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Abstract: This work studies the use of Fe/Ni-MOFs for the removal of ciprofloxacin (CIP) in wastew-
ater. Fe/Ni-MOFs are prepared by the solvothermal method and characterized by X-ray diffraction
(XRD), a scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and
a thermal gravimetric analyzer (TG). Under the conditions of the concentration of 50 ppm, a mass
of 30 mg, and a temperature of 30 ◦C, the maximum adsorption capacity of ciprofloxacin removal
within 5 h was 232.1 mg/g. The maximum removal rate was 94.8% when 40 mg of the Fe/Ni-MOFs
was added to the solution of 10 ppm ciprofloxacin. According to the pseudo-second-order (PSO)
kinetic model, the R2 values were all greater than 0.99, which proved that the adsorption theory of
ciprofloxacin by Fe/Ni-MOFs was consistent with the practice. The adsorption results were mainly
affected by solution pH and static electricity, as well as other factors. The Freundlich isotherm model
characterized the adsorption of ciprofloxacin by Fe/Ni-MOFs as multilayer adsorption. The above
results indicated that Fe/Ni-MOFs were effective in the practical application of ciprofloxacin removal.

Keywords: metal–organic frameworks; antibiotics; adsorption

1. Introduction

Water pollution is one of the world’s major environmental problems. China’s rapid
economic development, industrial and agricultural development, urban expansion, and
other activities have complicated the types and sources of water pollutants, which not
only cause great harm to the basin’s water environment but also increase the difficulty
in water pollution prevention. The types of water pollution include organic pollution,
inorganic pollution, toxic pollution, eutrophication pollution, oil pollution, heat pollution,
and pollution by pathogenic microorganisms, etc. [1,2]. The problem of water pollution
is becoming increasingly serious due to the rapid development of industry, medicine,
and aquaculture and the rising use of antibiotics (such as ciprofloxacin). The abuse and
unreasonable discharge of antibiotics are seriously threatening the living environment of
human beings, and numerous kinds of antibiotics have been detected in various water
resource environments [3,4].

Antibiotics have a strong bactericidal effect [5] and are widely used as antimicrobials to
treat and prevent diseases in humans and animals. It is antimicrobial against Haemophilus
influenzae, Enterobacter, Streptococcus, Staphylococcus aureus, and Legionella. Due to
people’s over-reliance on antibiotics and their widespread use, large amounts of antibi-
otics enter the environment and become new pollutants, threatening the environment and
human health. Antibiotics have been reported to have a very short residence time after
entering the body, with only a small proportion being absorbed into the organism for
metabolism. Between 60% and 90% of antibiotics are excreted in feces and urine as proto-
types or their metabolites [6] and end up in the environment through hospital wastewater,
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aquaculture wastewater, domestic sewage, and other means, with sewage treatment plants
being one of the major sources of environmental antibiotics. It has been reported that
more than 85% of CIP frequently enters the environment as raw CIP and its metabolites
through sewage treatment, animal manure, etc. In recent years, CIP has been widely
detected in environmental media such as water, soil, and plants [7]. The CIP concentration
detected in effluent from sewage treatment plants in Brazil was 2378 ng·L−1 [8], higher
than reported in Wisconsin, Sweden, and in effluents from Chinese sewage treatment
plants. The highest CIP concentration detected in effluents from sewage treatment plants
in Finland was 4230 ng·L−1 [9].The Chinese CIP pollution is also severe. According to the
investigation of Changsha, the concentration of CIP is 0.03–0.15 µg·L−1 in Xiangjiang River,
0.02~0.34 µg·L−1 in Laodao River, and 0.01~0.8 mg·L−1 in the sewage treatment plant.

