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Abstract: Water environment pollution is becoming an increasingly serious issue due to industrial
pollutants with the rapid development of modern industry. Among many pollutants, the toxic and
explosive nitroaromatics are used extensively in the chemical industry, resulting in environmental
pollution of soil and groundwater. Therefore, the detection of nitroaromatics is of great significance
to environmental monitoring, citizen life and homeland security. Lanthanide–organic complexes
with controllable structural features and excellent optical performance have been rationally designed
and successfully prepared and used as lanthanide-based sensors for the detection of nitroaromatics.
This review will focus on crystalline luminescent lanthanide–organic sensing materials with different
dimensional structures, including the 0D discrete structure, 1D and 2D coordination polymers and the
3D framework. Large numbers of studies have shown that several nitroaromatics could be detected by
crystalline lanthanide–organic-complex-based sensors, for instance, nitrobenzene (NB), nitrophenol
(4-NP or 2-NP), trinitrophenol (TNP) and so on. The various fluorescence detection mechanisms were
summarized and sorted out in the review, which might help researchers or readers to comprehensively
understand the mechanism of the fluorescence detection of nitroaromatics and provide a theoretical
basis for the rational design of new crystalline lanthanide–organic complex-based sensors.

Keywords: lanthanide–organic complex; luminescent material; luminescence sensing; nitroaromatics;
mechanism

1. Introduction

Following the rapid development of modern industry, domestic wastewater, agricul-
tural wastewater and pharmaceutical wastewater contain more and more pollutants, such
as metal cations, anions, antibiotics, pesticides, nitro aromatic compounds and so on, which
are making water environmental pollution more and more serious [1–3]. Among these
pollutants, the toxic and explosive nitroaromatic compounds are often used as the starting
materials for the preparation of dyes and explosives in the chemical industry. It should be
noted that highly toxic nitroaromatics are extremely difficult to be degraded due to their
structural and chemical stability. For example, nitrobenzene (NB) is the simplest and small-
est molecule in nitroaromatics, which is often used as the intermediate and raw materials
for the productions of dyes, fragrances, explosives and other aniline products in the organic
synthesis industry. Inhalation of toxic NB vapor or skin contamination can cause acute
poisoning, headache, nausea, vomiting and so on [4–6]. Furthermore, 4-Nitrophenol (4-NP)
is mainly used as an intermediate in pesticide, pharmaceuticals, dyes and other fine chemi-
cals [7,8]. In addition, 2,4,6-trinitrophenol (TNP), as the main component of explosives and
gunpowder, is commonly used in the manufacture of dyes, preservatives and medicines.
Wastewater from these industries needs to be monitored and treated to prevent environ-
mental pollution [9,10]. Especially, high physiologically toxic nitroaromatics are harmful to
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(ground)water, soil resources and human health when released into the environment. There-
fore, the detection of nitroaromatic compounds is of great significance to environmental
monitoring, citizen safety and homeland security [11–15]. At present, the analytical meth-
ods for detecting harmful substances in the environment mainly include atomic absorption
spectroscopy [16], mass spectrometry [17], optical gas chromatography-mass spectrom-
etry [18], gas chromatography-electron capture detection [19], surface-enhanced Raman
spectroscopy [20,21], X-ray imaging [21], thermal neutron analysis [21], electrochemical
procedures [20] and ion mobility spectroscopy (IMS) [20,21] and molecularly imprinted
polymers (MIPs) [22]. Note that fluorescence detection is a simple, convenient, highly sen-
sitive method for monitoring pollutants in wastewater [23–25] and vapor phases [26–28],
and even in commercial honey samples [29]; no special instructions are required compared
with other methods, while rapid and real-time detection is provided, and fluorescence
detection has demonstrated good sensitivity and selectivity.

Lanthanide ions have high coordination numbers and poor stereochemical prefer-
ences, sharp characteristic emission in the visible and near-infrared (NIR) ranges, large
antenna-induced offsets and long lifetimes. Lanthanide–organic complexes have been
widely investigated and applied in catalysis, adsorption, detection, luminescence, mag-
netism, separation, and so on [30–32]. In particular, lanthanide–organic complexes have the
advantages of good luminescence performance, long emission lifetime, large Stokes shift
and high quantum yield, and have broad application prospects in the field of fluorescence
sensing [33,34]. It is well known that lanthanide complexes have a unique luminescence
process, and the interaction between Ln3+ and an organic ligand coordinated to the Ln
center with a fluorescence-sensing analyte can affect their emission intensity. Due to their
unique properties, high coordination numbers and the flexible coordination modes of lan-
thanide metal ions, lanthanide–organic complexes possess diverse structures and excellent
properties, in which the luminescence performance mainly stems from the metal-centered
luminescence generated by absorbing radiative excitation energy from the excited state.
The lanthanide ions regularly fill electrons in the 4f orbital, and the electron configuration
is [Xe]4fn (n = 0–14). The electronic structure generates well-defined energy levels, leading
to interesting luminescent properties. The 4f orbital is insensitive to the outer electrons
because it’s well shielded by the 5s and 5d shells. In addition, f-f transitions are forbid-
den, providing sharp, narrow, and iconic emission peaks. Lanthanide ions have a narrow
absorption cross section and limited absorption efficiency, making it difficult to directly
emit light through photoexcitation. This problem is solved by the “antenna effect”, which
mainly realizes the luminescence of lanthanide–organic complexes by transferring energy
to lanthanide ions through organic ligands. The “antenna effect” refers to the formation of
Ln–organic complexes through coordination bonds between lanthanide ions and organic
ligand molecules with a high light-absorption coefficient [35]. With the help of the large
absorption of the organic ligand in the ultraviolet region, the characteristic emission of
lanthanide ions is greatly improved, and its energy is transferred to the emission level of
lanthanide ions through an efficient intramolecular energy-transfer process.

