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Abstract: Angiopoietin-like proteins (ANGPTL) constitute a family of eight proteins (1–8) which play
a pivotal role in the regulation of various pathophysiological processes. The current study sought to
identify high-risk, “non-synonymous, single-nucleotide polymorphisms” (nsSNPs) in both ANGPTL3
and ANGPTL8 to evaluate the role that these nsSNPs play in various types of cancer. We retrieved
a total of 301 nsSNPs from various databases; 79 of these candidates constitute high-risk nsSNPs.
Moreover, we identified eleven high-risk nsSNPs that cause various types of cancer: seven candidates
for ANGPTL3 (L57H, F295L, L309F, K329M, R332L, S348C, and G409R) and four candidates for
ANGPTL8 (P23L, R85W, R138S, and E148D). Protein–protein interaction analysis revealed a strong
association of ANGPTL proteins with several tumor-suppressor proteins such as ITGB3, ITGAV,
and RASSF5. ‘Gene-expression profiling interactive analysis’ (GEPIA) showed that expression of
ANGPTL3 is significantly downregulated in five cancers: sarcoma (SARC); cholangio carcinoma
(CHOL); kidney chromophobe carcinoma (KICH); kidney renal clear cell carcinoma (KIRC); and
kidney renal papillary cell carcinoma (KIRP). GEPIA also showed that expression of ANGPTL8
remains downregulated in three cancers: CHOL; glioblastoma (GBM); and breast invasive carcinoma
(BRCA). Survival rate analysis indicated that both upregulation and downregulation of ANGPTL3
and ANGPTL8 leads to low survival rates in various types of cancer. Overall, the current study
revealed that both ANGPTL3 and ANGPTL8 constitute potential prognostic biomarkers for cancer;
moreover, nsSNPs in these proteins might lead to the progression of cancer. However, further in vivo
investigation will be helpful to validate the role of these proteins in the biology of cancer.

Keywords: angiopoietin-like proteins; high-risk non-synonymous SNPs; protein structure and
function; cancer

1. Introduction

Cancer is the second leading cause of death globally after cardiovascular diseases.
Approximately 19.3 million new cases and 10.0 million deaths were reported in 2020 [1].
The global cancer burden is projected to increase to 28.4 million cases by 2040, a 47%
increase from 2020, with a larger increase expected in developing (64% to 95%) versus
developed (32% to 56%) countries. Notably, this may be further worsened by increasing risk
factors associated with globalization and a growing economy [1]. Several studies have been
conducted to elucidate the underlying molecular mechanism of pathogenesis to provide
information for the development of new and effective strategies to diagnose and treat
cancer. Currently, most cancer studies focus on understanding the underlying molecular
mechanisms and explore the role of a new class of matricellular proteins [2]. Matricellular
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proteins are a group of extracellular matrix-associated glycoproteins secreted by cancer cells
into the extracellular microenvironment. A recent study demonstrated that these secreted
proteins can exacerbate cancer by promoting tumorigenesis [3,4]. ANGPTLs are a family
of glycoproteins composed of eight members, abbreviated as ANGPTL1–8 [5]. ANGPTL
proteins (1–7) resemble angiopoietins because both families of proteins share two structural
domains at both the N-termini and C-termini (although ANGPTL8 constitutes an exception
because it lacks a fibrinogen-like structure). Unlike angiopoietins, however, ANGPTLs
cannot bind to receptor tyrosine kinases (Tie1 and Tie2) [6]. Hence, this difference suggests
that ANGPTLs perform radically different biological functions from similarly structured
angiopoietins. ANGPTL proteins have diverse functions and act like endocrine molecules
on their corresponding receptor, but their target receptors and underlying functional
mechanism(s) still remain largely deciphered [7].

Studies have reported that ANGPTLs are involved in several biological processes,
including lipid and glucose metabolisms and redox regulation. All ANGPTL proteins
except ANGPTL1, ANGPTL5, and ANGPTL8 promote chronic inflammation. Chronic in-
flammation is a key factor in cancer cell growth, proliferation, and metastasis [2]. ANGPTL1
inhibits the function of fibroblast growth factor (b-FGF) and vascular endothelial growth
factor (VEGF), thus acting as a tumor suppressor [8]. Integrin α1β1 acts as a receptor for
ANGPTL1, and their interaction suppresses the phosphorylation of Src and FAK, which, in
turn, inhibit the JAK-STAT3 pathway [9]. Previous findings indicate that the high expres-
sion of ANGPTL2 in tumor cells can promote metastasis [10]. The expression of ANGPTL3
is significantly upregulated in head and neck squamous cell carcinoma (HNSCC), where it
triggers the ERK pathway and promotes cell proliferation [11]. ANGPTL8, also known as
lipasin or betatrophin, is a protein encoded by the C19orf80 gene. This protein is a relatively
novel and atypical member of the ANGPTL family; therefore, little is known about its role
in diseases. However, its role is implicated in nonalcoholic fatty liver disease (NAFLD) and
renal dysfunction [12].

