind-cold pathogens, eliminating dampness, and relieving painAnti-inflammatory, central inhibitory, and anti-thrombotic effects3-butylphthalide, opthalonide, and neopthalonide[18,155]
163Ligusticum tenuissimum (Nakai) KitagawaGaobenRoots and rhizomeUsed as ligusticum sinense Oliv. Treatment of wind chill, wind-cold headache, and diarrheaAnalgesia and sedationFerulic acid[19,94,156]
164Meeboldia delavayi (Franch.) W. Gou & X. J. HeDianqinRootsTreatment of cold, fever, and headache\\[16]
165Nothosmyrnium japonicum var. JaponicumBaibaoqinRoots\Sedation and analgesia\[16]
166Nothosmyrnium japonicum var. Sutchuensis H. BoissieuChuanbaibaoqinRoots\Sedation and analgesia\[16]
167** Notopterygium franchetii H. De Boiss.KuanyeqianghuoRoots and rhizomeTreating wind chill, dispelling wind, and eliminating dampnessAnti-inflammatory, analgesic, and antiviralNodakenin, ferulic acid, and bergamot lactone[18,157,158]
168** Notopterygium incisum Ting ex H. T. ChangQianghuoRoots and rhizomeTreating wind chill, dispelling wind, and eliminating dampnessAnti-inflammatory, analgesic, and antiviralNodakenin, notopterol, and isoimperatorin[18,158]
169Oenanthe benghalensis Benth. & Hook.ShaohuashuiqinRoots and whole plantUsed as Oenanthe javanica (Blume) DC.Used as Oenanthe javanica (Blume) DC.\[17,159]
170Oenanthe javanica (Blume) DC.ShuiqinRoots, stems, and whole plantHeat clearing, detoxification, and removing liver-fireEnhancing immunity, antiarrhythmic, and hypoglycemicPhytic acid, γ-terpinene, and caryophyllene[19,160]
171Oenanthe linearis subsp. Rivularis (Dunn) C. Y. Wu & F. T. PuYeshuiqinRoots and whole plantUsed as Oenanthe javanica (Blume) DC.Used as Oenanthe javanica (Blume) DC.\[17]
172Osmorhiza aristata var. Laxa (Royle) Constance & R. H. ShanXianggenqinRootsTreating wind chill and sudation, and relieving pain\\[16]
173Ostericum citriodorum (Hance) C. C. Yuan & R. H. ShanGeshanxiangRoots and whole plantActivating blood, dissolving stasis, and dispelling windExpectorant, anti-inflammatory, and bacteriostatIsoapiole, panaxynol, and myristicin[19,161,162,163]
174Ostericum grosseserratum (Maxim.) Kitag.DachishanqinRootsActivating spleen, dispersing cold, invigorating spleen, and replenishing qi\Octanal, β-pinene, and myristic acid[16,164,165]
175Ostericum sieboldii (Miq.) NakaiShanqinRoots\\\[166,167,168]
176Peucedanum dielsianum Fedde ex H. WolffChuanfangfengRoots and rhizomeRelieving pain, dispelling wind, and eliminating dampness\Isoimperatorin, Phellopterin, and 9-octadecenoic acid[19,169,170]
177Peucedanum dissolutum (Diels) H. WolffYanfengRoots\\\[1]
178Peucedanum harry-smithii var. SubglabrumYingqianhuRootsUsed as Peucedanum praeruptorum; alleviating asthma, reducing phlegm, and heat eliminationTreatment of bronchitis, hypertension, and coronary heart diseasePsoralen, bergapten, and xanthotoxin[171,172,173,174]
179Peucedanum japonicum Thunb.BinhaiqianhuRootsClearing heat, relieving cough, and diuresisAntipyresis, analgesia, and anti-inflammatoryPeucedanol, umbelliferone, and β-pinene[19,175,176]
180Peucedanum ledebourielloides K. T. FuHuashanqianhuRoots\\\[1,168]
181Peucedanum longshengense R. H. Shan & M. L. ShehNanlingqianhuRoots\\\[1]
182Peucedanum mashanense R. H. Shan & M. L. ShehFangfengRootsExpelling phlegm\\[143]
183Peucedanum medicum DunnHuazhongqianhuRootsExpelling phlegm, alleviating asthma and cough, and arresting convulsionAnticoagulation, antioxidant, and antibacterial2-methoxy-4-vinylphenol, p-menthan-1-ol, and cis-α-bisabolene[19,177,178]