As shown in Figure 1, the specific process of energy absorption and conversion of
lanthanide–organic complexes is embodied in three steps: First, the ground-state organic-
ligand chrominance group in the lanthanide coordination polymer absorbs the excitation
light and is excited from the ground state (S0) to the first excited singlet state (S1), and the
excited electrons return to the ground state by radiation or non-radiation means, or the first
singlet state (S1) can shift the system to the triplet excited state (T1). Finally, the T1 state
of the ligand is transferred to the metal ion, resulting in the highly sensitive luminescence
of the lanthanide ion. Subsequently, the energy of the lanthanide ion decreases from the
excited state to the ground state, and the characteristic fluorescence of the lanthanide ion
is emitted. However, the energy transfer from ligands to lanthanide ions is incomplete,
and the intramolecular transfer of ligands exists in the form of radiation (π-π*, n-π*). Most
lanthanide coordination polymers exhibit the characteristic emission colors of lanthanide
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metal ions, such as Tb3+, Tm3+, Eu3+ and Sm3+, which are green, blue, red and orange,
respectively, while Nd3+, Yb3+ and Er3+ emit in the near infrared region [36].
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Figure 1. Process of energy absorption and conversion of Tb(III)/Eu(III) complexes. (ISC: intersystem
crossing; IET: intramolecular energy transfer; BET: back energy transfer).

The diversity of organic ligands makes Ln–organic complexes exhibit different re-
sponses to different fluorescence-sensing analytes, and, hence, Ln–organic complexes are
expected to be efficient and multifunctional fluorescence-sensing materials [37–39]. As
a fluorescence-sensing material, Ln–organic complexes indicate some potential advan-
tages: (1) the diversity of functional ligands with different molecular sizes ensures that
the prepared Ln–organic complexes are suitable for the requirements and goals of the
detection of analytes; (2) the pore characteristics of Ln–organic complexes are conducive to
the adsorption of analytes and the increase in analyte concentration, making them closer to
the host–guest interaction sites and decreasing the low detection limit of the analytes; and
(3) the high specific surface area of Ln–organic complexes can enrich the analyte and im-
prove the sensitivity of detection. Moreover, sensors prepared with Ln–organic complexes
also have special advantages: (1) compared with high-performance liquid chromatography
and atomic absorption spectrometry, they are easy and convenient to operate and low-cost,
and there is no special requirement for the instruments; (2) the flexible porosity limits
the distance between the analyte and the complex, ensuring the interaction between the
complex and the analyte; and (3) the interaction site of the object is easy to identify, and the
sensing mechanism is easy to infer and elucidate. Based on the abovementioned advan-
tages, Ln–organic complexes are widely applied in the detection of metal cations, anions,
nitro-aromatic compounds, antibiotics, pesticides, volatile organic compounds, biological
small molecules, and biomarkers with high sensitivity and selectivity [40–42].

In this review, crystalline luminescent lanthanide–organic complexes with controllable
structural features and excellent optical properties are discussed as zero-dimensional
(0D) discrete structures, one-dimensional (1D) and two-dimensional (2D) coordination
polymers, and three-dimensional (3D) frameworks. Many studies have reported that some
nitroaromatics, such as nitrobenzene (NB), nitrophenol (2-NP or 4-NP), trinitrophenol
(TNP), etc., can be detected by crystalline lanthanide–organic complex-based sensors.
These explorations have led to the discovery of sensing materials with better detection
performance. Moreover, various fluorescence detection mechanisms of lanthanide–organic
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complexes for nitroaromatics are summarized and sorted out to help other researchers
better understand the fluorescence-detection mechanism of nitroaromatics and provide a
theory for the rational design of new crystalline lanthanide–organic complex-based sensors.

2. Fluorescent Sensing of Nitrobenzene Pollutants Based on the Structural
Characteristics of Ln–Organic Complexes
2.1. 0D Discrete Structure

The discrete-structured lanthanide complexes usually possess polynuclear metal sec-
ondary building units (SBUs) and the weak intramolecular interactions play an impor-
tant role in the sensing of nitro-based pollutants. The reported discrete lanthanide com-
plexes include Eu2 [43], Cd8Nd4 [44],Yb18 [45], Nd42 [46], and Yb42 [47] metal units, in
which the polynuclear metal clusters exhibit characteristic nanoring structures (Figure 2).
Ma et al. [44,45] prepared Nd4 and Yb18, and Shi et al. [46,47] synthesized Ln42
(Ln = Nd, La, Yb) nanowheel cluster structures. Due to their unique ring structures,
special high-nuclearity lanthanide nanorings may show some advantages during the lumi-
nescent sensing, such as a strong capture ability for analytes. A great deal of intramolecular
interactions existed in these lanthanide complexes, such as hydrogen bonds or Ar-H–π
interactions, which resulted in the formation of high-dimensional supramolecular struc-
tures or three-dimensional channel structures, which are conducive to the interaction with
analytes [44–47].
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Figure 2. The high-nuclearity lanthanide nanorings. (a) Cd8Nd4 (Cd: green, Nd: blue, O: red,
C: gray). Adapted with permission from Ref. [44], 2021, American Chemical Society. (b) Yb18

(Yb: blue, O: red, C: gray). Adapted with permission from Ref. [45], 2022, Elsevier. (c) Yb42 (Yb: blue,
O: red, C: gray). Adapted with permission from Ref. [47], 2019, The Royal Society of Chemistry.

Discrete heterometallic d–f luminescent complexes are rarely synthesized due to harsh
synthetic conditions. For instance, a series of Zn–Ln frameworks consisted of a long Schiff
base ligand with a naphthyl backbone and two short polydentate ligands, in which the
Zn–Sm complex showed visible and NIR luminescent sensing of nitro explosives and
exhibited high sensitivity to 1,4-dinitrobenzene (1,4-DNB) and 2,4,6-trinitrotoluene (TNT)
at the ppb level [48].