The non-synonymous single-nucleotide polymorphisms (nsSNPs) in proteins perturb
their structure and function. nsSNPs are single-base changes leading to a change in the
amino acid sequence of the encoded protein, and several of these variants are associated
with disease [13,14]. These nsSNPs can affect important biological pathways by disrupting
protein–protein interaction [15], inducing changes in protein conformation [16], or affecting
the post-translational modification sites [17]. As a result, nsSNPs are associated with
complex diseases, including cancer. For instance, two SNPs (T266M and E40K) in ANGPTL4
affect triglyceride levels and are associated with cardiovascular disease in type 2 diabetic
patients [18]. Similarly, the SNP R59W in ANGPTL8 is associated with low cholesterol
levels and also affects the cleavage of ANGPTL3 [19]. Sun et al. reported an nsSNP at
position 215 (S215R) in the P53 protein, which is a putative post-translational modification
(PTM) site that has been associated with the development of breast cancer [20]. nsSNP
mutations in oncoproteins are frequently observed in cancer, and an attempt to restore their
functionality is a recent therapeutic strategy. Recent studies revealed that the utilization
of in silico approaches for evaluating protein–protein interactions and analyzing SNPs
provided evidence that mutations are associated with various disease conditions [13,14,21].

The current study was designed to identify high-risk nsSNPs, SNP-PTM sites, and
SNPs located in ligand-binding sites in ANGPTL proteins. Further, protein–protein inter-
action analysis was conducted and the consequences of SNPs were predicted to investi-
gate the potential role of these proteins in cancer (Figure 1). Our findings indicate that
ANGPTL3 and ANGPTL8 play a pivotal role in cancer progression by interacting with
tumor-suppressor proteins such as ITGB3, ITGAV, RASSF5, and FNDC5.
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Figure 1. Schematic representation of the workflow used in the current study.

2. Results
2.1. Missense SNP Datasets

The datasets for ANGPTL3- and ANGPTL8-associated SNPs were retrieved from
dbSNP and UniProt databases and were cross checked. We excluded the missing and
overlapping data based on flawed sequences. A total of 218 and 83 nsSNPs were retrieved
for ANGPTL3 and ANGPTL8, respectively. The SNPs data and their possible effects on
protein structure and stability are presented in Supplementary File S1 (Tables S1 and S2).

2.2. Determination of High-Risk Missense SNPs

In the current study, four in silico SNP prediction tools were used, and the SNPs
that were predicted as disease-causing by at least three of the predictor’s algorithms were
considered high-risk nsSNPs. A total of 67 high-risk SNPs in ANGPTL3 and 12 high-risk
SNPs in ANGPTL8 (Supplementary File S1) were identified as high-risk and used for
further in-silico analysis (Figure 1). These nsSNPs were analyzed for their effect on protein
structure and function using various in silico algorithms, as summarized in Table 1.

2.3. Conservation Analysis and Effect of the High-Risk SNPs on Protein Structure Stability

Conservation analysis using the ClustalO tool revealed that all high-risk SNPs in
ANGPTL8 were evolutionarily conserved. On the other hand, in ANGPTL3, 50 high-risk
missense SNPs were evolutionarily conserved. The protein stability upon a single point
mutation was predicted by I-Mutant 3.0 suite. Compared with the wild type, 60 out of
67 SNPs in ANGPTL3 and 10 out of 12 SNPs in ANGPTL8 were predicted to decrease
mutant protein stability (Supplementary File S1, Tables S1 and S2).
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Table 1. Summary of the pathological nsSNPs and their effects.

