Fe–Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size, Morphology, and Elemental Analyses
2.1.1. Particle Size Analysis
2.1.2. Morphology and Elemental Analyses
2.2. BET Surface Area Study
2.3. Cr (VI) Adsorption Capacity Analyses
2.4. Cr (VI) Reduce Reaction Mechanism and Kinetic Model
3. Materials and Methods
3.1. Materials and Instruments
3.1.1. Materials
3.1.2. Instruments
3.2. Preparation of Fe/MWCNTs and Fe–Ni/MWCNTs Composites
3.3. Cr (VI) Adsorption Capacity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
Peak 1 | Peak 2 | |||
---|---|---|---|---|
Size (d. nm) | % Intensity | Size (d. nm) | % Intensity | |
M1 | 684.3 | 79.1 | 54.85 | 20.9 |
M2 | 555.0 | 90.7 | 66.46 | 9.3 |
M3 | 461.5 | 93.1 | 64.91 | 6.9 |
M4 | 544.2 | 86.6 | 46.01 | 13.4 |
M5 | 261.5 | 92.6 | 51.31 | 7.4 |
M6 | 919.7 | 91.2 | 55.24 | 8.8 |
M7 | 605.1 | 92.0 | 78.95 | 8.0 |
M3R | 370.0 | 83.1 | 96.96 | 16.9 |
M3A | 519.5 | 67.6 | 48.06 | 32.4 |
Adsorption Percentage | Adsorption Capacity (mg/g) | |||||
---|---|---|---|---|---|---|
pH = 5.6 | pH = 4.8 | pH = 6.4 | pH = 5.6 | pH = 4.8 | pH = 6.4 | |
M1 | 32.35% | 38.00% | 29.38% | 134.57 | 158.06 | 122.24 |
M2 | 52.07% | 40.91% | 30.74% | 216.60 | 245.87 | 197.40 |
M3 | 53.95% | 59.10% | 47.45% | 224.43 | 256.87 | 207.09 |
M4 | 40.95% | 61.75% | 49.78% | 170.37 | 197.77 | 150.42 |
M5 | 35.22% | 47.54% | 36.16% | 146.50 | 175.77 | 133.45 |
M6 | 39.88% | 42.25% | 32.08% | 165.89 | 203.18 | 148.18 |
M7 | 52.52% | 48.84% | 35.62% | 218.46 | 246.61 | 201.50 |
pH | Adsorption Percentage | Adsorption Capacity (mg/g) | After 3 Months | Adsorption Capacity Left | |
---|---|---|---|---|---|
M1 | 5.6 | 32.35% | 134.57 | 131.03 | 97.37% |
M2 | 5.6 | 52.07% | 216.60 | 205.97 | 95.09% |
M3 | 5.6 | 53.95% | 224.43 | 217.16 | 96.76% |
M4 | 5.6 | 40.95% | 170.37 | 164.59 | 96.61% |
M5 | 5.6 | 35.22% | 146.50 | 141.84 | 96.82% |
M6 | 5.6 | 39.88% | 165.89 | 155.83 | 93.93% |
M7 | 5.6 | 52.52% | 218.46 | 212.68 | 97.35% |
Raw Material | pH | Adsorption Capacity (mg/g) | References |
---|---|---|---|
CNTs supported by activated carbon | 2.0 | 9.0 | [70] |
ionic liquid functionalized oxidized MWCNTs | 2.8 | 85.83 | [42] |
MWCNTs-COOH-immobilized HSO4 | 2.0 | 31.29 | [71] |
Magnetic iron oxide MWCNTs | 3.0 | 12.61 | [72] |
FeMnOx decorated MWCNTs | 2.0 | 47.25 | [73] |
α-Fe2O3/MWCNTs | 6.0 | Around 75 | [74] |
ZnO-functionalized MWCNTs | 2.0 | Up to 140 | [75] |
Fe–Ni/RGO | 6.0 | 176.74 | [49] |
Fe–Ni/RGO | 5.0 | 197.43 | [49] |
Fe–Ni/MWCNTs | 4.8 | 256.87 | This work |
Fe–Ni/MWCNTs | 5.6 | 224.43 | This work |
Fe–Ni/MWCNTs | 6.4 | 207.09 | This work |
References
- Miensah, E.; Khan, M.M.; Chen, J.Y.; Zhang, X.M.; Wang, P.; Zhang, Z.X.; Jiao, Y.; Liu, Y.; Yang, Y. Zeolitic imidazolate frameworks and their derived materials for sequestration of radionuclides in the environment: A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1874–1934. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, J.; Ren, L.; Zhou, Y.; Gao, J.; Luo, L.; Yang, Y.; Peng, Q.; Huang, H.; Chen, A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manag. 2019, 242, 121–130. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, Y.; Christakos, G.; Liu, Y.; Yang, X. Assessment of soil heavy metal pollution using stochastic site indicators. Geoderma 2019, 337, 359–367. [Google Scholar] [CrossRef]