184Peucedanum medicum var. Gracile Dunn ex R. H. Shan & M. L. ShehYanqianhuRoots and rhizomeExpelling phlegm, alleviating asthma and cough, and arresting convulsionAnticoagulation, antioxidant, and antibacterialIsoimperatorin, phellorerin, and bergapten[19,177,179]
185Peucedanum medicum var. MedicumHuazhongqianhuRoots and rhizomeExpelling phlegm, alleviating asthma and cough, and arresting convulsionAnticoagulation, antioxidant, and antibacterial2-methoxy-4-vinylphenol, p-menthan-1-ol, and cis-α-bisabolene[19,177,178]
186** Peucedanum praeruptorum DunnQianhuRootsTreating gas, clearing heat, and reducing phlegmAnticoagulation, antioxidant, and anticancerPraeruptorin A, praeruptorin B, and scopoletin[18,180]
187Peucedanum shanianum F. L. Chen & Y. F. DengHongqianhuRootsRelieving asthma, expelling phlegm, and treating spasmolysisAnti-inflammatory, antiallergic, and anti-ulcerSinodielides A, deltoin, and (+)-pareruptorin A[181,182,183,184]
188Peucedanum turgeniifolium H. Wolff/Peucedanum pulchrumYaqianhuRoots and whole plantExpelling phlegm, antibechic, and dispersing wind-heatSmooth muscle spasmolysisTurgenifolin A, turgenifolin B, and bergapten[19,184,185]
189Peucedanum wawrae (H. Wolff) S. W. Su ex M. L. ShehTaishanqianhuRootsAntibechic and expelling phlegmAnalgesia, sedation, and anti-inflammatoryPeucedanocoumarin, d-laserpitin, and bergapten[16,168,186]
190Peucedanum wulongense R. H. Shan & M. L. ShehWulongqianhuRoots\\\[1]
191Phlojodicarpus sibiricus (Steph. Ex Spreng.) Koso-Pol.ZhangguoqinRoots\\\[1]
192Physospermopsis alepidioides (H. Wolff & Hand.-Mazz.) R. H. ShanQuanyedianxiongRoots\\\[1]
193Physospermopsis delavayi (Franch.) H. WolffDianxiongRoots\\\[1]
194Pimpinella anisum L.HuiqinFruitsWarming meridian and diuresisTreatment of paralysis, facial paralysis, and migraineAnisaldehyde, anisole, and (E)-anethole[187,188,189,190,191]
195Pimpinella candolleana Wight & Arn.XingyefangfengRoots or whole plantWarming spleen and stomach for dispelling cold, relieving pain, and dispelling windRelieving muscular spasm, antiviral, and antibacterialα-zingiberene, pregeijerene, and β-elemene[19,192,193,194]
196Pimpinella coriacea (Franch.) H. BoissieuGeyehuiqinWhole plantWarming spleen and stomach for dispelling cold, dispelling wind, and eliminating dampness, and activating blood\\[195]
197Pimpinella diversifolia DC.YiyehuiqinWhole plantExpelling phlegm, activating blood, relieving pain, and removing toxicity for detumescenceAnti-inflammatory, antitumor, and anti-tuberculosis1H-benzocycloheptene, sesquiphellandrene, and β-chamigrene[196,197,198]
198Pimpinella diversifolia var. DiversifoliaYiyehuiqinRoots or whole plantInvigorating stomach, dispersing accumulations, and antidiarrheicAnti-inflammatory, antitumor, and anti-tuberculosis1H-benzocycloheptene, sesquiphellandrene, and β-chamigrene[19,196,197,198]
199Pimpinella thellungiana H. WolffYanghongshanRoots or whole plantWarming spleen and stomach for dispelling cold, benefiting qi and nourishing blood, and coordinating yin and yangHypotensive, hypolipidemic, and modulates and improves cellular immunityProtocatechuic acid, gallic acid, and neochlorogenic acid[199,200,201,202,203]
200Pleurospermopsis bicolor (Franch.) Jing Zhou & J. WeierselengziqinWhole plantWarming spleen and stomach for dispelling cold, benefiting qi and nourishing blood, and coordinating yin and yangHypotensive, antilipemic, and modulates and improves cellular immunity, antimicrobial Chlorogenic acid, isochlorogenic acid A, and apigenin-7-O-β-D-glucuronopyranoside[199,201,202]