Investigations found that the discrete lanthanide complexes exhibited a strong lanthanide-
characteristic visible or near-infrared (NIR) luminescent-sensing behavior for nitro contami-
nants with low detection limits in an aqueous solution or acetonitrile, such as nitrobenzene
(NB), nitrophenol (2-NP or 4-NP) and 2,4,6-trinitrophenol (TNP). The selective detection
of certain nitro contaminants can be attributed to several factors, such as the size of the
channel of the Ln complexes or analyte molecules, and amount of nitro compounds. If
the volume of the measured object is appropriate to enter the cavity of the sensor, the
fluorescence intensity may change and, thereby, exhibit a significant sensing effect.
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2.2. 1D Ln-Coordination Polymers

Several 1D-fluorescent lanthanide–organic complexes for sensing nitro pollutants
were reported, possibly due to their monotonous structural characteristics and indistinct
fluorescent sensing performance. One-dimensional Ln–organic coordination polymers
[Ln(BDPO)(H2O)4] (Ln = Eu for CUST-623, Tb for CUST-624) can be prepared using the
reaction of Eu or Tb ions with the N,N′-bis(3,5-dicarboxyphenyl)-oxalamide ligand (BDPO).
[Ln(BDPO)(H2O)4] has a 1D framework structure with two kinds of 1D open channels in
the b-axis direction. Such 1D Ln–organic complexes can be used as a fluorescent sensor
to detect TNP with the low detection limit of 0.21 µM [49]. Further, 1D [Eu(L)6(DMF)]
(L = 2-(2-formylphenoxy) acetic acid) can be packed into a 2D structure through hydrogen
bonding, and it has a good selectivity as well as a high sensitivity to TNP with the detection
limit of rapid response of 3.39 µM in a CH3CN solution (Figure 3). The good detection
ability towards TNP over other nitro explosives may be ascribed to the possible quenching
mechanism of competitive absorption, photoinduced electron transfer and hydrogen-bond
interaction [50]. In addition, the mixed ligands are used to construct the 1D Ln–organic-
coordination polymers, which is regarded as a good strategy. For instance, the reaction of
Eu(III) ion with mixed ligands of 2,3,4,5-tetrafluorobenzoic acid and 1,10-phenanthroline
afforded a 1D structural tetranuclear [Eu4] complex with two crystallographically indepen-
dent Eu3+ ions, which exhibited a highly sensitive response toward nitrobenzene at the
ppm concentration [51].
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Figure 3. Schematic illustration of 1D Eu–organic complex [Eu(L)6(DMF)]n (HL = 2-(2-
formylphenoxy)acetic acid) having high selectivity and sensitivity to TNP in acetonitrile.
(a) Concentration-dependent fluorescence quenching efficiencies of [Eu(L)6(DMF)]n suspension
based on the 618 nm peak. Gradually addition of TNP solution to the [Eu(L)6(DMF)]n suspension
(from 0 to 200 lL, kex = 350 nm); (b) The luminescence quenching efficiencies of different Nitro explo-
sives towards the CH3CN dispersion of [Eu(L)6(DMF)]n. Adapted with permission from Ref. [50],
2022, Elsevier.

These 1D lanthanide complexes can be used as luminescence sensors to detect NB
or TPA in an aqueous or CH3CN solution with the low detection limits at the µM level
through the alteration in its luminescence property, exhibiting the characteristic visible
luminescence of Eu or Tb ions. The fluorescence-detection mechanism of nitro contami-
nants involves photoinduced electron transfer (PET), resonance energy transfer (RET),
competitive absorption of excitation energy (CA), and weak interactions. Moreover,
a large number of hydrogen bonds in the 1D chain structure and weak interactions between
complexes and analytes play an important role in the sensing process.
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2.3. 2D Ln-Coordination Polymers

Chemists explored a few 2D fluorescent lanthanide-based homometallic (f-f group)
or heterometallic (d–f group) organic complexes as sensing materials for the detection of
nitroaromatics. The studies revealed that the structural characteristics and the presence of
weak interactions between 2D sheets (hydrogen bond, X . . . X bond, π stacking interaction)
are beneficial to the interaction of the analyte with material and the fluorescence response
of the luminescent species [52–57].

Liu et al. reported a new 2D Dy-organic complex [Dy(L)(NO3)(DMF)3]n (H2L = 2,5-
di(1H-1,2,4-triazol-1-yl) terephthalic acid, DMF = N, N-dimethylformamide)} with binu-
clear units as a ratiometric luminescent sensor for nitro compounds (such as 4-NP) in aque-
ous solutions; the lowest detection limit (0.0676 µM) indicates a high sensitivity [52]. The
luminescence response of another 2D complex, [Eu(TFTA)1.5(H2O)2]·H2O (TFTA = tetraflu-
oroterephthalate), in methanol was influenced by the primary and secondary inner fil-
ter effects (IFE) of nitroaromatic compounds (4-NTP, 2,4-DNP and TNP). The modelling
and correction of IFE revealed the mechanism of static and dynamic quenching in the
complex, and F–F interactions were also involved in the assembly of 2D structures into
3D supramolecular entities; as predicted, these interactions weaken with the lanthanide
contraction [53]. The similar Br–Br interactions were found in a series of 2D lanthanide co-
ordination polymers {Eu2(TBrTA)3(H2O)8·2H2O}n (TBrTA = tetrabromoterephthalate), the
quenching rate of nitroaromatic compounds was 85%, including 4-nitrophenol, dinitrophe-
nol, and trinitrophenol (picric acid), with the main quenching mechanisms of competitive
absorption, photoinduced electron transfer, and the electrostatic process [54] (Figure 4).
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Lanthanide coordination polymers constructed from mixed organic ligands exhibit rich
structural features and good luminescent sensing properties for nitroarmoatics. However,
lanthanide ions are not easy to coordinate with nitrogen atoms, and it is difficult to obtain
mixed-ligand products by adding nitrogen-containing auxiliary ligands. It is through
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luck our group prepared a series of 2D lanthanide coordination polymers with a mixed
ligand of 2/5-(pyridine-2-ylmethoxy) isophthalic acid and nitrogen-containing auxiliary
ligands, which have high selectivity and sensitivity for the detection of TNP at nM level
(Figure 5) [55]. Obviously, the addition of a nitrogen-containing ligand is conducive
to the formation of non-covalent bonds and the promotion of the fluorescence sensing
of nitrocompounds.
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spectrum upon gradually adding TNP. Adapted with permission from Ref. [55], 2022, Elsevier.