- Shen, H.; Chen, J.; Dai, H.; Wang, L.; Hu, M.; Xia, Q. New Insights into the Sorption and Detoxification of Chromium(VI) by Tetraethylenepentamine Functionalized Nanosized Magnetic Polymer Adsorbents: Mechanism and pH Effect. Ind. Eng. Chem. Res. 2013, 52, 12723–12732. [Google Scholar] [CrossRef]
- Mortvedt, J.J. Heavy Metal Contaminants in Inorganic and Organic Fertilizers. In Fertilizers and Environment: Proceedings of the International Symposium “Fertilizers and Environment”, Salamanca, Spain, 26–29 September 1994; Springer: Dordrecht, The Netherlands, 1996; pp. 5–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, D.; Chen, C.; Wang, X. Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J. Colloid Interface Sci. 2013, 405, 211–217. [Google Scholar] [CrossRef]
- Verma, R.; Dwivedi, P. Heavy metal water pollution-A case study. Recent Res. Sci. Technol. 2013, 5, 98–99. [Google Scholar]
- Islam, M.; Mohana, A.A.; Rahman, A.; Rahman, M.; Naidu, R.; Rahman, M.M. A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxics 2023, 11, 252. [Google Scholar] [CrossRef]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process. Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Adam, M.R.; Salleh, N.M.; Othman, M.H.D.; Matsuura, T.; Ali, M.H.; Puteh, M.H.; Ismail, A.; Rahman, M.A.; Jaafar, J. The adsorptive removal of chromium (VI) in aqueous solution by novel natural zeolite based hollow fibre ceramic membrane. J. Environ. Manag. 2018, 224, 252–262. [Google Scholar] [CrossRef]
- Gottipati, R.; Mishra, S. Preparation of microporous activated carbon from Aegle Marmelos fruit shell and its application in removal of chromium(VI) from aqueous phase. J. Ind. Eng. Chem. 2016, 36, 355–363. [Google Scholar] [CrossRef]
- Rahman, A.; Lamb, D.; Rahman, M.M.; Bahar, M.; Sanderson, P.; Abbasi, S.; Bari, A.F.; Naidu, R. Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar. J. Hazard. Mater. 2021, 409, 124488. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.; Jung, I.-L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 2000, 35, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Gould, J. The kinetics of hexavalent chromium reduction by metallic iron. Water Res. 1982, 16, 871–877. [Google Scholar] [CrossRef]
- Blowes, D.; Ptacek, C. Geochemical remediation of groundwater by permeable reactive walls: Removal of chromate by reaction with iron-bearing solids. In Proceedings of the Subsurface Restoration Conference, 3rd International Conference on Ground Water Quality Research, Dallas, TX, USA, 21–24 June 1992. [Google Scholar]
- Chang, L.-Y. Alternative chromium reduction and heavy metal precipitation methods for industrial wastewater. Environ. Prog. 2003, 22, 174–182. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L. In-Situ Remediation of Cr(VI)-Contaminated Groundwater Using Permeable Reactive Walls: Laboratory Studies. Environ. Sci. Technol. 1997, 31, 3348–3357. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, W.-X. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J. Hazard. Mater. 2006, 132, 213–219. [Google Scholar] [CrossRef]
- Ramos, M.A.V.; Yan, W.; Li, X.-Q.; Koel, B.E.; Zhang, W.-X. Simultaneous Oxidation and Reduction of Arsenic by Zero-Valent Iron Nanoparticles: Understanding the Significance of the Core−Shell Structure. J. Phys. Chem. C 2009, 113, 14591–14594. [Google Scholar] [CrossRef]