201Pleurospermum aromaticum W. W. Sm.fangxianglengziqinWhole plant\\\[1]
202Pleurospermum giraldii DielsTaibaidiangaobenWhole plant and seedsWarming spleen, digesting food, and treating vaginal dischargeInhibition of smooth muscle contraction and releasing intestinal smooth muscle spasmCarvone, n-triactanol, and γ-sitosterol[19,204,205,206]
203Pleurospermum rivulorum (Diels) K. T. Fu & Y. C. HoShetouqianghuoRoots or whole plantTonifying the kidney \\[1,102]
204Pternopetalum leptophyllum (Dunn) Hand.-Mazz.BaoyenangbanqinWhole plant\\\[16]
205Pternopetalum vulgare var. VulgareWupiqingRoots or whole plantTreatment of lumbago\\[19]
206Sanicula astrantiifolia H. Wolff ex KretschmerWupifeng or xiaoheiyaoWhole plantTonifying the kidney and lung, treating tuberculosis and kidney vacuity lumbar painAntioxidant, antibacterial, and bacteriostatTotal flavonoids, rutin, and polysaccharides[207,208,209]
207Sanicula caerulescens Franch.DafeijincaoWhole plantDispelling wind, treating phlegm, and promoting blood circulation for regulating menstruationExpectorant, antibechic, and anti-inflammatoryAngelicin, isoferulaldehyde, and 12-hydroxybakuchiol[19,210,211]
208Sanicula chinensis BungeShanqincaiWhole plantDetoxification, hemostasis, and treatment of throat painAntiviral\[129,212,213,214]
209Sanicula elata Buch.-Ham. Ex D. DonSanyeqiWhole plantUsed as Sanicula lamelligeraAntiviralOleanane saponins, saponins, and microelement[212,213,214,215,216,217]
210Sanicula lamelligera HanceDafeijincaoWhole plantDispelling wind, treating phlegm, and promoting blood circulation for regulating menstruationExpectorant, antibechic, and anti-inflammatoryAngelicin, isoferulaldehyde, and 12-hydroxybakuchiol[19,210,211]
211Sanicula orthacantha S. MooreHeiejiaobanRoots or whole plantHeat clearing and detoxifying, treatment of traumatic injury\\[16]
212Sanicula orthacantha var. Brevispina H. BoissieuYajiaoqiWhole plantHeat clearing and detoxifying, treatment of traumatic injury\\[16]
213** Saposhnikovia divaricata (Turcz.) Schischk.FangfengRootsDispelling wind, removing dampness to relieve pain, and arresting convulsionAnalgesia, sedation, and anti-inflammatoryPrim-o-glucosylcimifugin, 5-O-methylvisamitol glycoside, and cimifugin[18,218,219]
214Selinum cryptotaenium H. BoissieuLinagshechuangRoots\\\[1]
215Semenovia montana Kamelin & V. M. Vinogr.LieyeduhuoRoots\\\[122]
216Seseli delavayi Franch.YunfangfengRootsDispelling wind, removing dampness, and relieving pain\\[19]
217Seseli mairei var. MaireiYunfangfengRoots and rhizomeDispelling wind, removing dampness, and relieving painAntipyretic, analgesic, and anti-inflammatorySphondin, bergapten, and isopimpinellin[19,220,221,222]
218Seseli yunnanense Franch.ChuanfangfengRoots and rhizomeDispelling wind, removing dampness, and relieving painAntipyretic, analgesic, and anti-inflammatoryFalcarindiol, falcarinol, and glycerol monolinoleate[19,220,221,223]
219Seselopsis tianschanica Schischk.XiguiqinRootsTreatment of fall injury, anemia, and other diseasesTreatment of nasopharynx cancer\[16]
220Sium suave WalterCaogaobenWhole plantDispersing cold, relieving headache, and decreasing blood pressure\\[16,224]
221Spuriopimpinella arguta (Diels) X. J. He & Z. X. WangJianchidayeqinRoots and whole plant\\\[195]