Ciprofloxacin is a quinolone antibiotic with broad-spectrum antibacterial activity. Its
mechanism of action is to inhibit DNA cyclase and play a bactericidal role by destroying
the structure of bacterial DNA, preventing cell division [10]. Ciprofloxacin has low toxicity,
few side effects, and is widely used in human and veterinary medicine. However, the ex-
tensive use of ciprofloxacin is leading to environmental pollution, including soil and water
contamination, which can seriously endanger human life and health [11]. Ciprofloxacin is
present in wastewater at varying levels, and its presence is already threatening ecosystems
and human health. Therefore, the efficient, environmentally friendly, and rapid removal of
ciprofloxacin antibiotic pollution in wastewater has become a key issue to be solved [12].

Scientists have explored a variety of methods to remove antibiotics. Treatment for
antibiotics in wastewater includes biological, chloride, electrochemical, adsorption, thin
film, and microbial degradation methods [13], all of which can remove antibiotics. However,
many of these techniques have various problems, such as technical difficulty, high cost,
certain risks, low degradation, and selection effects.

Metal–organic frameworks (MOFs) were first reported in the 1990s as a new functional
material with an adjustable structure and the advantages of good selectivity, high specific
surface areas, and porosities [14]. MOF materials are unlike traditional porous inorganic
materials and are widely used in many scientific research fields, such as adsorption and
separation [15–17], catalysis [18], chemical sensing [19], carbon dioxide capture [20,21],
energy storage [22,23], antibiotics [24,25], drug delivery [26,27], the adsorption of heavy
metal ions [28,29], organic dyes [30–36], etc. MOFs also have good application prospects for
wastewater treatment. The Yaghi research group completed a large amount of fundamental
research into MOF materials [37], particularly MOF-5, which is considered a milestone in
metal-organic skeleton materials [38]. With the continuous exploration and application
of MOF materials, an increasing number of studies have been conducted on their use in
the field of environmental pollution [39–41]. MOF materials can not only detect pollu-
tants in water but also adsorb them, and their significant application value is gradually
emerging [42].

While monomeric MOF materials have poor pollutant removal effects, the synergistic
phenomenon between metals in polymetallic MOF materials results in a better pollutant
removal effect [39]. In this paper, metal synergism is employed to prepare Fe/Ni-MOFs
with iron and nickel ions as metal ion sources and 1,3,5-phthalic acid as the organic ligand
under solvothermal action. The use of this material for the removal of ciprofloxacin is then
studied for use in wastewater treatment.

2. Results
2.1. Material Characterization

The FTIR shown in Figure 1 indicates there are strong absorption peaks at 1577 and
1374 cm−1, respectively. This is largely attributed to the delocalization of the carboxyl group
of the organic chain during the reaction, rendering the two C-O bonds in an equal state.
Strong absorption peaks appear between 1620–1550 and 1420–1300 cm−1, which indicate
that carboxylic acid can react with metal salt [43]. In total, 715 cm−1 is the substitution of
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1,3,5 on the organic ligand, 765 cm−1 is the benzene ring C-H plane bending vibration, and
1105 cm−1 is the stretching vibration of C-O bond.
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Figure 1. FTIR spectrum of Fe/Ni-MOFs.

As shown in Figure 2, the XRD characteristic peaks of the Fe/Ni-MOFs mainly appear
at 10.8◦, 18.9◦, 24.2◦, and 27.7◦, and the diffraction peaks of the Fe/Ni-MOFs are sharp and
strong. According to the results, the Brunauer–Emmett–Teller surface area is 497.9 m2/g,
the average adsorption pore diameter is 2.03 nm, and the average particle size is 12.0501 nm,
illustrating the mesoporous nature of the material. Combined with the SEM image (as
shown in Figure 3) and BET testing outcome, it can be proved that the Fe/Ni-MOFs have
high crystallinity and good dispersion. This is mainly because the interaction between
organic ligands and metal ions is weakened or even disappears while the deprotonation of
organic ligands is enhanced, which promotes crystal growth in organic solvents.
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The stability of the material is one of the factors affecting its performance. It can
be seen from Figure 4 that the mass increases by 2.4% at the beginning, which is mainly
because the material is porous and can absorb part of the gas. As illustrated in Figure 4,
there are two main stages of material loss. The first stage occurs between 20 and 132 ◦C,
which is largely attributed to the solvent contained in the material, and the loss is 17.4%
(1.015 mg). In the second stage, the organic chains in the material are broken, and the
structure begins to collapse until 506 ◦C, at which stage 35.7% (2.083 mg) is lost; at 800 ◦C,
there is 25% (1.459 mg)residue [44,45].
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2.2. Removal of Ciprofloxacin by Fe/Ni-MOFs

