Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Statista. Bread—Worldwide. 2023. Available online: https://www.statista.com/outlook/cmo/food/bread-cereal-products/bread/worldwide (accessed on 23 May 2023).
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Wronkowska, M.; Zieliński, H.; Szmatowicz, B.; Ostaszyk, A.; Lamparski, G.; Majkowska, A. Effect of roasted buckwheat flour and hull enrichment on the sensory qualities, acceptance and safety of innovative mixed rye/wheat and wheat bakery products. J. Food Process. Preserv. 2019, 43, e14025. [Google Scholar] [CrossRef]
- Sedej, I.; Sakač, M.; Mandić, A.; Mišan, A.; Tumbas, V.; Čanadanović-Brunet, J. Buckwheat (Fagopyrum esculentum Moench) Grain and Fractions: Antioxidant Compounds and Activities. J. Food Sci. 2012, 77, 954–959. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Pastucha, E.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Francik, R. Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. J. Cereal Sci. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Čabarkapa, I.S.; Sedej, I.J.; Sakač, M.B.; Šarić, L.Č.; Plavšić, D.V. Antimicrobial activity of buckwheat (Fagopyrum esculentum Moench) hulls extract. Food Process. Qual. Saf. 2008, 35, 159–163. [Google Scholar]
- Jaeger, H.; Janositz, A.; Knorr, D. The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathol. Biol. 2010, 58, 207–213. [Google Scholar] [CrossRef]
- Nishinaka, T.; Mori, S.; Yamazaki, Y.; Niwa, A.; Wake, H.; Yoshino, T.; Nishibori, M.; Takahashi, H. A comparative study of sulphated polysaccharide effects on advanced glycation end-product uptake and scavenger receptor class A level in macrophages. Diabetes Vasc. Dis. Res. 2020, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, P.; Cerami, A. Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 2002, 56, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Andrade, C.; Fogliano, V. Dietary Advanced Glycosylation End-Products (dAGEs) and Melanoidins Formed through the Maillard Reaction: Physiological Consequences of their Intake. Annu. Rev. Food Sci. Technol. 2018, 9, 271–291. [Google Scholar] [CrossRef]
- Thornalley, P.J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys. 2003, 419, 31–40. [Google Scholar] [CrossRef]
- Khan, M.; Liu, H.; Wang, J.; Sun, G. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 2020, 130, 108933. [Google Scholar] [CrossRef] [PubMed]
- Różańska, B.M.; Siger, A.; Szwengiel, A.; Dziedzic, K.; Mildner-Szkudlarz, S. Maillard Reaction Products in Gluten-Free Bread Made from Raw and Roasted Buckwheat Flour. Molecules 2021, 26, 1361. [Google Scholar] [CrossRef] [PubMed]
- Szawara-Nowak, D.; Koutsidis, G.; Wiczkowski, W.; Zieliński, H. Evaluation of the in vitro inhibitory effects of buckwheat enhanced wheat bread extracts on the formation of advanced glycation end-products (AGEs). LWT—Food Sci. Technol. 2014, 58, 327–334. [Google Scholar] [CrossRef]
- Przygodzka, M.; Zieliński, H. Evaluation of in vitro inhibitory activity of rye-buckwheat ginger cakes with rutin on the formation of advanced glycation end-products (AGEs). Pol. J Food Nutr. Sci. 2015, 65, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Wronkowska, M.; Piskuła, M.K.; Zieliński, M. Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity. Food Chem. 2016, 196, 355–358. [Google Scholar]
- Starowicz, M.; Zieliński, H. Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sujka, K.; Cacak-Pietrzak, G.; Sułek, A.; Murgrabia, K.; Dziki, D. Buckwheat hull-enriched pasta: Physicochemical and sensory properties. Molecules 2022, 27, 4065. [Google Scholar] [CrossRef]
- Liu, D.; Song, S.; Tao, L.; Yu, L.; Wang, J. Effects of common buckwheat bran on wheat dough properties and noodle quality compared with common buckwhat hull. LWT—Food Sci. Technol. 2022, 155, 112971. [Google Scholar] [CrossRef]
- Hęś, M.; Szwengiel, A.; Dziedzic, K.; Le Thanh-Blicharz, J.; Kmiecik, D.; Górecka, D. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products. J. Food Sci. 2017, 82, 882–889. [Google Scholar] [CrossRef]
- Torbatinejad, N.M.; Rutherfurd, S.M.; Moughan, P.J. Total and reactive lysine contents in selected cereal-based food products. J. Agric. Food Chem. 2005, 53, 4454–4458. [Google Scholar] [CrossRef]