Although the preparation of 2D lanthanide-based heterometallic coordination poly-
mers is a great challenge, a few complexes have been reported and showed fluores-
cent sensing properties for nitro contaminants. For example, f–f mixed-lanthanide com-
plexes with different mixed ratios display a 2D sheet-like structure. Owing to the hy-
drogen bond interactions, the 2D structures are easily packed into 3D frameworks and
exhibit a good sensing performance for 4-NP, such as 1-Eu0.5Tb0.5 [56]. In addition,
2D d-f-block Cd(II)-lanthanide(III) heterometallic-organic frameworks [CdCl(L)EuxTby-
(H2O)(DMA)](NO3)·3DMA (IFMC-36-EuxTby) showed characteristic sharp emission bands
of Eu(III) and Tb(III), and the intensities of red and green were tuned through changing
the ratios of Eu(III) and Tb(III). It is worth noting that the luminescence property of IFMC-
36-Eu suggests a potential application in the detection of the small-molecule pollutant
nitrobenzene via significant fluorescence quenching [57].

2.4. 3D Ln–Organic Frameworks

Due to the high coordination number of lanthanide ions and their strong coordination
ability with the oxygen atoms of the carboxylate ligand, the fluorescent lanthanide–organic
framework with a 3D structure accounts for a large proportion of research. Owing to the
advantages of the 3D microporous structure, the fluorescence-sensing performance of 3D
lanthanide–organic frameworks is much better than those of 0D, 1D and 2D lanthanide–
organic complexes; therefore, 3D lanthanide–organic frameworks are used not only for the
detection of nitrobenzene, p-nitroaniline and 4-nitophenol, but also for 3,4-dinitrotoluene
and 2,4,6-trinitrophenol.
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The hydrothermal reaction of lanthanide ions (Ln3+) and 2,5-di(1H- 1,2,4-triazol-1-
yl)terephthalic acid (H2dttpa) formed lanthanide metal coordination polymers {[Ln(dttpa)1.5
(H2O)2]·H2O}n (Ln–CP, Ln = La3+, Ce3+, Nd3+, Sm3+, Eu3+) and {[Ln(dttpa)1.5(H2O)]·0.75H2O}n
(Ln = Tb3+, Er3+) [58], in which Eu–CP effectively sensitizes the visible emission of Tb3+

and shows high selectivity for Tb3+ and stable and high sensitive response with a minimal
detection limit of 0.00988 µM; furthermore, Tb-CP acts as a good luminescence sensor to
detect nitrobenzene (NB) with a detection limit of 0.0125 µM. Moreover, the fluorescence
quenching of Tb-CP for NB can be attributed to the competitive absorption mechanism and
the photo-induced electronic transfer mechanism of the excited-state interaction between
the luminescent material and NB (Figure 6).
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Figure 6. (a) Two-dimensional structure of {[Tb(dttpa)1.5(H2O)]·xH2O}n (Tb–CP); (b) luminescence
intensities of the 5D4→ 7F5 transition (542 nm) for Tb–CP CH3CN suspension with additional various
solvents (0.1 mM) (λex = 248 nm); (c) sensing for NB of Tb–CP; (d) curve plotting the luminescence
intensity and concentration of NB (inset: Stern–Volmer plots of the linear part of the curve to obtain
Ksv). Adapted with permission from Ref. [58], 2022, The Royal Society of Chemistry.

In general, most studies were focused on Eu/Tb complexes for their excellent lumines-
cence properties, but a few other Ln–organic complexes were also explored and applied
to fluorescent sensors for the detection of nitroaromatic compounds. For example, the
solvothermal reaction of La(NO3)3·6H2O, tetrakis(4-carboxyphenyl)ethylene (TCPE) and
L-proline yielded the La metal–organic framework La(HTCPE)(H2O)2, which could be
employed as a sensitive and selective fluorescence sensor for nitro-containing aromatic
compounds, such as p-nitroaniline (NA). When NA was added into the suspension system
of La(HTCPE)(H2O)2, fluorescence was almost completely quenched [59]. Due to the harsh
synthesis conditions, 3D luminescent d-f block-based heterometallic organic complexes
have rarely been synthesized; these deserve further exploration in the future to broaden
the family of 3D luminescent Ln–organic complexes.

3. Detection Effect of Ln–Organic Complexes on Different Nitro Pollutants

Nitro pollutants are closely related to production and daily life due to their wide use
in industrial processes, such as for pesticides, pharmaceuticals and dyes. It is of great
significance to develop low-cost and effective fluorescence probe material for the detection
of low-concentration hazardous nitro pollutants with high selectivity and sensitivity.
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3.1. Nitrobenzene (NB)

Nitrobenzene (NB), as the simplest nitroaromatic compound, is widely used in the
synthesis of many products in industry, and leads to air, water, and soil pollution, as
well as serious safety problems. Moreover, since NB is highly toxic, difficult to degrade,
carcinogenic, and easy to settle, once it is exposed to groundwater and soil, it will have
adverse effects on human health and the environment. The rapid and sensitive detection of
NB is a crucial task; thus, many approaches have been developed for NB detection, such as
chromatography, spectrophotometry, electrochemical method, and so on [37]. However,
these methods are complex, expensive, and time-consuming. Many lanthanide complexes
can be used as fluorescence materials to detect NB through the alteration in fluorescence
properties and, usually, show high sensitivity and selectivity, due to NB inducing fluo-
rescence quenching of lanthanide complexes in various organic solvents. As shown in
Figure 7, a 3D Eu–organic complex {[Eu2(NSBPDC)3(H2O)4]·7(H2O)}n (H2NSBPDC = 6-
nitro-2,2′-sulfone-4,4′-dicarboxylic acid), as a fast and recyclable fluorescence sensor, exhib-
ited good fluorescence sensing on NB via a turn-off response with a low detection limit of
11.315 µM [60].
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Figure 7. (a) Coordination environment of EuIII ions in {[Eu2(NSBPDC)3(H2O)4]·7(H2O)}n

(Eu: green, N: blue, O: red, C: gray); (b) the 3D structure of {[Eu2(NSBPDC)3(H2O)4]·7(H2O)}n

with 1D channels along the a axis (Eu: green, N: blue, O: red, C: gray); (c) the luminescence inten-
sity at 614 nm of {[Eu2(NSBPDC)3(H2O)4]·7(H2O)}n dispersed in various solvents (λex = 359 nm);
and (d) luminescence intensity of {[Eu2(NSBPDC)3(H2O)4]·7(H2O)}n upon gradual addition of NB.
Adapted with permission from Ref. [60], 2019, Elsevier.