222Tongoloa silaifolia (H. Boissieu) H. WolffTaibaisanqiRootsStopping bleeding, relieving pain, and activating bloodTreatment of traumatic injury, trauma bleeding, and rheumatic painSuberosin, crenulatin, and isoimperatorin[19,225,226]
223Tongoloa stewardii H. WolffGulingdongeqinRoots\\\[1]
224Torilis japonica (Houtt.) DC.HeshiFruits and rootsLumbricide ascaricide and external antiphlogistic agent\Essential oil[19]
225Torilis scabra (Thunb.) DC.HuananheshiFruits or whole plantActivating blood, insecticide, and antidiarrhealBacteriostatCyclohexene, 6,6-dimethyl-bicyclo [3.1.1] heptane-2-carboxaldehyde, and endo-borneol[19,195,227]
226Trachyspermum ammi (L.) Sprague.AyuweiFruitsDispersing cold, relieving pain, and treating indigestionAntibacterial, antimicrobial, and antifungalthymol, ρ-cymene, and β-pinene[19,188,228,229,230,231]
227Vicatia thibetica H. BoissieuXiguiRootsDispelling wind, eliminating dampness, and dispelling coldAnti-fatigue, antioxidant, and enhancing immunityUmbelliferone, bergapten, and ferulic acid[232,233,234]
228Visnaga daucoides Gaertn.AmiqinFruitsTreatment of coronary artery disease, such as coronary thrombosisTreatment of renal colic, angina pectoris, and urinary calculiKhellin, visnagin, and khellol glycoside[16,235]
Note: * means the plant reported in “Pharmacopoeia of the People’s Republic of China (2020)”, ** means the plant roots used as medicine reported in “Pharmacopoeia of the People’s Republic of China (2020)” [18].
Table 2. Quality markers in the 22 AMPs recorded in the “Pharmacopoeia of the People’s Republic of China” (2020) [18].
Table 2. Quality markers in the 22 AMPs recorded in the “Pharmacopoeia of the People’s Republic of China” (2020) [18].
No./No. in
Table 1
Plant SpeciesQuality MarkersClassificationBiosynthetic Pathway
1/8Angelica biserrataOsthole (1) and columbianadin (2)CoumarinsPhenylpropanoids
2/10Angelica dahuricaImperatorin (3) and isoimperatorin (4)CoumarinsPhenylpropanoids
3/11Angelica dahurica cv. Hangbaizhi(3) and (4)CoumarinsPhenylpropanoids
4/13Angelica decursivaNodakenin (5)CoumarinsPhenylpropanoids
5/20Angelica sinensisFerulic acid (6) and ligustilide (15)Propenyl benzenes and phthalidesPhenylpropanoids and phthalides
6/34Bupleurum chinenseSaikosaponin a (11) and saikosaponin d (12)TriterpenesTerpenes
7/67Bupleurum scorzonerifolium(11) and (12)TriterpenesTerpenes
8/79Changium asiaticaAsiaticoside (13) and madecassoside (14)TriterpenesTerpenes
9/80Changium smyrnioides
10/83Changium monnieri(1)CoumarinsPhenylpropanoids
11/94Daucus carota
12/102Ferula fukanensis
13/109Ferula sinkiangensis
14/112Foeniculum vulgareTrans-anethole (7)PhenylpropenePhenylpropanoids
15/113Glehnia littoralis
16/159Ligusticum chuanxiong(6) and levistilide A (16)Phenylpropanoids and phthalidePhenylpropanoids and phthalides
17/160Ligusticum jeholense(6) PhenylpropanoidsPhenylpropanoids
18/162Ligusticum sinense(6) PhenylpropanoidsPhenylpropanoids
19/167Notopterygium franchetii(4), (5), and notopterol (8)CoumarinsPhenylpropanoids
20/168Notopterygium incisum(4), (5), and (8)CoumarinsPhenylpropanoids
21/186Peucedanum praeruptorumPraeruptorin A (9) and praeruptorin B (10)CoumarinsPhenylpropanoids
22/213Saposhnikovia divaricataPrim-O-glucosylcimifugin (17) and 5-O-methylvisammioside (18)ChromonesChromones
Note: “–” indicates there are no specific quality markers recorded in the “Pharmacopoeia of the People’s Republic of China” (2020) [18].
Table 3. Classification of the 38 rhizomatous AMPs affected by BF.
Table 3. Classification of the 38 rhizomatous AMPs affected by BF.