Purpose Tool Used ANGPTL3 ANGPTL8

Effect of SNP on protein

nsSNP analyzer
Pathological Neutral Pathological Neutral

83 135 12 71

SNP&GO 115 103 38 45

PROVEAN 67 151 30 53

PMUT 78 140 4 79

Total high-risk SNPs Predicted by 3 or >3 67 12

Protein stability upon SNP I-Mutant
Decrease Increase Decrease Increase

60 7 6 1

No. of conserved residues ClustalO 50 All

Ligand binding FTsite and COACH 8 0

Phosphorylation sites Netphos 2.0 49 8

Glycosylation sites YinOYang 8 5

Ubiquitination sites (≥2) iUbiq-lys, CKSAAP UbSite, BDM-PUB 0 1

Palmitoylation sites CSS-PALM 3.0 0 1

Methylation sites PMes 7 0

Acetylation sites PAIL and ASEB 15 3

Sumoylation sites SUMOplotTM SUMOhydro and SUMOsp 3 0

Total PTM sites - 82 18

2.4. Prediction of Functional Ligand-Binding Sites

Eight residue sites in ANGPTL3 were predicted to potentially bind with ligands.
Further analysis revealed that two high-risk missense SNPs (290 and 409) were located in
the ligand-binding site. Four ligand-binding residue sites (32, 35, 36, and 37) in ANGPTL8
were identified by both COACH and FTsite tools. However, no high-risk SNPs were
identified in the ligand-binding pocket.

2.5. Prediction of PTM Sites

A total of 49 amino acid residues in ANGPTL3 and 8 residues in ANGPTL8 were
phosphorylated. On the other hand, eight O-glycosylation sites were identified in both
ANGPTL3 and ANGPTL8. No high-potential ubiquitination sites were predicted in
ANGPTL3, whereas the amino acid residue at position 158 was predicted as a poten-
tial ubiquitination site in ANGPTL8. Cys residue at position seven was predicted to be
a high-potential palmitoylation site in ANGPTL8, whereas no palmitoylation site was
predicted in ANGPTL3.

PMes results showed that Arginine at positions 36, 224, 263, 308, 421, 430, and 440
were potential methylation sites in ANGPTL3, whereas no potential methylation site was
predicted in ANGPTL8. Lysine residue at positions 5, 34, 97, 105, 114, 131, 139, 165, 219, 416,
419, 423, 425, 435, and 445 was predicted to be acetylated in ANGPTL3. Lysine at positions
62, 124, and 158 was identified as having high potential for acetylation in ANGPTL8.

Amino acid residues at positions 93, 109, and 238 were predicted as having high
potential for sumoylation in ANGPTL3. On the other hand, no sumoylation site was
identified in ANGPTL8.

2.6. High-Risk SNPs Located at PTM and Ligand-Binding Sites

The SNP-PTM overlap analysis revealed that seven SNPs in ANGPTL3 and one high-
risk missense SNP in ANGPTL8 overlap with potential PTM sites, but these sites are not



Molecules 2023, 28, 4648 5 of 20

highly conserved (Table 2). Moreover, two high-risk SNPs were identified in ANGPTL3
(Supplementary File S2, Figure S1) using COACH and FT Site servers, but no high-risk
SNP coincided with ligand-binding residues in ANGPTL8.

Table 2. The functional consequences of high-risk missense SNPs in ANGPTL proteins, perturbing
PTM sites, ligand-binding sites, and associated cancer types.

Protein High-Risk
SNPs

Conserved
(100%)

I-Mutant Analysis
PTM Site

Ligand-
Binding

Site

Associated
Cancer TypeDDG Stability Reliability

Index

ANGPTL3

L57H Yes −0.44 Decrease 5 - - Kidney

T64K Yes −2.41 Decrease 8 Yes Yes -

T64R Yes −1.33 Decrease 3 - Yes -

S292P Yes −1.41 Increase 2 Yes - -

F295L Yes −2.25 Decrease 6 - - Lung

L309F Yes −0.18 Decrease 6 - - Endometrium

K319M Yes −0.15 Increase 3 - - Skin

Y321D Yes −0.32 Decrease 4 Yes - -

R332L Yes −1.64 Decrease 9 - - Large intestine

R332Q Yes −1.59 Decrease 9 - - Large intestine

S348C Yes −1.27 Decrease 2 Yes - Esophagus

Y358H Yes −0.35 Decrease 6 Yes - -

G409R Yes 0.14 Decrease 5 CNS

S446P No −1.63 Increase 3 Yes - -

S447I No −1.69 Decrease 6 Yes - -

ANGPTL8

P23L No 0.06 Increase 3 - - Large intestine

R85W No −0.17 Decrease 7 - - Large intestine

R138S No −1.18 Decrease 9 - - Breast

E148D Yes −0.65 Decrease 7 - - Liver

2.7. ANGPTL 3D Structures, Protein–Protein Interactions, and Molecular Docking
2.7.1. Tertiary Structure and Protein–Protein Interaction Analysis