However, there are few in-depth studies on the fluorescence quenching mechanism
of lanthanide–organic complexes induced by adding NB. To investigate the mechanism
of fluorescence quenching with NB, Liu et al. designed and prepared a Tb–FDA complex,
{[Tb(FDA)1.5(DMF)]·DMF}n, using the reaction of Tb3+ and 2,5-furandicarboxylic acid
(H2FDA) under solvothermal conditions, and used it as a highly selective and sensitive
fluorescent probe for nitrobenzene and Fe3+. The fluorescence quenching mechanism
was explained by the lowest unoccupied molecular orbital (LUMO) energy level of NB
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(−2.437 eV), which is lower than that of the H2FDA ligand (−1.954 eV) [61]. Hidalgo-
Rosa et al. further expanded the knowledge of the selective-sensing mechanism of nitro
compounds using luminescent terbium metal–organic frameworks [Tb(BTTA)1.5(H2O)4.5]n
(H2BTTA = 2,5-bis(1H-1,2,4-triazol-1-yl) terephthalic acid) through multiconfigurational
ab-initio calculations [62].

3.2. Nitrophenol (4-NP or 2-NP)

Nitrophenol (4-NP or 2-NP) is one of the smaller nitroaromatics with one electron-
withdrawing nitro group and one electron-donating hydroxyl group on a benzene ring. It
is mainly used as intermediate of pesticides, medicines, dyes and other fine chemicals, and,
therefore, causes serious pollution due to its high toxicity. The highly sensitive detection
of NP in water is very important for water environment protection, human health and
ecological environment safety. GC, AAS, MS, etc., are usually used for the detection of
NP, but some potential disadvantages limit their applications [56]. Therefore, the use of
efficient sensors for detecting NP is extremely convenient and significant; in particular, the
development of Ln–organic complex-based fluorescence sensors with high sensitivity for
NP is of pivotal practical significance.

Lin et al. designed and prepared a series of {[Ln(HL)]·3DMF·3H2O}n (Ln = Eu and Tb,
H4L = 1,4-bis(2′,2′′,6′,6′′-tetracarboxy-1,4′:4,4′′-pyridyl)benzene) (LZG-Eu and LZG-Tb)-
based sensors to sense 4-NP with a detection limit of 0.0112 µM in deionized water, showing
a promising Ln–organic complex sensor for 4-NP detection in actual water compared with
those reported Ln complexes (Figure 8) [63].
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Figure 8. (a) The 3D molecular structure of {[Tb(HL)]·3DMF·3H2O}n (LZG-Tb) showing the Tb4C3O6

subunit and chair conformational hexagon cavity viewing along c-axis (color modes: green, Tb; red,
O; blue, N; gray, C); (b) the luminescence response of {[Eu(HL)]·3DMF·3H2O}n (LZG-Eu) to different
concentrations of 4-NP (0–7.5 µM) in deionized water; (c) the luminescence response of LZG-Tb
to different concentrations of 4-NP (0–1 µM) in deionized water. Adapted with permission from
Ref. [63], 2021, The Royal Society of Chemistry.

To detect 2-NP, a few Ln–organic-complex-based sensors were also designed and
prepared. For example, the large [Ln42L14(OH)28(OAc)84] (Ln42, Ln = Nd, Yb, HL = 3-
methoxysalicylaldehyde) coordination polymer nanorings-based sensor exhibits NIR lumi-
nescence sensing for 2-NP in CH3CN with the detection limit from 8.22 to 27.1 µM [46,47].
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The existence of the electron-withdrawing group on the benzene ring likely promotes the
fluorescence quenching of lanthanide coordination polymers; thus, the sensing performance
of Ln-CPs, for NP, has been discovered in recent years.

3.3. 2,4,6-Trinitrophenol (TNP)

Picric acid (PA), or 2,4,6-Trinitrophenol (TNP), possesses three electron-withdrawing
nitro groups and one electron-donating hydroxyl group on a benzene ring. As a common
and typical malignant organic pollutant, TNP is used widely in industries for dyes, explo-
sives, pharmaceuticals, fireworks, firecrackers and leather. High toxicity, and harmfulness
to eyes, skin and the respiratory system inspired many researchers to efficiently detect TNP.
The traditional detection methods, including HPLC, RS, IMS, GC, MS and MIT, could be
used to detect explosives, such as TNP; some potential limitations of these technologies
restrict their application [64]. TNP remains in a dissociated form in solution and can interact
with the positive center on the fluorophore due to its low pKa value (pKa = 0.42) [35,65];
thus, the fluorescence sensing method is suitable for the detection of TNP in solution.

The Ln–organic complexes-based sensors can effectively detect TNP with high sensi-
tivity and selectivity in aqueous solution. Xu et al. prepared a 3D [Tb(TCBA)(H2O)2]2·DMF
(H3TCBA = tris(3′-carboxybiphenyl)amine; DMF = dimethylformamide) by the solvother-
mal reaction of Tb3+ with a propeller-like H3TCBA ligand. The resultant Tb–organic
complex features 1D triangular channels. Such a structure indicated high selectivity, with
an extremely low detection limit about 1.64 ppb implied a high sensitivity for TNP explo-
sive [66]. The lowest detection limit means the highest sensitivity of the sensor, compared
with the previously reported Ln-based sensors [39,44,45,49,50,53,55]. The strong host–guest
interactions between the Tb metal–organic framework (Tb-MOF) and TNP are captured and
accurately determined by online microcalorimetry, which provides a distinctive thermody-
namic perspective to understand the heterogeneous sensing behaviors. Another interesting
work about sensing TNP using an Ln–organic complex is that a proportional fluorescence
probe RGH-Eu(BTC) for TNP recognition was prepared by fixing a rhodamine derivative
(RGH) on the surface of the luminescent Eu coordination polymer Eu(BTC) [67]. In the
presence of TNP, the red fluorescence emission of Eu(BTC) was quenched in the donor–
acceptor electron transfer process. The green fluorescence emission of RGH is caused by
a rhodamine spirallactam ring opening, and the RGH-Eu(BTC) color changes from colorless
to orange, which is easy to observe with the naked eye. The sensor realizes highly selective
sensing of TNP in acidic analytes (Figure 9).
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Based on the abovementioned contents, fluorescent sensors based on Ln–organic
complexes for nitroaromatics are listed in Table 1.