- Boparai, H.K.; Joseph, M.; O’carroll, D.M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Kim, D.-G.; Shin, H.-S. Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater. 2011, 185, 1513–1521. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, S.; Chen, L.; Alsaedi, A.; Hayat, T.; Chen, C. Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U(VI). J. Environ. Sci. 2019, 76, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, W.; Liang, F.; Zhang, W.-X. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. J. Hazard. Mater. 2017, 322, 163–171. [Google Scholar] [CrossRef]
- O’carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 2013, 51, 104–122. [Google Scholar] [CrossRef]
- Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D.; et al. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 2021, 800, 149662. [Google Scholar] [CrossRef] [PubMed]
- Kocur, C.M.; Sleep, B.E.; O’carroll, D.M. Moving into the Third Decade of Nanoscale Zero-Valent Iron (NZVI) Development: Best Practices for Field Implementation. In Nanoscale Zerovalent Iron Particles for Environmental Restoration; Springer: Cham, Switzerland, 2019; pp. 293–333. [Google Scholar] [CrossRef]
- Quiton, K.G.N.; Lu, M.-C.; Huang, Y.-H. Synthesis and catalytic utilization of bimetallic systems for wastewater remediation: A review. Chemosphere 2021, 262, 128371. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, M.; Zhou, M.; Li, Y.C.; Wang, J.; Gao, B.; Sato, S.; Feng, K.; Yin, W.; Igalavithana, A.D.; et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. J. Hazard. Mater. 2019, 373, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, W.; Peng, P.; Huang, W. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. J. Hazard. Mater. 2013, 262, 634–641. [Google Scholar] [CrossRef]
- Lai, B.; Zhang, Y.; Chen, Z.; Yang, P.; Zhou, Y.; Wang, J. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Appl. Catal. B Environ. 2014, 144, 816–830. [Google Scholar] [CrossRef]
- Angaru, G.K.R.; Choi, Y.-L.; Lingamdinne, L.P.; Choi, J.-S.; Kim, D.-S.; Koduru, J.R.; Yang, J.-K.; Chang, Y.-Y. Facile synthesis of economical feasible fly ash–based zeolite–supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents. Chemosphere 2021, 267, 128889. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, J.; Zhang, Y.; Cheng, G.; Huang, S.; Chen, J.; Xu, R.; Ming, Y.-A.; Wang, Y.; Chen, R. Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with excellent performance for arsenic removal from water. J. Hazard. Mater. 2020, 383, 121172. [Google Scholar] [CrossRef]
- Huang, S.; Ouyang, T.; Chen, J.; Wang, Z.; Liao, S.; Li, X.; Liu, Z.-Q. Synthesis of nickel–iron layered double hydroxide via topochemical approach: Enhanced surface charge density for rapid hexavalent chromium removal. J. Colloid Interface Sci. 2022, 605, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, Y.; Guo, S.; Chen, R. Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. J. Colloid Interface Sci. 2017, 486, 211–218. [Google Scholar] [CrossRef]
- Liu, W.-J.; Qian, T.-T.; Jiang, H. Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem. Eng. J. 2014, 236, 448–463. [Google Scholar] [CrossRef]
- Borah, B.J.; Saikia, H.; Bharali, P. Reductive conversion of Cr(vi) to Cr(iii) over bimetallic CuNi nanocrystals at room temperature. New J. Chem. 2014, 38, 2748–2751. [Google Scholar] [CrossRef]
- Mokete, R.; Eljamal, O.; Sugihara, Y. Exploration of the reactivity of nanoscale zero-valent iron (NZVI) associated nanoparticles in diverse experimental conditions. Chem. Eng. Process. Process. Intensif. 2020, 150, 107879. [Google Scholar] [CrossRef]