A total of five models were generated for each protein using the I-TASSER tool, and the
model with the highest C-scores was selected for subsequent analysis. The 3D structures of
the ANGPTL proteins were visualized using Pymol software. Protein–protein interaction
(PPI) analysis revealed that ANGPTL3 interacts with ANGPTL8 (C19orf80), LPL, GPIHBP1,
ITGB3, ITGAV, GALNT2, PCSK7, TEK, APOA5, and TIE proteins (Figure S2), whereas
ANGPTL8 interacts with FNDC5, CUTA, RASSF, INS, ANGPTL4, LPL, ANGPTL3, and
GPIHBP1 proteins (Figure S3). The distinct pattern and possible consequences of high-risk
SNPs (wild-type and mutant amino acids) on protein structure based on size, charge, and
hydrophobicity are shown in Supplementary File S3.

2.7.2. Protein–Protein Docking Using ANGPTL Proteins

The protein–protein docking of ANGPTL proteins was performed with the tumor-
suppressor proteins, including ITGAV and ITGB3 (data obtained from the STRING database),
using the Guru-level interface of the HADDOCK server. HADDOCK clustered 19 structures
in two large clusters, representing a 4.7% water-refined model for ANGPTL3 and ITGB3.
The top HADDOCK cluster showed that the most reliable structure had a HADDOCK score
of −282.8 ± 15.1, Van der Waals energy of −66.2 ± 2.0, electrostatic energy of −226.6 ± 43.3,
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desolvation energy of −273.6 ± 13, restraint violation energy of 1022.9 ± 58.08, and z-score
of −1.0. The topmost cluster structure was refined using the Guru-level interface and
further analyzed using the PDBsum server. The PDBsum results showed that 23 interface
residues in ANGPTL3 interacted with 23 residues in the ITGB3 protein, including 5 H-
bonds, 3 salt bridges, and 117 non-bonded interactions (Figure S4). The interface area (Ȧ◦)
of the ANGPTL3 protein was 1334 Ȧ◦, whereas that of ITGB3 was 1304 Ȧ◦. HADDOCK
grouped 17 structures in three clusters for ANGPTL3 and ITGAV, presenting 4.25% of
the water-refined models. The topmost cluster had a HADDOCK score of −286.6 ± 18.1,
Van der Waals energy of −86.6 ± 10.7, electrostatic energy of −182.2 ± 47.4, desolvation
energy of −249.8 ± 6.5, restraint violation energy of 863.4 ± 94.56, and z-score of −1.4.
The top cluster was refined and subjected to PDBsum analysis. PDBsum results revealed
that 23 residues in the ANGPTL3 protein interacted with 28 residues of the ITGAV protein
(Figure S4). These interactions comprised 9 H-bonds, 2 salt bridges, and 162 non-bonded
interactions. The interface area was 1685 Ȧ◦ for ANGPTL3 and 1546 Ȧ◦ for ITGAV. The
H-bonds with a distance between the interacting residues lower than 3.5 Ȧ◦ are shown in
Figure 2a,b.
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Figure 2. Protein–protein interaction between ANGPTL3-ITGB3 (a) and ANGPTL3-ITGAV (b).

ANGPTL8 and RASSF5 were docked using HADDOCK, and the most reliable struc-
ture had a HADDOCK score of −60.4 ± 15.1. The RMSD of the top structure from the
overall lowest energy structure was 1.7 ± 1.7, Van der Waals energy was −85.3 ± 7.5,
electrostatic energy was −94.6 ± 27.2, desolvation energy was −23.6 ± 7.5, restraint vi-
olation energy was 675.3 ± 153.8, and z-score was −1.6. PDBsum results indicated that
28 interface residues in ANGPTL8 interacted with 24 residues in the RASSF5 protein, and
the interactions included 5 H-bonds and 138 non-bonded contacts (Figure S5). The interface
area (Ȧ◦) of ANGPTL8 was 1363 Ȧ◦, whereas that of RASS5 was 1384 Ȧ◦. The H-bonds
with a distance between the interacting residues lower than 3 Ȧ◦ are shown in Figure 3a.