Table 1. Fluorescent sensors based on Ln–organic complexes for nitroaromatics.

Ln–Organic Complexes Analytes Detection Limit Solvent Mechanism Refs

[EuL(H2O)3]·3H2O·0.75DMF NB none DMF Static [38]
[Tb(FDA)(DMF)]·DMF NB 0.01666 µg/mL DMF PET + Static [41]
[Eu2(HPA)6(phen)2]·4H2O NB - H2O - [43]
[Eu2(TFPht)3(phen)2(H2O)2]·H2O NB ppm H2O PET [51]
[CdCl(L)Eux(H2O)(DMA)](NO3)·3DMA NB - H2O PET [57]
{[Ln(dttpa)1.5(H2O)]·xH2O}n NB 12.5 µM CH3CN PET + CA [58]
{[Ln2(NSBPDC)3(H2O)4]·x(H2O)}n NB 11.315 µM Ethanol PET + CA [60]
{[Tb(FDA)1.5(DMF)]·DMF}n NB - DMF PET [61]
[Tb(BTTA)1.5(H2O)4.5]n NB - Methanol ST [62]
{[Ln2(L2)2(H2O)5]·3H2O}n NB 1.46 µM Methanol PET [67]

[Tb2(TTHA)(H2O)4]
NB
PNT
TNP

0.489
0.609
0.919

Ethanol PET [42]

[Ln2(L)2(H2O)2]·5H2O 4-NP 7.6 × 10−5 M H2O CA [40]
[Dy(L)(NO3)(DMF)3] 4-NP 0.0676 µM H2O CA [52]
[Eu0.5Tb0.5(L)(H2O)3]n 4-NP - DMF RET [56]
LZG-Eu/Tb 4-NP 0.0112 µM H2O CA [63]

{Eu2(TBrTA)3(H2O)8·2H2O}n

4-NP
DNP
TNP

17 µM
43.1 µM
74.6 µM

Ethanol CA + PET +
electrostatic [54]

[Nd42L14(OH)28(OAc)84] 2-NP 8.22 µM H2O [46]
[Yb42L14(OH)28(OAc)84] 2-NP 27.1 µM CH3CN PET + other [47]
[Tb4(2-pyia)6(HAc)0.5(2,2′-bipy)
(H2O)4.5]·2,2′-bipy·H2O TNP 0.0271 µM H2O CA + PET + dynamic [39]

[Cd8Nd4L8(OAc)8]·4OH TNP 0.55 µM H2O PET + inner filter effect [44]
[Yb18(L1)8(HL[2])2(OAc)20] TNP 5.1 µM CH3CN PET + other [45]
[Tb(BDPO)(H2O)4] TNP 0.20 µM H2O RET [49]
[Eu(BDPO)(H2O)4] TNP 0.21 µM H2O RET [49]
[Eu(L)6(DMF)] TNP 3.39 µM CH3CN PET + CA [50]
[Tb2(pyia)3(phen)2(H2O)]·H2O TNP 0.080 µM H2O CA [55]
[Tb(TCBA)(H2O)2]·DMF TNP 1.64 ppb Ethanol PET [63]
RGH-Eu(BTC) TNP 0.45 µM Ethanol PET + H-bonds [65]

{[Eu2(HL)2(H2O)4]·3H2O}n TNP 2.5 µM H2O RET + electrostatic
interaction [68]

[Eu(TFTA)1.5(H2O)2]·H2O
4-NTP
2,4-DNP
5-TNP

21.8 µM
31.2 µM
26.8 µM

Methanol CA + inner filter effect [53]

La(HTCPE)(H2O)2 NA 5.68 µM DMF PET + interactions [59]

[Eu2(dtztp)(OH)2(DMF)(H2O)2.5]·2H2O DCN 5.28 ppm H2O RET + PET [32]

Note: NB: nitrobenzene; 2-NP: 2-nitrophenol; 4-NP: 4-nitrophenol; NA: nitroaniline; DNP: dinitrophenol;
DCN: 2,6-dichloro-4-nitroaniline; TNP: 2,4,6-trinitrophenol; PNT: 4-nitrotoluene.

4. Fluorescence Detection Mechanisms of Ln–Organic Complexes for Nitroaromatics

The fluorescence quenching mechanism of Ln–organic complexes by nitroaromatics
with nitro electron-withdrawing properties may be caused by single or multiple reasons,
which need to be further explored. Due to the presence of electron-withdrawing groups
and the strong oxidant characteristic of nitroaromatics, when these compounds are exposed
to electron-rich complexes, their unoccupied lower π* orbitals are capable of withdrawing
electrons from the excited state of the Ln complex, resulting in fluorescence attenuation.
The mechanism of detection of nitro pollutants by Ln–organic complexes can be divided
into the following types: (1) resonance energy transfer (RET), (2) competition absorption
(CA), (3) photoinduced electron transfer (PET); (4) structural transformation (ST); and
(5) static or dynamic quenching [69].
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4.1. Resonance Energy Transfer (RET)