Different amounts of the Fe/Ni-MOFs were tested to verify their ability to remove
antibiotics (ciprofloxacin). Figure 5 shows that the removal first increases and then decreases
with increasing mass at a constant concentration. Up to 94.13% removal was achieved
with a 10 mg/L concentration of ciprofloxacin and a 40 mg mass of the Fe/Ni-MOFs. For
ciprofloxacin concentrations of 20 mg/L and 50 g mass Fe/Ni-MOFs, removal was the
worst, with a removal rate of only 45.07%. A contributing factor to this may have been the
large number of the Fe/Ni-MOFs covering the active sites, reducing the adsorption capacity.

The removal effect of the Fe/Ni-MOFs on ciprofloxacin was further studied by sim-
ulating the first and second kinetics. The results are shown in Figure 5, and the kinetic
formula is: [46–48]

ln
Ct

C0
= k1t (1)

t
qt

=
t

qe
+

1
k2q2

e
(2)

where k is the kinetic reaction constant (min), qt is the adsorption amount of MOFs per unit
time, and qe (mg/g)is the adsorption amount of MOFs at equilibrium.

As illustrated in Figures 6 and 7 and Table 1, the R2 of the second kinetics is basically
around 0.99, which is better than that of the first kinetics. This result indicates that the
removal of ciprofloxacin by Fe/Ni-MOFs is mainly by chemisorption, and the removal
ability of ciprofloxacin by Fe/Ni-MOFs is essentially consistent with the effect in practice.



Molecules 2023, 28, 4411 6 of 17

Molecules 2023, 28, x FOR PEER REVIEW 6 of 18 
 

 

2.2. Removal of Ciprofloxacin by Fe/Ni-MOFs 
Different amounts of the Fe/Ni-MOFs were tested to verify their ability to remove 

antibiotics (ciprofloxacin). Figure 5 shows that the removal first increases and then de-
creases with increasing mass at a constant concentration. Up to 94.13% removal was 
achieved with a 10 mg/L concentration of ciprofloxacin and a 40 mg mass of the Fe/Ni-
MOFs. For ciprofloxacin concentrations of 20 mg/L and 50 g mass Fe/Ni-MOFs, removal 
was the worst, with a removal rate of only 45.07%. A contributing factor to this may have 
been the large number of the Fe/Ni-MOFs covering the active sites, reducing the adsorp-
tion capacity. 

 
Figure 5. Removal rate of Fe/Ni-MOFs ((a) 5 ppm; (b) 10 ppm; (c) 20 ppm;(d) 30 ppm). 

The removal effect of the Fe/Ni-MOFs on ciprofloxacin was further studied by simu-
lating the first and second kinetics. The results are shown in Figure 5, and the kinetic for-
mula is: [46–48] ln C୲C = kଵt (1)

tq୲ = tqୣ + 1kଶqଶୣ (2)

where k is the kinetic reaction constant (min), qt is the adsorption amount of MOFs per 
unit time, and qe (mg/g)is the adsorption amount of MOFs at equilibrium. 

As illustrated in Figures 6 and 7 and Table 1, the R2 of the second kinetics is basically 
around 0.99, which is better than that of the first kinetics. This result indicates that the 
removal of ciprofloxacin by Fe/Ni-MOFs is mainly by chemisorption, and the removal 
ability of ciprofloxacin by Fe/Ni-MOFs is essentially consistent with the effect in practice. 

