Quantitative Lipidome Analysis of Boiled Chicken Egg Yolk under Different Heating Intensities
Abstract
:1. Introduction
2. Results
2.1. Egg Yolk Surface under Different Heating Intensities
2.2. Textural Properties of Egg Yolk under Different Heating Intensities
2.3. Effect of Different Heat Treatment Intensities on the Egg Yolk Lipidome
2.3.1. Overview of the Lipidome of Egg Yolk
2.3.2. Overall Differences in Yolk Lipidomes under Different Heating Intensities
2.3.3. Changes in the Abundance of Lipid Categories
2.3.4. Differential Abundance of Lipids (DALs)
2.3.5. Changes in the Most Abundant Lipids
2.3.6. The Representative DALs
3. Discussion
3.1. Heating Affects the Color and Micromorphology of the Egg Yolk Surface
3.2. Heating Affects the Taste and Texture of the Egg Yolk
3.3. Heating Might Affect the Detectability of Egg Yolk Lipids
3.4. Heat-Induced Phospholipid Hydrolysis in HEY and SEY
3.5. Effects of Heating on the Nutritional Value of Egg Yolk Lipids
4. Materials and Methods
4.1. Sample Preparation
4.2. Color Measurement
4.3. Texture Profile Analysis (TPA)
4.4. Micromorphology Characterization
4.5. Lipidomic Analysis
4.5.1. Sample Preparation
4.5.2. LC-MS/MS
4.5.3. Qualitative and Quantitative Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tang, D.; Wang, R.; He, X.; Chen, X.; Huo, X.; Lü, X.; Shan, Y. Comparison of the edible quality of liquid egg with different cooking methods and their antioxidant activity after in vitro digestion. Food Res. Int. 2021, 140, 110013. [Google Scholar] [CrossRef]
- Khawaja, O.; Singh, H.; Luni, F.; Kabour, A.; Ali, S.S.; Taleb, M.; Ahmed, H.; Gaziano, J.M.; Djoussé, L. Egg Consumption and Incidence of Heart Failure: A Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2017, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asensio-Grau, A.; Peinado, I.; Heredia, A.; Andrés, A. Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. J. Funct. Foods 2018, 46, 579–586. [Google Scholar] [CrossRef]
- Tong, P.; Xiong, L.; Gao, J.; Li, X.; Wu, Z.; Yang, A.; Yuan, J.; Wu, Y.; Chen, H. Influence of heat treatment and egg matrix on the physicochemical and allergenic properties of egg custard. J. Food Sci. 2020, 85, 789–799. [Google Scholar] [CrossRef]
- Tang, X.; Meng, X.; Wang, H.; Wang, T.; Li, Q.; Jiang, S. Egg allergy was alleviated after baking and frying cooking by weakening Jagged2-Notch induced Th2 immunity in a mice model. Eur. Food Res. Technol. 2022, 248, 917–927. [Google Scholar] [CrossRef]
- Sánchez, M.; Neira, C.; Laca, A.; Laca, A.; Díaz, M. Survival and development of Staphylococcus in egg products. LWT 2019, 101, 685–693. [Google Scholar] [CrossRef]
- Perry, J.J.; Rodriguez-Saona, L.E.; Yousef, A.E. Quality of Shell Eggs Pasteurized with Heat or Heat-Ozone Combination during Extended Storage. J. Food Sci. 2011, 76, S437–S444. [Google Scholar] [CrossRef]
- Douny, C.; Khoury, R.; Delmelle, J.; Brose, F.; Degand, G.; Moula, N.; Farnir, F.; Clinquart, A.; Maghuin-Rogister, G.; Scippo, M.-L. Effect of storage and cooking on the fatty acid profile of omega-3 enriched eggs and pork meat marketed in Belgium. Food Sci. Nutr. 2014, 3, 140–152. [Google Scholar] [CrossRef]
- Shin, M.; Han, Y.; Ahn, K. The influence of the time and temperature of heat treatment on the allergenicity of egg white proteins. Allergy Asthma Immunol. Res. 2013, 5, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Vanga, S.K.; Wang, J.; Raghavan, V. Impact of food processing on the structural and allergenic properties of egg white. Trends Food Sci. Technol. 2018, 78, 188–196. [Google Scholar] [CrossRef]