- Jinhua, W.; Xiang, Z.; Bing, Z.; Yafei, Z.; Rui, Z.; Jindun, L.; Rongfeng, C. Rapid adsorption of Cr (VI) on modified halloysite nanotubes. Desalination 2010, 259, 22–28. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Niazi, N.K.; Hassan, N.E.E.; Bibi, I.; Wang, H.; Tsang, D.C.W.; Ok, Y.S.; Bolan, N.; Rinklebe, J. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. Int. Mater. Rev. 2019, 64, 216–247. [Google Scholar] [CrossRef]
- Krishna Kumar, A.S.; Jiang, S.-J.; Tseng, W.-L. Effective adsorption of chromium(vi)/Cr(iii) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J. Mater. Chem. A 2015, 3, 7044–7057. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, M.; Zhao, Y.; Baig, S.A.; Hu, S.; Ye, M.; Wang, J. Integrated green complexing agent and biochar modified nano zero-valent iron for hexavalent chromium removal: A characterisation and performance study. Sci. Total Environ. 2022, 834, 155080. [Google Scholar] [CrossRef]
- Bharath, G.; Rambabu, K.; Banat, F.; Hai, A.; Arangadi, A.F.; Ponpandian, N. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions. Sci. Total Environ. 2019, 691, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xi, D.; Li, C.; Yang, Z.; Lin, Z.; Si, M. “In-situ synthesized” iron-based bimetal promotes efficient removal of Cr(VI) in by zero-valent iron-loaded hydroxyapatite. J. Hazard. Mater. 2021, 420, 126540. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tian, B.; Wang, J.; Hao, H. Montmorillonite-Supported Fe/Ni Bimetallic Nanoparticles for Removal of Cr (VI) from Wastewater. Chem. Eng. Trans. 2017, 60, 169–174. [Google Scholar]
- Zeng, S.; Zhong, D.; Xu, Y.; Zhong, N. Biochar-loaded nZVI/Ni bimetallic particles for hexavalent chromium removal from aqueous solution. J. Dispers. Sci. Technol. 2022, 1–12. [Google Scholar] [CrossRef]
- Bharath, G.; Hai, A.; Kiruthiga, T.; Rambabu, K.; Sabri, M.A.; Park, J.; Choi, M.Y.; Banat, F.; Haija, M.A. Fabrication of Ru–CoFe2O4/RGO hierarchical nanostructures for high-performance photoelectrodes to reduce hazards Cr(VI) into Cr(III) coupled with anodic oxidation of phenols. Chemosphere 2022, 299, 134439. [Google Scholar] [CrossRef]
- Kang, Z.; Gao, H.; Hu, Z.; Jia, X.; Wen, D. Ni–Fe/Reduced Graphene Oxide Nanocomposites for Hexavalent Chromium Reduction in an Aqueous Environment. ACS Omega 2022, 7, 4041–4051. [Google Scholar] [CrossRef]
- Arunkumar, T.; Karthikeyan, R.; Subramani, R.R.; Viswanathan, K.; Anish, M. Synthesis and characterisation of multi-walled carbon nanotubes (MWCNTs). Int. J. Ambient. Energy 2020, 41, 452–456. [Google Scholar] [CrossRef]
- Nie, P.; Min, C.; Song, H.-J.; Chen, X.; Zhang, Z.; Zhao, K. Preparation and Tribological Properties of Polyimide/Carboxyl-Functionalized Multi-walled Carbon Nanotube Nanocomposite Films Under Seawater Lubrication. Tribol. Lett. 2015, 58, 1–12. [Google Scholar] [CrossRef]
- Li, J.; Lu, G.; Wu, G.; Mao, D.; Guo, Y.; Wang, Y.; Guo, Y. The role of iron oxide in the highly effective Fe-modified Co3O4 catalyst for low-temperature CO oxidation. RSC Adv. 2013, 3, 12409–12416. [Google Scholar] [CrossRef]
- Mikhaylov, V. Optical and thermal properties of sol–gel Al(OH)3–Fe(OH)3–PVA composite films. J. Sol-Gel Sci. Technol. 2019, 92, 282–292. [Google Scholar] [CrossRef]
- Pan, C.; Liu, H.; Catalano, J.G.; Wang, Z.; Qian, A.; Giammar, D.E. Understanding the Roles of Dissolution and Diffusion in Cr(OH)3 Oxidation by δ-MnO2. ACS Earth Space Chem. 2019, 3, 357–365. [Google Scholar] [CrossRef]