Figure 5. Removal rate of Fe/Ni-MOFs ((a) 5 ppm; (b) 10 ppm; (c) 20 ppm;(d) 30 ppm).

Molecules 2023, 28, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 6. The pseudo-first-order kinetic model for the adsorption of ciprofloxacin over the Fe/Ni-
MOFs: (a) 5 ppm; (b) 10 ppm; (c) 20 ppm; (d) 30 ppm. 

 
Figure 7. The pseudo-second-order kinetic model for the adsorption of ciprofloxacin over the Fe/Ni-
MOFs: (a) 5 ppm; (b) 10 ppm; (c) 20 ppm; (d) 30 ppm. 

Figure 6. The pseudo-first-order kinetic model for the adsorption of ciprofloxacin over the Fe/Ni-
MOFs: (a) 5 ppm; (b) 10 ppm; (c) 20 ppm; (d) 30 ppm.



Molecules 2023, 28, 4411 7 of 17

Molecules 2023, 28, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 6. The pseudo-first-order kinetic model for the adsorption of ciprofloxacin over the Fe/Ni-
MOFs: (a) 5 ppm; (b) 10 ppm; (c) 20 ppm; (d) 30 ppm. 

 
Figure 7. The pseudo-second-order kinetic model for the adsorption of ciprofloxacin over the Fe/Ni-
MOFs: (a) 5 ppm; (b) 10 ppm; (c) 20 ppm; (d) 30 ppm. 
Figure 7. The pseudo-second-order kinetic model for the adsorption of ciprofloxacin over the Fe/Ni-
MOFs: (a) 5 ppm; (b) 10 ppm; (c) 20 ppm; (d) 30 ppm.

Table 1. Kinetic parameters for the adsorption of ciprofloxacin over the Fe/Ni-MOFs.

Con (ppm) Mass (mg) Pseudo-Second-Order Kinetics Pseudo-First-Order Kinetics
K(g·(mg·min)−1) R2 K(L·min−1) R2

5

30 0.02874 0.99824 −0.00382 0.97152
40 0.03831 0.99973 −0.00513 0.93588
50 0.04643 0.99882 −0.00432 0.81166

100 0.10336 0.99983 0.00111 0.89982

10

30 0.01357 0.9997 −0.00421 0.92322
40 0.01861 0.99955 −0.00402 0.50108
50 0.02282 0.99637 −0.00404 0.98182

100 0.05111 0.99993 −0.000273 -

20

30 0.00657 0.99348 −0.00528 0.99668
40 0.00924 0.99914 −0.00765 0.9167
50 0.01895 0.98909 −0.00162 0.97983

100 0.03144 0.98959 −0.0023 0.9383

30

30 0.00573 0.99967 −0.00339 0.96968
40 0.00739 0.99588 −0.00765 0.9167
50 0.00872 0.99683 −0.00454 0.97988

100 0.01774 0.99940 −0.0063 0.88405

To explore the effect of temperature on the removal of ciprofloxacin by Fe/Ni-MOFs,
the reaction temperatures were controlled at 30, 40, and 50 ◦C. The data were further
analyzed by the Langmuir and Freundlich isotherm models. At the same time, in order
to ensure the theory was close to practice, the removal efficiency was calculated by the
following formulas:

Ce

qe
=

Ce

qmax
+

1
KLqmax

(3)
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lnqe =
1
n

lnCe + lnKf (4)

The effect of temperature on adsorption was further analyzed by adding 30 mg of the
Fe/Ni-MOFs and 30 mg/L ciprofloxacin solution at the same conditions. The results are
provided in Figure 8 and Table 2. As illustrated, Freundlich isotherm is more suitable to
describe the adsorption of the Fe/Ni-MOFs to ciprofloxacin. The Fe/Ni-MOFs’ adsorption
of ciprofloxacin is a typical, mainly physical adsorption.

Table 2. Adsorption isotherm parameters of ciprofloxacin onto MOFs at room temperature.