ANGPTL8 and FNDC5 were docked using the HADDOCK tool, and 123 structures
were clustered in 13 clusters, representing 61% of the water-refined models generated.
The statistics of the top 10 clusters were a HADDOCK score of −59.7 ± 6.1, RMSD from
the overall lowest energy structure of 15.5 ± 0.1, Van der Waals energy of −53.8 ± 6.3,
electrostatic energy of −146.2 ± 26.2, desolvation energy of −11.3 ± 5.2, restraint violation
energy of 345.9 ± 41.4, and z-score of −1.8. The PDBsum results showed that 19 interface
residues in ANGPTL8 interacted with 12 residues in FNDC5, including eight H-bonds
(Figure S5). The interface area of ANGPTL8 was 1334 Ȧ◦, whereas that of FNDC5 was
1363 Ȧ◦. The H-bonds with a distance between the interacting residues lower than 3 Ȧ◦ are
shown in Figure 3b.
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2.8. High-Risk nsSNPs Associated with Cancer

Our results indicated that eight SNPs in ANGPTL3 were associated with the devel-
opment of various types of cancer. The SNPs including L57H, F295L, L309F, K319M,
R332L/Q, S384C, and G409R were predicted to cause kidney, lung, endometrial, skin,
large intestine, esophageal, and CNS cancer, respectively. In ANGPTL8, four SNPs were
associated with cancer. These SNPs were located at positions 23, 85, 138, and 148 and
associated with large intestine (P23L and R85W), breast (R138S), and liver (E148D) cancer
(Supplementary File S1, Table S3).

2.9. Structure Comparison between Wild-Type and Mutated Proteins

The structures of the wild-type and mutated ANGPTL3 and ANGPTL8 proteins were
generated using I-TASSER. In both cases, the most suitable model (based on z-score) was
selected. Seven high-risk SNPs were incorporated during the modeling of ANGPTL3, and
four SNPs were incorporated in the generated 3D structure of the ANGPTL8 protein. We
compared the two structures (wild and mutated) using TM-align to determine the structural
impact of the high-risk SNPs on the proteins. The RMSD and TM-score of the mutated
structure of ANGPTL3 were 3.27 and 0.74, respectively, which indicated that the structures
did not exhibit the same conformation and the mutated structure was significantly different
from the wild-type protein structure. The high-risk SNPs also perturbed the structure of
the ANGPTL8 protein with an RMSD value of 5.38 and a TM-score of 0.45. A TM score of
0.0–0.30 indicates random structural similarity, whereas a score of 0.5–1.00 indicates that
the structures are in the same field. The structures of ANGPL3 (wild and mutated) and
ANGPTL8 (wild and mutated) are superposed and shown in Figure S6.

2.10. Expression Analysis of ANGPTL3 and C19orf80

The expression levels of the ANGPTL3 gene in cholangio carcinoma (CHOL), kidney
chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary
cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), and sarcoma (SARC) were
evaluated, and the results are presented as a box plot. The results showed that ANGPTL3
expression is significantly downregulated in all these cancers except LIHC (Figure 4a). On
the other hand, C19orf80 expression is downregulated in breast invasive carcinoma (BRCA),
CHOL, and glioblastoma (GBM) (Figure 4b). The expression of C19orf80 is also altered in
LIHC but remains insignificant. The protein-coding mRNA levels of the genes in various
types of cancer and adjacent normal tissue were analyzed using RNA sequence data to
compare the expression level of ANGPTL3 and C19orf80 in normal and tumor tissues. A dot
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plot was generated which revealed that the ANGPTL3 expression level was downregulated
in KICH, KIRC, KIRP, and CHOL. On the other hand, the expression level of C19orf80 was
downregulated in BRCA, CHOL, and BGM (Figure S7).
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2.11. Survival Analysis in Cancer Patients