Resonance energy transfer, as a photoluminescence-sensing mechanism, is a short-
range non-radiative energy transfer process which can significantly improve quenching
efficiency and sensitivity. When the excited donor (fluorophore) induces the acceptor
(analyte) to fluoresce, the fluorescence resonance energy is transferred, while the fluores-
cence intensity of the donor is reduced. Energy transfer is a distance-dependent physical
process, and the efficiency of energy transfer usually hinges on (i) spectral overlap extent,
the emission spectrum and the absorption spectrum of the host and guest; and (ii) dipole–
dipole interaction, and the distance and relative orientation of the host and guest [69]. The
efficiency and rate of energy transfer depends mainly on the degree of spectral overlap
between the donor’s emission spectrum and the acceptor absorption spectrum. If the ener-
gies of the donor and acceptor are close, the energy transfer is significantly likely to occur.
The degree of spectral overlap can be determined by experiment. If the UV-vis absorption
spectrum of the analyte overlaps with the emission spectrum of the complex to a certain
extent, the resonance energy will transfer from the complex to the analyte, resulting in the
fluorescence quenching of the complex. If the overlap between the emission spectrum of
the complex and the absorption spectrum of the analyte is higher, the quenching efficiency
is higher.

Both [Eu(BDPO)(H2O)4] (CUST-623) and [Tb(BDPO)(H2O)4] (CUST-624) based on
N,N′-bis(3,5-dicarboxyphenyl)-oxalamide (BDPO) could be used as fluorescent sensors
for detecting TNP, and the sensing mechanism could be attributed to RET because their
fluorescence spectra overlap with the ultraviolet visible absorption spectra of TNP [49]. An
Eu/Tb bifunctional metal–organic framework, [EuxTb1−x(L)(H2O)3]n (H4LCl = 3-bis(3,5-
dicarboxyphenyl)imidazolium chloride), was synthesized successfully through a solvother-
mal reaction and used as a luminescent sensor to detect 4-NP in DMF and the quenching
efficiency was affected by RET (Figure 10) [66].
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4.2. Competition Absorption (CA)

Competition absorption is the overlap between the excitation spectrum of an Ln–
organic complex and the UV-vis absorption spectrum of the analyte. When the excitation
spectrum of the complex overlaps greatly with the UV-vis absorption spectrum of the
analyte, the complex and the analyte may competitively absorb the excitation light, thereby
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reducing the total available energy of the complex, resulting in a decrease in the excited
state of the Ln–organic complex. As a result, the fluorescence property of the complex is
quenched. For instance, a Dy organic complex [Dy(L)(NO3)(DMF)3]n (H2L = 2,5-di(1H-
1,2,4-triazol-1-yl) terephthalic acid) with multi-emission peaks can be used as a luminescent
ratio sensor for 4-NP, and the sensing mechanism is attributed to a competitive absorption
of excitation energies (Figure 11) [52].
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4.3. Photoinduced Electron Transfer (PET)

The photoinduced electron transfer (PET) mechanism could be used to explain the
luminescence quenching process of Ln–organic complexes caused by nitroaromatics. The
luminescence of a lanthanide–organic complex is caused by the antenna effect, in which the
energy is transferred from chromogenic organic ligands (sensors) to Ln3+ ions. For the PET
mechanism, the conduction band (CB) energy levels of the chemosensors are higher than
the LUMO levels of the explosives. Thus, the excitation energy of the chemosensors may
be consumed by their electron transfer to the electron-deficient nitro explosives, resulting
in the luminescence quenching of the lanthanide–organic complexes at the lowest LUMO
energy value.

Various interactions in the metal coordination polymer (such as hydrogen bonding or
π-π packing) with the host and guest of the analyte may facilitate the photoelectron transfer
process during photoexcitation. PET is a redox process in which excited photoelectrons are
transferred from the donor to the electron-deficient ground-state receptor. When the lowest
unoccupied molecular orbital (LUMO) energy of the donor (fluorophores) is higher than the
LUMO energy of the acceptor (analytical compound), photoelectrons may be transferred
from the excited donor to the ground-state receptor, resulting in the fluorescence quenching
of the donor. Correspondingly, when the LUMO orbital energy of the donor is lower
than the LUMO orbital energy of the recipient, photoelectrons may be transferred from
the recipient to the donor, resulting in the enhanced fluorescence of the donor. Then,
a recombination of charges in the ground state of the donor or acceptor occurs. Therefore,
the complexation between the analyte and the sensor probe material will cause changes
in the highest occupied molecular orbital (HOMO) and LUMO of the probe, which will
greatly affect the efficiency of the sensor probe.

Generally, the energy of the conduction band (CB) of an electron-rich MOF is higher
than the lowest unoccupied orbital energy of a nitro compound. When the excited electrons
of the CB of MOFs are transferred to the LUMO, the nitro compound will cause fluores-
cence quenching, and the fluorescence-quenching performance will be improved with the
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decrease in LUMO orbital energy. That is to say, the PET leads to fluorescence quench-
ing. A lot of fluorescence-quenching examples of Ln–organic sensors for nitroaromatics
are ascribed to the PET mechanism. For instance, {[Eu2(L2)2(H2O)5]·3H2O}n constructed
from 5-(3′,5′-dicarboxylphenyl) picolinic acid (L2) by an in-situ decarboxylation reaction
under hydrothermal conditions was used as a multifunctional sensor to detect Cu2+ ion,
MnO4

− anion, and NB. The results showed a high sensitivity and selectivity through the
fluorescence-quenching effect (Figure 12). For the sensing of NB, a possible mechanism
may be allied to the PET from an electron-rich excited MOF to the electron-deficient NB [68]
(Table 1).
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Figure 12. (a) Emission spectra of {[Eu2(L2)2(H2O)5]·3H2O}n (Eu-MOF) in various concentrations of
NB, (b) the Stern–Volmer plot of I0/I versus the concentration of nitrobenzene for Eu-MOF, (c) the S–V
curve of I0/I versus the concentration of NB for Eu-MOF at low concentration, (d) the luminescence
intensity (5D0 → 7F2) of five recyclable experiments of sensing for nitrobenzene in MeOH solution.
Adapted with permission from Ref. [68], 2020, American Chemical Society.