T (K) Langmuir Isotherm Freundlich Isotherm

k R2 Kf (mg/g (L/mg)1/n) n R2

293 (linear) 0.06343 0.62107 40.9355 1.1267 0.89451
293 (non-linear) - 0.59199 - - 0.90406

The adsorption mechanism of ciprofloxacin by Fe/Ni-MOFs was then analyzed by
evaluating the thermodynamic equilibrium constant, Gibbs free energy, and the Van ‘t Hoff
equation, according to the following formula:

lnK0 =
∆S0

R
− ∆H0

RT
(5)

∆G0 = −RTlnK0 (6)

K0 =
qe
ce

(7)

where R is the gas constant (8.314 Jmol−1 k−1), and K0 is the Langmuir adsorption constant
(L mol−1). To obtain the values of ∆H0 and ∆S0, a linear plot of lnK0 versus 1/T is
constructed, as shown in Figure 9. The ∆H0 and ∆S0 are then calculated from the Van ’t
Hoff plot, as shown in Table 3.
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Table 3. The thermodynamic parameters of ciprofloxacin adsorption onto Fe/Ni-MOFs.

T (K) ∆G0 (KJ/mol) ∆H0 (−Slope × R) (KJ/mol) S0 (Intercept × R) (J/mol/K)

298 −46.2 −414.6 −1236

As illustrated in Figure 9 and Table 3, ∆G0 and ∆H0 are both negative, indicating
that the adsorption of ciprofloxacin by Fe/Ni-MOFs is spontaneous and exothermic. The
enthalpy of chemisorption ranges from 84 to 420 kJ mol−1, and physical adsorption occurs
when the enthalpy changes by less than 84 kJ mol−1. Therefore, the Fe/Ni-MOFs’ adsorp-
tion of ciprofloxacin is a typical physical adsorption, and entropy and enthalpy changes are
the main influencing factors of the adsorption [49–51].

In summary, the enhanced effect of the Fe/Ni-MOFs on ciprofloxacin removal is mainly
due to the factors discussed below. As Fe/Ni-MOFs are porous materials, ciprofloxacin
can be adsorbed by the pores of the Fe/Ni-MOFs. Fe/Ni-MOFs may have some unreacted
groups, and the Zeta potential characterization indicates that the charge in the Fe/Ni-
MOFs is −9.98 mv in the water, which can be adsorbed electrostatically. As Fe/Ni-MOFs
and ciprofloxacin both have benzene rings, the two molecules may be bound together by
π-π adsorption. Fe/Ni-MOF materials and ciprofloxacin also have the capacity to form
hydrogen bonds [36–40]. In summary, the adsorption of ciprofloxacin by Fe/Ni-MOF
materials is a combination of chemisorption and physical adsorption, which enhances the
removal effect.

The effect of pH on ciprofloxacin was studied by adding 30 mg of the Fe/Ni-MOFs to
30 mg/L of ciprofloxacin at different pH levels, whereby the structures of the Fe/Ni-MOFs
are destroyed in strong acid or alkali solutions. As shown in Figure 10, with increasing pH,
the adsorption capacity first increases and then decreases. The adsorption is the best.
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The adsorption effects of the Fe/Ni-MOFs for the removal of ciprofloxacin were then
compared with other adsorbents. As shown in Table 4, Fe/Ni-MOFs are effective for
ciprofloxacin removal.

Table 4. Comparison of the adsorption of ciprofloxacin with other adsorbents.