The GEPIA database was utilized to evaluate the survival outcome of patients di-
agnosed with various types of cancer. The patients were grouped into low- and high-
expression groups based on the median expression level of ANGPTL3 and ANGPTL8.
Dysregulated expression of ANGPTL3 and ANGPTL8 was associated with poor prognosis
in cancer patients. For instance, low expression of ANGPTL3 was correlated with a shorter
survival time of KIRP and SARC patients (Figure 5c,f). In contrast, a lower expression of
ANGPTL3 was associated with a longer survival rate of KICH, LAML, and LIHC cancer
patients (Figure 5b,d,e). On the other hand, the overexpression of ANGPTL8 was corre-
lated with significantly longer survival time of CHOL and GBM patients (Figure 6). These
results indicate that the dysregulated expression of ANGPTL3 and ANGPTL8 promotes
the development of various types of cancer.
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2.12. Association between Mutation and Expression Level of ANGPTL3 and C19orf80 with
Other Genes

muTarget is an online server for the prediction of the relationship between mutation
and alteration in gene expression. The muTarget “Genotype” run analysis revealed that
ANGPTL3 mutation affects the expression of other tumorigenic genes including LINC02167,
MYCL, TESMIN, VCP, and TARBP1. The “Target” run with ANGPTL3 as a target gene
shows that altered genes of various cancer types including MAPK1, CASP5, COL3A1,
ITGAM and TMEM59L change the expression of ANGPTL3 (Figure 7a). Similarly, the
expression of C19orf80 can be altered due to the mutation in genes associated with various
types of cancer such as head and neck cancer and lung squamous cell carcinoma (Figure 7b).
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3. Discussion

ANGPTL3 and ANGPTL8 are multifunctional secreted proteins commonly expressed
in the liver and are regulated by several post-translational modifications (PTM). Previous
findings revealed that ANGPTL3 plays a key role in various biological processes such as
angiogenesis, lipid metabolism, and tumorigenesis. ANGPTL8 is an atypical member of the
angiopoietin-like protein family. This protein is associated with inflammation and metabolic
syndromes, and was recently reported to be involved in hepatocellular carcinoma [8]. The
alignment of ANGPTL3 and ANGPTL8 sequences exhibited 50% identity at the N-terminal.
The structural conformation of a protein plays a critical role in executing its function;
however, nsSNPs may perturb the conformations of proteins. Therefore, it is important to
explore the effect of pathological nsSNPs on changes in the structure of protein and their
association with various disorders. Recent predictions of nsSNPs in oncogenes from large
datasets using bioinformatic investigation show their adverse effect on protein structure
and function [22]. In the present study, we used integrated computational analysis to
determine the high-risk SNPs and their effect on the structure and function of ANGPTL3
and ANGPTL8 proteins. Four prediction tools (nsSNP analyzer, PROVEAN, SNP&Go, and
PMUT) were used to explore the pathological effect, and the SNPs predicted as pathological
by at least three tools were considered high-risk SNPs. We identified 67 high-risk nsSNPs
in ANGPTL3 and 12 nsSNPs in ANGPTL8. In ANGPTL3, seven high-risk SNPs coincided
with PTM sites, of which five were identified in highly conserved sites, whereas two SNPs
were located in the ligand-binding site. A previous study showed that protein function is
upregulated or downregulated by several PTMs, such as the phosphorylation of LC3A,
which downregulated its autophagic function, whereas dephosphorylation enhanced its
autophagic function [23]. Moreover, another study demonstrated that amino acid residue
R68 found in the ligand-binding site in Atg8 is required for interaction with Atg4B [24].
Protein structure, function, and regulation significantly depend on protein stability. A
decrease in protein stability causes aggregation, degradation, and misfolding, which leads
to the dysfunction of proteins. Protein stability change was determined to evaluate the
effect of the predicted high-risk SNPs. Out of the 67 SNPs in ANGPTL3, 60 decreased
protein stability and therefore may result in a dysfunctional protein. On the other hand,
10 out of 12 SNPs in ANGPTL8 were predicted to decrease protein stability.

The evolutionary conservation of a high-risk pathological SNP further increases the
severity of a mutation. The SNPs that are located in highly conserved regions are likely
to have severe pathological effects compared with those found in the variable regions. In
ANGPTL3, out of 67 high-risk SNPs, 50 were located in highly conserved regions, and
5 were identified in PTM sites. A previous study reported a mutation T352 in BECNI1
located in a highly conserved region which modulated the autophagy mechanism and
enhanced the interaction between the encoded protein and Bcl-2 [25].