No./No. in Table 1Plant SpeciesClassesReferencesNo./No. in Table 1Plant SpeciesClassesReferences
1/4Angelica acutiloba (Siebold & Zucc.) Kitag.(1)[306]20/109* Ferula sinkiangensis K. M. Shen(3)[19]
2/8** Angelica biserrata (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. Shan(1)[307]21/111Ferula teterrima Kar. & Kir.(3)[19]
3/10** Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav.(1)[308]22/113** Glehnia littoralis F. Schmidt ex Miq.(2)[309]
4/11** Angelica dahurica cv. Hangbaizhi(1)[308]23/121Heracleum hemsleyanum Diels(1)[307]
5/13** Angelica decursiva (Miq.) Franch. & Sav.(1)[310]24/126Heracleum rapula Franch.(1)[19]
6/14Angelica gigas Nakai(2)[311]25/148Levisticum officinale W. D. J. Koch(3)[19]
7/19Angelica polymorpha Maxim.(1)[19]26/149Libanotis buchtormensis (Fisch.) DC(3)[312]
8/20** Angelica sinensis (Oliv.) Diels(1)[313]27/150Libanotis iliensis (Lipsky) Korovin(1)[19]
9/26Anthriscus sylvestris (L.) Hoffm.(3)[314]28/151Libanotis lancifolia K. T. Fu(3)[19,312]
10/34** Bupleurum chinense DC.(2)[315]29/153Libanotis seseloides (Fisch. & C. A. Mey. ex Turcz.) Turcz.(1)[19]
11/67** Bupleurum scorzonerifolium Willd.(2)[315]30/155Libanotis spodotrichoma K. T. Fu(3)[19,312]
12/80** Changium smyrnioides H. Wolff(2)[316]31/159** Ligusticum chuanxiong Hort. (2)[317]
13/81Chuanminshen violaceum M. L. Sheh & R. H. Shan(2)[318]32/160** Ligusticum jeholense Nakai et Kitag.(2)[319]
14/82Cicuta virosa L.(3)[19]33/162** Ligusticum sinense Oliv.(2)[319]
15/96Daucus carota var. sativus Hoffm.(1)[320]34/167** Notopterygium franchetii H. de Boiss.(2)[321]
16/102Ferula feruloides (Steud.) Korovin(3)[19]35/168** Notopterygium incisum Ting ex H. T. Chang(2)[321]
17/103Ferula fukanensis K. M. Shen(3)[19]36/186** Peucedanum praeruptorum Dunn(1)[322]
18/106Ferula lehmannii Boiss.(3)[19]37/195Pimpinella candolleana Wight & Arn.(3)[19]
19/108Ferula olivacea (Diels) H. Wolff ex Hand.-Mazz.(3)[19]38/213** Saposhnikovia divaricata (Turcz.) Schischk.(1)[323,324]
Note: (1) BF significantly affects the yield and quality, and the rhizomes or roots cannot be used for clinical applications; (2) BF differently affects the yield, but the rhizomes or roots can be used as medicine to some extent; and (3) BF has no significant effect on the yield and quality, and their rhizomes or roots are used as medicine. * means the plant reported in “Pharmacopoeia of the People’s Republic of China (2020)”, ** means the plant roots used as medicine reported in “Pharmacopoeia of the People’s Republic of China (2020)” [18].
Table 4. Reported approaches for inhibiting BF in 25 AMPs.
Table 4. Reported approaches for inhibiting BF in 25 AMPs.