- dos Santos, A.L.S.; dos Santos, P.P.B.; de Almeida Amaral, G.; Soares, E.C.; de Oliveira e Silva, C.A.; de Souza, S.V.C. Effect of thermal processing on the antigenicity of allergenic milk, egg and soy proteins. J. Food Sci. Technol. 2022, 59, 2617–2628. [Google Scholar] [CrossRef] [PubMed]
- Tong, P.; Gao, J.; Chen, H.; Li, X.; Zhang, Y.; Jian, S.; Wichers, H.; Wu, Z.; Yang, A.; Liu, F. Effect of heat treatment on the potential allergenicity and conformational structure of egg allergen ovotransferrin. Food Chem. 2012, 131, 603–610. [Google Scholar] [CrossRef]
- Ren, L.; Ma, J.; Xu, W.; Lv, Y.; Tong, Q. Stability of low density lipoprotein particles affect the formation of off-flavor in thermal egg yolk. Food Res. Int. 2022, 154, 111029. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, H.M.; Jeong, B.; Kim, J.U.; Ha, N.; Lee, H.; Ha, S.-D.; Park, J. Application of high pressure processing for prevention of greenish-gray yolks and improvement of safety and shelf-life of hard-cooked peeled eggs. Innov. Food Sci. Emerg. Technol. 2018, 45, 10–17. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, B.; Wu, Z.; Tu, X.; Xu, S.; Lv, X.; Yin, H.; Xiang, J.; Chen, H.; Wei, F. Ultrasound-assisted one-phase solvent extraction coupled with liquid chromatography-quadrupole time-of-flight mass spectrometry for efficient profiling of egg yolk lipids. Food Chem. 2020, 319, 126547. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Wang, Y.; Wang, B.; Zhang, J.; Geng, F. Quantitative lipidomic analysis of egg yolk, yolk granule, and yolk plasma. J. Food Compos. Anal. 2023, 115, 104880. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Shi, Y.; Ye, H.; Luo, W.; Geng, F. Quantitative proteomic analyses during formation of chicken egg yolk. Food Chem. 2022, 374, 131828. [Google Scholar] [CrossRef]
- Wang, J.; Luo, W.; Chen, Y.; Zhang, Q.; Harlina, P.W.; Wang, J.; Geng, F. Quantitative metabolome analysis of boiled chicken egg yolk. Curr. Res. Food Sci. 2023, 6, 100409. [Google Scholar] [CrossRef]
- Zurak, D.; Slovenec, P.; Janjecic, Z.; Bedeković, D.; Pintar, J.; Kljak, K. Overview on recent findings of nutritional and non-nutritional factors affecting egg yolk pigmentation. World’s Poult. Sci. J. 2022, 78, 531–560. [Google Scholar] [CrossRef]
- Llave, Y.; Fukuda, S.; Fukuoka, M.; Shibata-Ishiwatari, N.; Sakai, N. Analysis of color changes in chicken egg yolks and whites based on degree of thermal protein denaturation during ohmic heating and water bath treatment. J. Food Eng. 2018, 222, 151–161. [Google Scholar] [CrossRef]
- Nolasco, E.; Yang, J.; Ciftci, O.; Vu, D.C.; Alvarez, S.; Purdum, S.; Majumder, K. Evaluating the effect of cooking and gastrointestinal digestion in modulating the bio-accessibility of different bioactive compounds of eggs. Food Chem. 2021, 344, 128623. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.M.; Chung, W.H.; Jao, C.L.; Hsu, K.C. Oil exudation and histological structures of duck egg yolks during brining. Poult. Sci. 2010, 89, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.-l.; Liu, Y.-y.; Liu, Y.; Wang, X.-y.; Jin, Y.-g. Changes in structure and flavor of egg yolk gel induced by lipid migration under heating. Food Hydrocoll. 2020, 98, 105257. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Chi, Y.; Chi, Y. Change in rapid salting kinetics and characteristics of hen egg yolks. J. Food Eng. 2022, 329, 111090. [Google Scholar] [CrossRef]