4.4. Structural Transformation Mechanism (ST)

The structural transformation mechanism is when guest molecules enter the pore skele-
ton of a metal–organic complex (host) to generate guest–host interactions, thereby leading
to the alteration in the coordination environment of metal ions and even structural defor-
mation, resulting in significant changes in the luminescence of the metal–organic complex.
This case can be applied to the selective detection of analytes. The host–guest interaction
promotes or interrupts the sensitization pathways of the lanthanide ion and, therefore, leads
to the enhancement or quenching of the luminescence, respectively [70]. An investigation
elucidated the detection principle of luminescence quenching in a [Tb(BTTA)1.5(H2O)4.5]n
sensor based on 2,5-bis(1H-1,2,4-triazol-1-yl) terephthalic acid (BTTA) for NB. Through
multireference CASSCF/NEVPT2 calculations, it demonstrated the value of host–guest-
interaction simulations and the rate constants of the radiative and nonradiative processes in
understanding and elucidating the sensing mechanism in Ln-MOF sensors (Figure 13) [62].
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Figure 13. Energy level diagram depicting the most likely sensitization and emission processes
for [Tb(BTTA)1.5(H2O)4.5]n/NB. Intersystem crossing, phosphorescence, and fluorescence rates are
represented by the letters kISC, kP, and kF, respectively, while ET stands for energy transfer and BET is
back energy transfer (BET). Adapted with permission from Ref. [62], 2022, American Chemical Society.

4.5. Static or Dynamic Quenching Mechanism (SY)

Static quenching is the formation of a non-fluorescent ground-state complex between
the complex and the analyte, which absorbs light but does not emit photons and im-
mediately returns to the ground state. Dynamic quenching is the transfer of electrons
between the quencher and the sensor through excited-state collisions. Both are generally
distinguished by changes in fluorescence decay lifetime and two quenching processes.
Fluorescence lifetime spectroscopy is a potential technique to distinguish between static
quenching and dynamic quenching. The fluorescence lifetime spectra of static quench-
ing before and after the introduction of an analyte are similar, and dynamic quenching
decreases before and after the introduction of the analyte and, thereby, results in the
fluorescence-quenching phenomenon of the complexes. Under the static mechanism,
a non-fluorescent complex is formed between the complex and the analyte, and fluores-
cence derived from the same complex. However, the fluorescence lifetime was found to
decrease in dynamic quenching, because the collisions between the complex and the analyte
reduced the excited states. As shown in Figure 14, after adding TNP into a 2D Tb–organic
network [Tb2(pyia)3(phen)2(H2O)]·H2O (H2pyia = 5-(pyridine-2-ylmethoxy) isophthalic
acid, phen = 1,10-phenanthroline) solution, its fluorescence decay lifetime was 1.941 ns,
reflecting a dynamic-quenching process compared with the average fluorescence lifetime
value (1.402 ns) [55].
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Figure 14. (a) Fluorescence intensity of Tb complex dispersed in aqueous solutions of different nitro
explosives at 550 nm (λex = 310 nm). (b) Tb complex dispersed in aqueous solutions of different
concentrations of TNP at 550 nm; changes in fluorescence intensity. (c) S–V plot of TNP concentration
and fluorescence intensity at low concentrations. (d) Interference of inorganic anions on Tb complex
fluorescence sensing TNP. Adapted with permission from Ref. [55], 2022, Elsevier.

For many nitroaromatics, the fluorescence quenching of lanthanide compounds is
mostly caused by a combination of various mechanisms. For example, the Nd42 clus-
ter [Nd42L14(OH)28(OAc)84] (HL = 3-methoxysalicylaldehyde) exhibits interesting NIR
luminescence-sensing behavior to nitro explosives, which may be explained by PET and
RET mechanisms [46]. The Eu–organic complex {[Eu2(HL)2(H2O)4]·3H2O}n (H4L = 3,3′,5,5′-
azoxybenzenetetracarboxylic acid) can detect TNP with the high selectivity, which can be
assigned to the combined effects of electron and energy transfer mechanisms as well as elec-
trostatic interactions [71]. The emission of another Eu-MOF {Eu2(TBrTA)3 (H2O)8·2H2O}n
is more than 85% quenched by nitroaromatic compounds (NACs) such as 4-nitrophenol,
dinitrophenol, and trinitrophenol (picric acid) with competitive absorption, photoinduced
electron transfer, and electrostatic processes the main mechanisms of quenching [54].

5. Conclusions and Outlook

In summary, crystalline Ln–organic complex-based luminescent materials are eluci-
dated and analyzed in this review. According to the different dimensions, lanthanide–
organic complexes can be classified into 0D (discrete molecule), 1D, 2D and 3D structures.
Correspondingly, only a few 0D, 1D and 2D Ln complexes with luminescent properties are
found, and most luminescent Ln–organic complexes have the 3D structure. Due to their lu-
minescent property, Ln-organic complex-based sensors can be used to detect nitroaromatics,
including nitrobenzene (NB), nitrophenol (4-NP or 2-NP), and trinitrophenol (TNP) at very
low concentrations. Moreover, six main fluorescence-detection mechanisms (RET, CA, PET,
ST, SY) of Ln–organic complexes for nitroaromatics are addressed. This review will help
readers to better understand the fluorescence sensing of lanthanide–organic complexes and
their quenching mechanisms with nitroarenes.
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In term of structural characteristics, lanthanide–organic-complex sensors possess,
mainly, three-dimensional stable frameworks and large porosity. Investigations showed
that low-dimensional lanthanide coordination polymers also exhibit good sensing per-
formance due to their large specific surface area and the presence of large numbers of
weak interactions. Therefore, it is necessary to explore more low-dimensional lanthanide
coordination polymers as the sensing materials for the detection of nitroarenes with very
low concentration. Due to the elusive synthetic conditions, lanthanide coordination poly-
mer sensors with mixed ligands or heterometals are less reported. The rich structural
features and better sensing properties of heterometallic Ln–organic complexes with mixed
ligands motivate us to rationally design and prepare more such substances in the future
for application in luminescence sensing. On the other hand, we hope that more and more
nitroaromatics can be easily detected by Ln–organic complexes to increase the detection
range and capability of nitro pollutants.
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