Adsorbent qmax (mg g−1) References

ZIF-67-NO3 86.4

[52]

ZIF-67-Cl 92.3
ZIF-67-SO4 93.5
ZIF-67-OAc 80.1
ZIF-8-leaf 86.5

UIO-66 57.5
ZIF-8-Cube 69.2

Fe3O4/C 98.28 [53]
SiO2 Nanoparticles 59.28 [54]

Fe/Ni-MOFs 232.1 This work

3. Discussion

Due to people’s over-reliance on antibiotics and their widespread use, large amounts of
antibiotics enter the environment and become new pollutants, threatening the environment
and human health. As the antibiotic contamination of aqueous solutions is becoming
more severe, and ciprofloxacin contamination, in particular, is increasing every year, we
focus on the removal of ciprofloxacin from aqueous solutions in this paper. There are
many methods to remove organic contaminants, and more theoretical studies include
photocatalysis and adsorption, but the results are not good. In this paper, we use Fe/Ni-
MOFs to remove ciprofloxacin with good results and investigate its theory using kinetic
models and adsorption isotherms.
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3.1. Synthesis of Fe/Ni-MOFs

Metal-organic framework materials are usually single metal ion sources, and the
treatment effect is relatively poor, whereas bimetal ion sources have good synergy, resulting
in better effects (see Figure 5 and Table 4). In the process of the preparation of Fe/Ni-MOFs,
the unreacted organic chains are removed by washing with an organic solvent, whereas the
unreacted metal ions are removed by washing with water.

The dried Fe/Ni-MOFs were characterized by their structures (as shown in Figures 1–4).
Infrared could determine whether functional groups are involved in the reaction, and
infrared spectroscopy (as shown in Figure 1) showed that the carboxyl group of the organic
chain formed two symmetric C-O bonds after declaration, thus proving the formation of
new substances. XRD and SEM images could demonstrate that the material had differ-
ent morphologies and structures. The TG diagram was mainly used to test the thermal
stabilities of the Fe/Ni-MOFs. As can be seen in Figure 4, the masses of the Fe/Ni-MOFs
increased slightly in the first phase, mainly due to the porous structures of the Fe/Ni-MOFs.
When N2 was introduced, the Fe/Ni-MOFs slightly increased in mass. The masses of the
Fe/Ni-MOFs increased slightly as the gas entered the pores. When the temperature reached
350 ◦C, the frame structure began to be destroyed, which proved that the Fe/Ni-MOFs
were stable below 350 ◦C, and the skeleton structure was basically destroyed when the
temperature reached 506 ◦C.

3.2. CIP Removal by Fe/Ni-MOFs

At room temperature, Fe/Ni-MOFs of various masses were added to the CIP solution
at various concentrations, stirred on a magnetic agitator, and sampled every 30 min. The
absorbance variations in the samples were analyzed in an ultraviolet analyzer, and the
specific data were obtained following the standard curve, which was used in the removal
rate. The effects of the concentration of the CIP solution, the masses of the Fe/Ni-MOFs, the
pH value of the CIP solution, and the temperature were discussed, and the kinetic model,
the isothermal adsorption equation, and the Van ‘t Hoff equation were used to study the
CIP adsorption.

As can be seen in Figure 5, the removal rate increases with the mass of the Fe/Ni-
MOFs. As the adsorption of the Fe/Ni-MOFs onto CIP is primarily attributed to physical
adsorption, the addition of 100 mg of the Fe/Ni-MOFs to a 5 ppm CIP solution leads to
rapid attainment of equilibrium, followed by slow desorption, resulting in reduced removal
efficiency (as depicted in Figure 5a). When 100 mg of the Fe/Ni-MOFs is added to 10 ppm
CIP solution, the maximum removal rate can reach 94.1% (as shown in Figure 5b). When
100 mg of the Fe/Ni-MOFs is added to 20 ppm CIP solution, after 5 h, the removal rate is
only 60.8% (as shown in Figure 5c), which is mainly due to the reduced removal rate due to
excessive Fe/Ni-MOFs coverage of the active site.

As can be seen from the kinetic model, the correlation coefficients of the second kinetic
model are 0.98909 and 0.98959 for masses as small as 20 ppm and 50 and 100 mg, and all
other correlation coefficients are larger than 0.99. From this, it can be seen that the removal
of the CIP by the Fe/Ni-MOFs is appropriate for the second kinetic model. The first kinetic
model’s results show that the correlation coefficient is good only for concentrations of
20 ppm and masses of 30 mg. Therefore, the removal of CIP by Fe/Ni-MOFs is mainly
based on chemical adsorption.