- Tomé, D.; Bos, C. Lysine requirement through the human life cycle. J. Nutr. 2007, 137, 1642S–1645S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.; Aman, P.; Andersson, R.; Kamal-Eldin, A. Analysis of free amino acids in cereal products. Food Chem. 2007, 105, 317–324. [Google Scholar] [CrossRef]
- Pizzoferrato, L.; Manzi, M.; Vivanti, V.; Nicoletti, I.; Corradini, C.; Cogliandro, E. Maillard Reaction in Milk-Based Foods: Nutritional Consequences. J. Food Prot. 1998, 61, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Brestenský, M.; Nitrayová, S.; Heger, J.; Patráš, P.; Rafay, J.; Sirotkin, A. Methods for determination reactive lysine in heat-treated foods and feeds. J. Microbiol. Biotechnol. Food Sci. 2014, 4, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhao, D.; Zhang, C.; Sreenivasulu, N.; Sun, S.S.-M.; Liu, Q. Lysine biofortification of crops to promote sustained human health in the 21st century. J. Exp. Bot. 2022, 73, 1258–1267. [Google Scholar] [CrossRef]
- Lindenmeier, M.; Hofmann, T. Influence of Baking Conditions and Precursor Supplementation on the Amounts of the Antioxidant Pronyl-L-lysine in Bakery Products. J. Agric. Food Chem. 2004, 52, 350–354. [Google Scholar] [CrossRef]
- Bhinder, S.; Singhb, B.; Kaura, A.; Singha, N.; Kaura, M.; Kumaria, S.; Yadavc, M.P. Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties. Food Chem. 2019, 285, 240–251. [Google Scholar] [CrossRef]
- Liogier de Sereys, A.; Muller, S.; Desic, S.D.; Troise, A.D.; Fogliano, V.; Acharid, A.; Lacotte, P.; Birlouez-Aragon, I. Chapter Potential of the FAST index to characterize infant formula quality. In Handbook of Dietary and Nutritional Aspects of Bottle Feeding; Human Health Handbooks No., 8, Preedy, V.R., Watson, R.R., Zibadi, S., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 457–475. [Google Scholar]
- Brudzynski, K.; Miotto, D. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem. 2011, 127, 1023–1030. [Google Scholar] [CrossRef]
- Knecht, K.; Sandfuchs, K.; Kulling, S.E.; Bunzel, D. Tocopherol and tocotrienol analysis in raw and cooked vegetables: A validated method with emphasis on sample preparation. Food Chem. 2015, 169, 20–27. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids: A report of the Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Use of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine; National Academy of Sciences: Washington, DC, USA, 2000. [Google Scholar]
- Maruyama, S.A.; Claus, T.; Chiavelli, L.U.R.; Bertozzi, J.; Pilau, E.J.; de Souza, N.E.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Analysis of Carotenoids, α-Tocopherol, Sterols and Phenolic Compounds from White Bread Enriched with Chia (Salvia hispanica L.) Seeds and Carrot (Daucus carota L.) Leaves. J. Braz. Chem. Soc. 2014, 25, 1108–1115. [Google Scholar] [CrossRef]
- Damanik, M.; Murkovic, M. The stability of palm oil during heating in a rancimat. Eur. Food Res. Technol. 2018, 244, 1293–1299. [Google Scholar] [CrossRef]
- Sedej, I.; Mandić, A.; Sakač, M.; Mišan, A.; Tumbas, V. Comparison of Antioxidant Components and Activity of Buckwheat and Wheat Flours. Cereal Chem. 2010, 87, 387–392. [Google Scholar] [CrossRef]
- Valencia, E.; Marin, A.; Hardy, G. Glutathione—Nutritional and pharmacological viewpoints: Part II. Nutrition 2001, 17, 485–486. [Google Scholar] [CrossRef]
- Guo, L.; Xu, D.; Fang, F.; Jin, Z.; Xu, X. Effect of glutathione on wheat dough properties and bread quality. J. Cereal Sci. 2020, 96, 103116. [Google Scholar] [CrossRef]
- Chen, X.; Schofield, J.D. Changes in the Glutathione Content and Breadmaking Performance of White Wheat Flour During Short-Term Storage. Cereal Chem. 1996, 73, 1–4. [Google Scholar]
- Chandra, R.; Bharagava, R.N.; Rai, V. Review. Melanoidins as major colourant in suragcane molasses based distillery effluent and its degradation. Bioresour. Technol. 2008, 99, 4648–4660. [Google Scholar] [CrossRef]
- Zhao, Y.-S.; Eweys, A.S.; Zhang, J.-Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.-B.; Xiao, X. Fermentation Affects the Antioxidant Activity of Plant-Based Food Material through the Release and Production of Bioactive Components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Stupar, A.; Stevanović, D.; Škrobot, D.; Maravić, N.; Tomić, J.; Hadnađev, M. Ancient Wheat Varieties and Sourdough Fermentation as a Tool to Increase Bioaccessibility of Phenolics and Antioxidant Capacity of Bread. Foods 2022, 11, 3985. [Google Scholar] [CrossRef]