- Amonette, J.E.; Rai, D. Identification of Noncrystalline (Fe,Cr)(Oh)3 by Infrared Spectroscopy. Clays Clay Miner. 1990, 38, 129–136. [Google Scholar] [CrossRef]
- Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides. J. Hazard. Mater. 2014, 264, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Kalidhasan, S.; KrishnaKumar, A.S.; Rajesh, V.; Rajesh, N. Ultrasound-assisted preparation and characterization of crystalline cellulose–ionic liquid blend polymeric material: A prelude to the study of its application toward the effective adsorption of chromium. J. Colloid Interface Sci. 2012, 367, 398–408. [Google Scholar] [CrossRef]
- Kalidhasan, S.; Kumar, A.S.K.; Rajesh, V.; Rajesh, N. Enhanced adsorption of hexavalent chromium arising out of an admirable interaction between a synthetic polymer and an ionic liquid. Chem. Eng. J. 2013, 222, 454–463. [Google Scholar] [CrossRef]
- Kumar, R.; Kamakshi; Kumar, M.; Awasthi, K. Functionalized Pd-decorated and aligned MWCNTs in polycarbonate as a selective membrane for hydrogen separation. Int. J. Hydrogen Energy 2016, 41, 23057–23066. [Google Scholar] [CrossRef]
- Arputharaj, E.; Kumar, A.S.K.; Tseng, W.-L.; Jiang, S.-J.; Huang, Y.-L.; Dahms, H.-U. Self-Assembly of Poly(ethyleneimine)-Modified g-C3N4 Nanosheets with Lysozyme Fibrils for Chromium Detoxification. Langmuir 2021, 37, 7147–7155. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Zhang, X.; Srinivas, K.; Liu, D.; Zhao, X.; Yu, H.; Wang, B.; Zhang, W.; Chen, Y. Vertical Fe(OH)3/Ni9S8 nanoarrays electrodeposited on stainless steel as binder-free electrocatalyst for highly efficient and stable oxygen evolution reaction. J. Mater. Sci. 2021, 56, 19144–19154. [Google Scholar] [CrossRef]
- Akia, M.; Mkhoyan, K.A.; Lozano, K. Synthesis of multiwall α-Fe2O3 hollow fibers via a centrifugal spinning technique. Mater. Sci. Eng. C 2019, 102, 552–557. [Google Scholar] [CrossRef]
- Chen, H.; Fan, Y.; Fan, Z.; Xu, H.; Cui, D.; Xue, C.; Zhang, W. Noble-metal-free p-n heterojunction of iron(III) hydroxide and graphitic carbon nitride for hydrogen evolution reaction. Ceram. Int. 2021, 47, 35057–35066. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Bahgat, M.; Farghali, A.A.; El Rouby, W.M.; Khedr, M.H. Efficiency, Kinetics and Thermodynamics of Toluidine Blue Dye Removal from Aqueous Solution Using MWCNTs Decorated with NiFe2O4. Fullerenes 2014, 22, 454–470. [Google Scholar] [CrossRef]
- Xiao, C.; Leng, X.; Zhang, X.; Zheng, K.; Tian, X. Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites. Compos. Part A Appl. Sci. Manuf. 2018, 110, 133–141. [Google Scholar] [CrossRef]
- Liu, W.; Jin, L.; Xu, J.; Liu, J.; Li, Y.; Zhou, P.; Wang, C.; Dahlgren, R.A.; Wang, X. Insight into pH dependent Cr(VI) removal with magnetic Fe3S4. Chem. Eng. J. 2019, 359, 564–571. [Google Scholar] [CrossRef]
- García-Sosa, I.; Olguín, M.T. Comparison between the Cr(VI) adsorption by hydrotalcite and hydrotalcite-gibbsite compounds. Sep. Sci. Technol. 2015, 50, 2631–2638. [Google Scholar] [CrossRef]
- Liao, J.; Wu, Y.; Chen, X.; Yu, H.; Lin, Y.; Huang, K.; Zhang, J.; Zheng, C. Light-triggered oxidative activity of chromate at neutral pH: A colorimetric system for accurate and on-site detection of Cr(VI) in natural water. J. Hazard. Mater. 2022, 440. [Google Scholar] [CrossRef]
- Atieh, M.A. Removal of Chromium (VI) from polluted water using carbon nanotubes supported with activated carbon. Procedia Environ. Sci. 2011, 4, 281–293. [Google Scholar] [CrossRef]