As can be seen from the adsorption isotherms of the Fe/Ni-MOFs on the CIP, both
the Freundlich and Langmuir isotherms have correlation coefficients below 0.99, and the
Freundlich isotherm has a correlation coefficient 0.98. Relatively above the Langmuir
isotherm of 0.89, it can be seen that the CIP adsorption of the Fe/Ni-MOFs is dominated
by physical adsorption. According to the Van ‘t Hoff equation, the obtained ∆G0 and ∆H0

values are negative when ∆H0 ranges from 84~420 kJ/mol for chemical adsorption and
when ∆H0 < 84 kJ/mol, which is typical for physical adsorption, according to which the
CIP adsorption of the Fe/Ni-MOFs is physical. It is shown that the adsorption capacities
of the Fe/Ni-MOFs on the CIP decrease with increasing temperature. It is concluded that
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the thermal energy of the CIP molecules is lower at lower temperatures, which reduces the
probability of collisions with the Fe/Ni-MOFs. As the temperature increases, the thermal
motion of the CIP molecules is facilitated, and the probability of the adsorption of the CIP
molecules by Fe/Ni-MOFs increases. However, when the temperature is too high, the
thermal motion of the molecules is too strong, and the desorption rate of Fe/Ni-MOFs onto
the CIP molecules is larger than the adsorption rate, which eventually leads to a decrease in
the adsorption capacity with increasing temperature. Moreover, the pore structures of the
Fe/Ni-MOFs are strongly temperature dependent. As the temperature increases, the pore
structures increase due to the effects of thermal expansion and cold contraction. At this
point, the adsorption of the CIP molecules by the Fe/Ni-MOFs increases with temperature.
Eventually, the adsorption capacity decreases.

The pH of the 30 ppm CIP solution was adjusted to 4, 6, 8, and 10 before adding 30 mg
of the Fe/Ni-MOFs with stirring on a magnetic agitator. Samples were taken every 30 min
to detect absorbance. At strong acid and substrate conditions, the adsorption capacity was
low. To compare the CIP adsorption capacities of the Fe/Ni-MOFs with those of other
materials of the same type, the Fe/Ni-MOFs had the highest adsorption capacities on the
CIP, which demonstrated that the Fe/Ni-MOFs had the best CIP removals.

In summary, as Fe/Ni-MOFs are porous materials, and the presence of benzene rings
between the Fe/Ni-MOFs and CIP leads to the better adsorption of Fe/Ni-MOFs.

4. Research Methods
4.1. Experimental Raw Material

The raw materials of seven ferrous sulfate hydrate (99.0%), nickel acetate (II) four hydrate
(99.9%), and 1,3,5-benzyl formate three were obtained from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). Additionally, antibiotic ciprofloxacin (98%) was
obtained from Shanghai MacLean Biochemical Technology Co., Ltd. (Shanghai, China).

4.2. Preparation of Fe/Ni-MOFs

The preparation of Fe/Ni-MOFs by solvothermal method has been reported. Ferrous
sulfate heptahydrate (556.02 mg, 2 mmol), nickel acetate (497.68 mg, 2 mmol), and 1,3,5-
phthalic acid (420.28 mg, 2 mmol) were dissolved in N,N-dimethylformamide, respectively.
When completely dissolved, they were combined and stirred with a magnetic stirrer for
30 min to mix thoroughly. The mixture was then transferred to a reaction kettle and put
into a constant temperature drying oven for 12 h at 150 ◦C. At the end of the reaction, the
individual reactants were removed, cooled to room temperature, filtered, washed with a
small amount of DMF three times, washed with ethanol three times, and, finally, washed
with water three times. The solid was transferred to the oven at 80 ◦C for 12 h to dry, i.e.,
the raw materials.