- Cordobés, F.; Partal, P.; Guerrero, A. Rheology and microstructure of heat-induced egg yolk gels. Rheol. Acta 2004, 43, 184–195. [Google Scholar] [CrossRef]
- Blume, K.; Dietrich, K.; Lilienthal, S.; Ternes, W.; Drotleff, A.M. Exploring the relationship between protein secondary structures, temperature-dependent viscosities, and technological treatments in egg yolk and LDL by FTIR and rheology. Food Chem. 2015, 173, 584–593. [Google Scholar] [CrossRef]
- Ho, J.-H.; Lee, T.-A.; Namai, N.; Sakai, S.; Lou, S.-S.; Handa, A.; Lin, W.-T. Thermal Processing of Liquid Egg Yolks Modulates Physio-Chemical Properties of Mayonnaise. Foods 2022, 11, 1426. [Google Scholar] [CrossRef]
- Kalkani, A.; Paraskevopoulou, A.; Kiosseoglou, V. Protein interactions and filler effects in heat-set gels based on egg. Food Hydrocoll. 2007, 21, 191–197. [Google Scholar] [CrossRef]
- Liu, T.; Lv, B.; Zhao, W.; Wang, Y.; Piao, C.; Dai, W.; Hu, Y.; Liu, J.; Yu, H.; Sun, F.-j. Effects of Ultrahigh Temperature Pasteurization on the Liquid Components and Functional Properties of Stored Liquid Whole Eggs. BioMed Res. Int. 2020, 2020, 3465465. [Google Scholar] [CrossRef]
- Kavanagh, G.; Clark, A.; Ross-Murphy, S. Heat-Induced Gelation of Globular Proteins: 4. Gelation Kinetics of Low pH β-Lactoglobulin Gels. Langmuir 2000, 16, 9584–9594. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, F.; Yang, Y.; Xiong, C.; Xu, M.; Tu, Y. Gelation behavior of egg yolk under physical and chemical induction: A review. Food Chem. 2021, 355, 129569. [Google Scholar] [CrossRef] [PubMed]
- Hatta, H.; Kapoor, M.P.; Juneja, L.R. Bioactive Components in Egg Yolk. In Egg Bioscience and Biotechnology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 185–237. [Google Scholar] [CrossRef]
- Xu, L.; Gu, L.; Su, Y.; Chang, C.; Wang, J.; Dong, S.; Liu, Y.; Yang, Y.; Li, J. Impact of thermal treatment on the rheological, microstructural, protein structures and extrusion 3D printing characteristics of egg yolk. Food Hydrocoll. 2020, 100, 105399. [Google Scholar] [CrossRef]
- Tsutsui, T. Functional Properties of Heat-Treated Egg Yolk Low Density Lipoprotein. J. Food Sci. 1988, 53, 1103–1106. [Google Scholar] [CrossRef]
- Michalski, M.C.; Genot, C.; Gayet, C.; Lopez, C.; Fine, F.; Joffre, F.; Vendeuvre, J.L.; Bouvier, J.; Chardigny, J.M.; Raynal-Ljutovac, K. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog. Lipid Res. 2013, 52, 354–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berton, A.; Rouvellac, S.; Robert, B.; Rousseau, F.; Lopez, C.; Crenon, I. Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: Native versus homogenized milk fat globules. Food Hydrocoll. 2012, 29, 123–134. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, G.; Wang, N.; Guo, X.; Jin, Y.; Ma, M. Lipolysis and Oxidation of Lipids during Egg Storage at Different Temperatures. Czech J. Food Sci. 2017, 35, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Parchem, K.; Bartoszek, A. Phospholipids and products of their hydrolysis as dietary preventive factors for civilization diseases. Postȩpy Hig. I Med. Doświadczalnej 2016, 70, 1343–1361. [Google Scholar]
- More, H.T.; Pandit, A.B. Enzymatic acyl modification of phosphatidylcholine using immobilized lipase and phospholipase A2. Eur. J. Lipid Sci. Technol. 2010, 112, 428–433. [Google Scholar] [CrossRef]