ClassNo./No. in Table 1Plant SpeciesMeasure I
(Seeding)
Measure II
(Cultivation)
Measure III
(Abiotic)
Measure IV
(Molecular Biology)
(1)1/4Angelica acutiloba (Siebold & Zucc.) Kitag.Seedling diameter [339]Density of planted seedlings [339]Paclobutrazol concentration [339]\
(1)2/8** Angelica biserrate (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. ShanSeedling size and root length [307]\\\
(1)3/10** Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav.Seed quality and seed maturity degree [308,333]Soil selection to avoid continuous cropping and fertile sticky soil, density of planted seedlings, and seeding time [333,335,340]Rational application of fertilizer, and appropriate N, P, and K fertilizer [308,333,341]Seven types of reproductive conversion genes, and constans-like genes [342,343]
(1)4/11** Angelica dahurica cv. HangbaizhiSeed quality and seed maturity degree [308,333]Soil selection to avoid continuous cropping and fertile sticky soil, density of planted seedlings, and seeding time [333,335,340]Rational application of fertilizer, and appropriate N, P, and K fertilizer [308,333,341]Seven types of reproductive conversion genes, and constans-like genes [342,343]
(1)5/13** Angelica decursiva (Miq.) Franch. & Sav.\\\\
(1)6/19Angelica polymorpha Maxim.\\\\
(1)7/20** Angelica sinensis (Oliv.) DielsSeed maturity degree, seeding age, seeding weight, root diameter, and excellent variety [328,330,344,345,346]Short day, storage temperature, and reasonable planting and cultivation [313,344,347]Plant growth retardant [348]Four pathways of genes for regulating early BF [349,350]
(1)8/96Daucus carota var. Sativus Hoffm.Endogenous hormone content and different cultivars [351,352]Temperature, short day, and seeding time [351,353,354,355]\Two major genes: Bol1-1 and Bol1-2 [356]
(1)9/121Heracleum hemsleyanum Diels\\\\
(1)10/126Heracleum rapula Franch.\\\\
(1)11/150Libanotis iliensis (Lipsky) Korovin\\\\
(1)12/153Libanotis seseloides (Fisch. & C. A. Mey. ex Turcz.) Turcz.\\\\
(1)13/186** Peucedanum praeruptorum Dunn\Compact planting and seeding time [357,358]\\
(1)14/213** Saposhnikovia divaricata (Turcz.) Schischk.\Density of planted seedlings [338]\Differentially expressed genes associated with BF during early flowering, flower bud differentiation, and late flowering [359]
(2)15/14Angelica gigas Nakai\\\\
(2)16/34** Bupleurum chinense DC.\Cut the flowers [315]Temperature [360]Flowering gene (BcSVP, BcPAF1, BcCO, and BcFT) [361]
(2)17/67** Bupleurum scorzonerifolium Willd.\\\\
(2)18/80Changium smyrnioides H. Wolff\Cut the flowers [316]\\
(2)19/81Chuanminshen violaceum M. L. Sheh & R. H. Shan\\\\
(2)20/113** Glehnia littoralis F. Schmidt ex Miq.\Cut the flowers [309]\\
(2)21/159** Ligusticum chuanxiong Hort.Asexual reproduction and tissue culture [317,362]Cut the bolted stem [363]\Transcriptome original data by Illumina sequencing technology [364]
(2)22/160** Ligusticum jeholense Nakai et Kitag.\Cut the flower [365,366]\\
(2)23/162** Ligusticum sinense Oliv.\Cut the flower [365,366]\\
(2)24/167** Notopterygium franchetii H. de Boiss.\Cut the flower [367]\\
(2)25/168** Notopterygium incisum Ting ex H. T. Chang\Cut the flower [321]\\
Note: ** means the plant roots used as medicine reported in “Pharmacopoeia of the People’s Republic of China (2020)” [18].
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, M.; Li, M.; Wang, L.; Li, M.; Wei, J. Apiaceae Medicinal Plants in China: A Review of Traditional Uses, Phytochemistry, Bolting and Flowering (BF), and BF Control Methods. Molecules 2023, 28, 4384. https://doi.org/10.3390/molecules28114384

AMA Style

Li M, Li M, Wang L, Li M, Wei J. Apiaceae Medicinal Plants in China: A Review of Traditional Uses, Phytochemistry, Bolting and Flowering (BF), and BF Control Methods. Molecules. 2023; 28(11):4384. https://doi.org/10.3390/molecules28114384

Chicago/Turabian Style

Li, Meiling, Min Li, Li Wang, Mengfei Li, and Jianhe Wei. 2023. "Apiaceae Medicinal Plants in China: A Review of Traditional Uses, Phytochemistry, Bolting and Flowering (BF), and BF Control Methods" Molecules 28, no. 11: 4384. https://doi.org/10.3390/molecules28114384

APA Style

Li, M., Li, M., Wang, L., Li, M., & Wei, J. (2023). Apiaceae Medicinal Plants in China: A Review of Traditional Uses, Phytochemistry, Bolting and Flowering (BF), and BF Control Methods. Molecules, 28(11), 4384. https://doi.org/10.3390/molecules28114384

Article Metrics

Back to TopTop