4.3. Characterization of Fe/Ni-MOFs

The fabricated Fe/Ni-MOF materials were used for structural characterization. The
main characterization methods were as follows: structural and morphology characteri-
zation were performed by X-ray diffraction (XRD, D-5000, Siemens, Munich, Germany,
Cu Ka) and a field emission scanning electron microscope (FESEM, JSM-6700F, Gansu
Jingpu Testing Technology Co., Ltd., Lanzhou, China). The thermogravimetry (TG) curve
of the particles was recorded by a NETZSCH STA 449C thermal analyzer (Shenzhen Taili
Instrument Co., Ltd., Shenzhen, China) in a nitrogen (N2) atmosphere, heating from 0 ◦C to
800 ◦C at a heating rate of 5 ◦C min−1. After mixing the Fe/Ni-MOFs with KBr, absorp-
tion spectra were tested in the range 500–3000 cm−1 on a Shimadzu by Fourier transform
infrared spectroscopy (FT-IR, IR Tracer-100, Shimadzu Enterprise Management (China)
Co., Ltd., Shanghai, China).The specific surface areas, pore volumes, pore sizes, and pore
distributions of the Fe/Ni-MOFs were tested by an automated specific surface area and
a micropore voidage and chemisorption analyzer (ASAP2020M + C, Mike Instruments,
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Shanghai, China). Fe/Ni-MOFs were dispersed in an aqueous solution to determine their
Zeta potentials (mV).

4.4. Removal of Ciprofloxacin

The abilities of the Fe/Ni-MOFs to eliminate the antibiotic ciprofloxacin were tested
at room temperature in a 250 mL beaker. In the experiment, 30, 40, 50, and 100 mg of the
Fe/Ni-MOFs were added to ciprofloxacin solutions at 5, 10, 20, and 30 mg/L concentrations,
respectively. Under the action of natural light, the mixtures were placed in a magnetic
stirrer for stirring, and samples were taken every 30 min. Finally, the absorbance data
of the samples were measured by a UV-Vis spectrophotometer, and λmax = 277 nm [55].
The concentration was calculated by the absorbance, and the removal rate and adsorption
capacity of the ciprofloxacin at different time intervals were obtained.

C(%) =
C0 − Ct

C0
× 100% (8)

qe =
(C0 − Ce)V

m
(9)

where C0 (mg/L) represents the initial concentration, Ct (mg/L) represents the concentra-
tion at equilibrium, V(mL) represents the volume of solution, and m(mg) represents the
mass of MOFs.

4.5. Effect of pH on Adsorption of Ciprofloxacin by Fe/Ni-MOFs

The pH was adjusted with NaOH (0.1 mol/L) and hydrochloric acid (0.1 mol/L) in
200 mL of 30 ppm ciprofloxacin solution. In total, 30 mg of the Fe/Ni-MOFs was added to
the adjusted solution, stirred, and sampled every 30 min. The concentration of ciprofloxacin
solution was analyzed by a UV spectrometer (Shanghai Haoliang Photoelectric Equipment
Co., Ltd., Shanghai, China).

5. Conclusions

This work successfully prepared Fe/Ni-MOF materials using the solvothermal method.
The structures of the prepared materials were then characterized by SEM, FT-IR, TG, etc.,
and the characterized materials were analyzed for the removal of ciprofloxacin by the
Fe/Ni-MOFs. According to the results, under the conditions of a concentration of 50 ppm,
a mass of 30 mg, and a temperature of 30 ◦C, the maximum adsorption capacity of the
ciprofloxacin removal within 5 h was 232.1 mg/g. The kinetic model and adsorption
isothermal showed that the Fe/Ni-MOFs conformed to the chemisorption of ciprofloxacin.
The findings demonstrated that the theoretical and practical effects of the Fe/Ni-MOFs
on ciprofloxacin were consistent. Therefore, the Fe/Ni-MOFs had good development
prospects for ciprofloxacin removal in practical applications.
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