- Yu, L.; Beta, T. Identification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains. Molecules 2015, 20, 15525–15549. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Chen, G.; Tilley, M.; Li, Y. Changes in phenolic profiles and antioxidant activities during the whole wheat bread-making process. Food Chem. 2021, 345, 128851. [Google Scholar] [CrossRef]
- Chandrasekara, N.; Shahidi, F. Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef]
- Teng, J.; Hu, X.; Tao, N.; Wang, M. Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food. Front. Agr. Sci. Eng. 2018, 5, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Billaud, C.; Maraschin, C.; Chow, Y.N.; Chériot, S.; Peyrat-Maillard, M.N.; Nicolas, J. Maillard reaction products as “natural antibrowning” agents in fruit and vegetable technology. Mol. Nutr. Food Res. 2005, 49, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Michalska, A.; Amigo-Benavent, M.; Zielinski, H.; del Castillo, M.D. Effect of bread making on formation of Maillard reaction products contributing to the overall antioxidant activity of rye bread. J. Cereal Sci. 2008, 48, 123–132. [Google Scholar] [CrossRef]
- Zieliński, H.; Michalska, A.; Szawara-Nowak, D.; Wiczkowski, W.; Piskuła, M.K. Tocotrienols in three rye varietes: From the grain to the bread. Pol. J. Food Nutr. Sci. 2007, 57, 441–446. [Google Scholar]
- Zieliński, H.; del Castillo, M.D.; Przygodzka, M.; Ciesarova, Z.; Kukurova, K.; Zielińska, D. Changes in chemical composition and antioxidative properties of rye ginger cakes during their shelf-life. Food Chem. 2012, 135, 2965–2973. [Google Scholar] [CrossRef] [PubMed]
- Wiczkowski, W.; Szawara-Nowak, D.; Sawicki, T.; Mitrus, J.; Kasprzykowski, Z.; Horbowicz, M. Profile of phenolic acids and antioxidant capacity in organs of common buckwheat sprout. Acta Aliment. 2012, 45, 250–257. [Google Scholar] [CrossRef] [Green Version]
F | D | DF | R | |
---|---|---|---|---|
MRPs | ||||
available lysine [mg/g DM] | 3.13 ± 0.25 a | 3.19 ± 0.03 a | 3.37 ± 0.14 a | 2.27 ± 0.02 b |
intermediate MRPs: | ||||
| 270.68 ± 23.2 c | 296.41 ± 14.5 b | 317.76 ± 8.0 b | 383.79 ± 15.5 a |
| 40.92 ± 3.8 c | 49.51 ± 2.0 b | 34.28 ± 2.1 d | 108.80 ± 4.7 a |
final MRPs: | ||||
browning index [AU] | 0.419 ± 0.010 c | 0.484 ± 0.025 b | 0.491 ± 0.005 b | 0.586 ± 0.003 a |
Tocopherols [μg/g DM] | ||||
α-T | 4.18 ± 0.8 d | 11.25 ± 2.6 c | 38.86 ± 3.5 b | 268.13 ± 6.9 a |
β + γ-T | 48.33 ± 3.8 c | 60.03 ± 2.1 b | 69.67 ± 1.6 b | 280.61 ± 7.8 a |
δ-T | 8.58 ± 1.7 b | 10.44 ± 2.6 a | 7.99 ± 2.4 b | 12.53 ± 1.3 a |
sum of T | 61.10 | 81.72 | 116.51 | 561.27 |
Glutathione [nmol/g DM] | ||||
GSH | 386.14 ± 7.57 c | 435.84 ± 4.51 a | 418.72 ± 2.93 b | 109.34 ± 0.36 d |
GSSG | 162.63 ± 5.85 c | 213.88 ± 4.75 a | 193.94 ± 4.42 b | 120.92 ± 1.90 d |
GSH/GSSG | 2.4 | 2.0 | 2.2 | 0.9 |
Antioxidant capacity [μmol Trolox/g DM] | ||||
ABTS | 2.52 ± 0.09 c | 3.01 ± 0.07 b | 3.37 ± 0.14 a | 3.27 ± 0.12 a |
DPPH | 1.93 ± 0.04 d | 2.21 ± 0.04 c | 2.36 ± 0.04 a | 2.27 ± 0.02 b |
PCL: | ||||
| 0.79 ± 0.01 c | 0.83 ± 0.01 b | 0.91 ± 0.00 a | 0.94 ± 0.02 a |
| 2.00 ± 0.03 b | 2.23 ± 0.08 a | 2.19 ± 0.03 a | 2.14 ± 0.03 a |
| 2.79 | 3.06 | 3.10 | 3.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wronkowska, M.; Bączek, N.; Honke, J.; Topolska, J.; Wiczkowski, W.; Zieliński, H. Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds. Molecules 2023, 28, 4565. https://doi.org/10.3390/molecules28114565
Wronkowska M, Bączek N, Honke J, Topolska J, Wiczkowski W, Zieliński H. Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds. Molecules. 2023; 28(11):4565. https://doi.org/10.3390/molecules28114565
Chicago/Turabian StyleWronkowska, Małgorzata, Natalia Bączek, Joanna Honke, Joanna Topolska, Wiesław Wiczkowski, and Henryk Zieliński. 2023. "Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds" Molecules 28, no. 11: 4565. https://doi.org/10.3390/molecules28114565
APA StyleWronkowska, M., Bączek, N., Honke, J., Topolska, J., Wiczkowski, W., & Zieliński, H. (2023). Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds. Molecules, 28(11), 4565. https://doi.org/10.3390/molecules28114565