- Sun, L.; Wang, M.; Li, W.; Luo, S.; Wu, Y.; Ma, C.; Liu, S. Adsorption Separation of Cr(VI) from a Water Phase Using Multiwalled Carbon Nanotube-Immobilized Ionic Liquids. ACS Omega 2020, 5, 22827–22839. [Google Scholar] [CrossRef]
- Lee, C.; Kim, S. Cr(VI) Adsorption to Magnetic Iron Oxide Nanoparticle-Multi-Walled Carbon Nanotube Adsorbents. Water Environ. Res. 2016, 88, 2111–2120. [Google Scholar] [CrossRef]
- Ma, T.; Wu, Y.; Liu, N.; Yan, C. Adsorption behavior of Cr(VI) and As(III) on multiwall carbon nanotubes modified by iron–manganese binary oxide (FeMnOx/MWCNTs) from aqueous solution. Sep. Sci. Technol. 2022, 57, 192–208. [Google Scholar] [CrossRef]
- Verdugo, E.M.; Xie, Y.; Baltrusaitis, J.; Cwiertny, D.M. Hematite decorated multi-walled carbon nanotubes (α-Fe2O3/MWCNTs) as sorbents for Cu(ii) and Cr(vi): Comparison of hybrid sorbent performance to its nanomaterial building blocks. RSC Adv. 2016, 6, 99997–100007. [Google Scholar] [CrossRef]
- Murali, A.; Sarswat, P.K.; Free, M.L. Adsorption-coupled reduction mechanism in ZnO-Functionalized MWCNTs nanocomposite for Cr (VI) removal and improved anti-photocorrosion for photocatalytic reduction. J. Alloys Compd. 2020, 843, 155835. [Google Scholar] [CrossRef]
pH | Adsorption Percentage | Adsorption Capacity (mg/g) | Fe: Ni (Weight) | |
---|---|---|---|---|
NZVI | 5.6 | 5.42% | 22.56 | \ |
MWCNTs | 5.6 | 4.80% | 19.95 | \ |
M1 | 5.6 | 32.35% | 134.57 | \ |
M2 | 5.6 | 52.07% | 216.60 | 2:1 |
M3 | 5.6 | 53.95% | 224.43 | 5:1 |
M4 | 5.6 | 40.95% | 170.37 | 10:1 |
M5 | 5.6 | 35.22% | 146.50 | 1:1 |
M6 | 5.6 | 39.88% | 165.89 | 20:1 |
M7 | 5.6 | 52.52% | 218.46 | 3:1 |
M3R | 5.6 | 49.38% | 205.41 | 5:1 |
M1 | M3 | M3R | |
---|---|---|---|
Pseudo-first-order kinetic model | |||
(mg/g) | 149.9628 | 221.5793 | 203.0504 |
(g/mg/min) | 0.1252 | 0.1755 | 0.1719 |
R2-adjusted | 0.9860 | 0.9904 | 0.9855 |
Pseudo-second-order kinetic model | |||
(mg/g) | 169.6151 | 249.8790 | 229.4719 |
(g/mg/min) | 0.0020 | 0.0023 | 0.0024 |
R2-adjusted | 0.9316 | 0.9766 | 0.9801 |
M1 | M3 | M3R | |
---|---|---|---|
K (L mmol−1 min−1) | 0.0178 | 0.1734 | 0.1650 |
(mmol/g) | 2.8162 | 4.3445 | 3.9733 |
R2-adjusted | 0.9981 | 0.9974 | 0.9972 |
Sample | 60 wt% FeCl3 Solution (mL) | MWCNTs (g) | NiCl2·6H2O (g) | PVP (g) | NaBH4 (g) | Fe: Ni (Weight) |
---|---|---|---|---|---|---|
M1 | 1.033 | 0.320 | \ | 2 | 2 | \ |
M2 | 1.278 | 0.320 | 0.534 | 2 | 2 | 2:1 |
M3 | 1.606 | 0.320 | 0.268 | 2 | 2 | 5:1 |
M4 | 1.760 | 0.320 | 0.156 | 2 | 2 | 10:1 |
M5 | 0.968 | 0.320 | 0.808 | 2 | 2 | 1:1 |
M6 | 1.839 | 0.320 | 0.078 | 2 | 2 | 20:1 |
M7 | 1.452 | 0.320 | 0.404 | 2 | 2 | 3:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Z.; Gao, H.; Ma, X.; Jia, X.; Wen, D. Fe–Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment. Molecules 2023, 28, 4412. https://doi.org/10.3390/molecules28114412
Kang Z, Gao H, Ma X, Jia X, Wen D. Fe–Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment. Molecules. 2023; 28(11):4412. https://doi.org/10.3390/molecules28114412
Chicago/Turabian StyleKang, Zeyu, Hui Gao, Xiaolong Ma, Xiaodong Jia, and Dongsheng Wen. 2023. "Fe–Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment" Molecules 28, no. 11: 4412. https://doi.org/10.3390/molecules28114412
APA StyleKang, Z., Gao, H., Ma, X., Jia, X., & Wen, D. (2023). Fe–Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment. Molecules, 28(11), 4412. https://doi.org/10.3390/molecules28114412