- Zhao, T.; No, D.S.; Kim, B.H.; Garcia, H.S.; Kim, Y.; Kim, I.-H. Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n−3 polyunsaturated fatty acid. Food Chem. 2014, 157, 132–140. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Wu, Z.; Li, F. Combined effects of high-pressure and thermal treatments on lipid oxidation and enzymes in pork. Food Sci. Biotechnol. 2016, 25, 261–266. [Google Scholar] [CrossRef]
- Dickow, J.; Nielsen, M.; Hammershøj, M. Effect of Lenient Steam Injection (LSI) heat treatment of bovine milk on the activities of some enzymes, the milk fat globule and pH. Int. J. Dairy Technol. 2012, 65, 191–200. [Google Scholar] [CrossRef]
- Carvajal, A.; Slizyte, R.; Storrø, I.; Aursand, M. Production of High Quality Fish Oil by Thermal Treatment and Enzymatic Protein Hydrolysis from Fresh Norwegian Spring Spawning Herring By-Products. J. Aquat. Food Prod. Technol. 2015, 24, 807–823. [Google Scholar] [CrossRef]
- Bandarra, N.M.; Lopes, P.A.; Martins, S.V.; Ferreira, J.; Alfaia, C.M.; Rolo, E.A.; Correia, J.J.; Pinto, R.M.A.; Ramos-Bueno, R.P.; Batista, I.; et al. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters. Nutr. Res. 2016, 36, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Zhao, Y.; Yao, Y.; Wu, N.; Xu, M.; Du, H.; Tu, Y. Biological Activities of Egg Yolk Lipids: A Review. J. Agric. Food Chem. 2020, 68, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Bridges, D.; Lacombe, A.; Wu, V. Integrity of the Escherichia coli O157:H7 Cell Wall and Membranes After Chlorine Dioxide Treatment. Front. Microbiol. 2020, 11, 888. [Google Scholar] [CrossRef]
- Rossmeisl, M.; Macek Jílková, Z.; Kuda, O.; Jelenik, T.; Medrikova, D.; Stankova, B.; Kristinsson, B.; Haraldsson, G.; Svensen, H.; Stoknes, I.; et al. Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids. PLoS ONE 2012, 7, e38834. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-Y.; Ding, L.; Shi, H.-H.; Xu, J.; Xue, C.-H.; Zhang, T.-T.; Wang, Y.-M. Eicosapentaenoic acid in the form of phospholipids exerts superior anti-atherosclerosis effects to its triglyceride form in ApoE−/− mice. Food Funct. 2019, 10, 4177–4188. [Google Scholar] [CrossRef]
- Wang, Y.; Jinqiu, W.; Li, H.; Xiao, Y.; Harlina, P.; Geng, F. Quantitative lipidomic analysis of chicken egg yolk during its formation. J. Sci. Food Agric. 2022, 103, 3997–4005. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Li, S.; Ye, H.; Luo, W.; Huang, Q.; Geng, F. Ovomucin may be the key protein involved in the early formation of egg-white thermal gel. Food Chem. 2022, 366, 130596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Wang, J.; Chen, Y.; Zhang, Q.; Wang, J.; Geng, F. Quantitative Lipidome Analysis of Boiled Chicken Egg Yolk under Different Heating Intensities. Molecules 2023, 28, 4601. https://doi.org/10.3390/molecules28124601
Luo W, Wang J, Chen Y, Zhang Q, Wang J, Geng F. Quantitative Lipidome Analysis of Boiled Chicken Egg Yolk under Different Heating Intensities. Molecules. 2023; 28(12):4601. https://doi.org/10.3390/molecules28124601
Chicago/Turabian StyleLuo, Wei, Jinghui Wang, Yan Chen, Qionglian Zhang, Jinqiu Wang, and Fang Geng. 2023. "Quantitative Lipidome Analysis of Boiled Chicken Egg Yolk under Different Heating Intensities" Molecules 28, no. 12: 4601. https://doi.org/10.3390/molecules28124601
APA StyleLuo, W., Wang, J., Chen, Y., Zhang, Q., Wang, J., & Geng, F. (2023). Quantitative Lipidome Analysis of Boiled Chicken Egg Yolk under Different Heating Intensities. Molecules, 28(12), 4601. https://doi.org/10.3390/molecules28124601