NetSurfP offers evolutionary conservative data with solvent accessibility prediction.
The tool is used to predict whether a residue is functional (buried) or structural (exposed)
based on the position relative to the protein core or surface. In this study, 18 SNPs out of
the 67 were identified as functional, whereas 49 were predicted to be structural residues
in ANGPTL3. Six out of the twelve SNPs in ANGPTL8 were predicted to be functional
residues. These results indicate that ANGPTL3 and ANGPTL8 contain several high-risk
SNPs due to their high conservancy, functionality, and ability to decrease protein stabil-
ity. Protein stability cannot be predicted based on a single factor. The physiochemical
properties of residues such as hydrophobicity, charge, and polarity are also important
factors in determining protein stability. Protein stability is associated with the presence of
hydrophobic amino acids on the protein’s surface area, as these amino acids hinder water
access to the core protein area. For instance, among the exposed SNPs, G54R introduces
positive charges R (arginine) in place of neutral G (glycine), which causes the repulsion of
a ligand or other residues with the same charge. As a result, this mutation may severely
hamper the interaction between ANGPTL3 and other molecules. Similarly, the SNP S292P,
mutant (proline) residue bigger than the wild-type (serine) residue causes bumps. In



Molecules 2023, 28, 4648 13 of 20

addition, the wild-type residue is hydrophobic and forms a H-bond with aspartic acid
at position 292, whereas the mutant residue is not involved in H-bond formation and
increases the hydrophobicity of the protein. This finding is consistent with a previous
study which reported that mutation at position 292 (rs138899888) inhibits protein secretion
associated with plasma triglyceride level [26]. In ANGPTL8, the SNP at position 66, serine
(S), is substituted with isoleucine (I). The mutation introduces a more hydrophobic residue
at this position which results in the loss of hydrogen bonds and might disrupt correct
protein folding. These results were verified through a HOPE analysis. The results from the
HOPE tool showed that 49 high-risk SNPs in ANGPTL3 and 12 SNPs in ANGPTL8 have a
deleterious effect on the protein structures (Supplementary File S3). A PPI network is a
critical parameter to understand the cellular processes associated with a protein. STRING
is a tool used to evaluate and filter functional proteomic data which offers an intuitive
program for determining the structural, functional, and evolutionary features of proteins.
The PPI analysis revealed that ANGPTL3 interacts with integrin β3 (ITGB3) and ITGAV.
ITGB3 is a cell-adhesion receptor that plays a crucial role in the interaction between cells
and extracellular fluid, and it proposed to be critical for cancer metastasis.

Protein docking analysis showed that 23 interface residues of ANGPTL3 interact with
23 residues of cancer-suppressing ITGB3 and ITGAV proteins. The interactions included
H-bonds, salt bridges, and non-bonding interactions. The residue (Leu) at position 57 in
ANGPTL3 interacts with the Asp688 of ITGB3 (Figure S4). The mutation at this position
(L57H) was identified as a high-risk nsSNP and was predicted to cause kidney cancer. A
study involving the Chinese Han population demonstrated that two SNPs (rs11137037 and
rs12674822) in ANGPTL2 are associated with the progression of lung cancer [27]. ANGPTL8
was shown to interact with 24 and 12 residues of RASSF5 and FNDC5 proteins, respectively.
RASSF5 is involved in a series of cellular processes, such as cell cycle regulation, cell
proliferation, and differentiation, and the inactivation of RASSF5 has been implicated in
oncogenesis. The overall tertiary structural consequences of these pathological SNPs were
further evaluated through Phyre2 homology modeling. The wild-type and mutant protein
structures were generated and the TM-align tool was used to determine the RMSD and
TM score for the models. A lower TM score and higher RMSD values indicate a higher
deviation of the mutant protein structure from the wild type. The TM alignment results
revealed that the conformations of ANGPTL3 and ANGPTL8 proteins were significantly
different compared with the native protein. The number of cancer-causing high-risk SNPs
was lower in ANGPTL8 (n = 4) than in ANGPTL3 (n = 7). However, more adverse effects
were observed on the ANGPTL8 structure than in ANGPTL3 (Figure S6). This can be
attributed to the vast physiochemical differences in amino acids between wild-type and
mutant proteins. The mutations in protein not only affect protein structure and function
but also affect protein expressions, which may lead to disease conditions.

Gene expression analyses indicated that lower expression levels of ANGPTL3 and
C19orf80 are associated with cancer. A box plot was generated for various types of cancer to
show the effect of the downregulation of ANGPTL3 and C19orf80 genes more explicitly. The
results showed that CHOL, KICH, KIRC, KIRP, LIHC, and SARC cancers were associated
with the downregulation of ANGPTL3 (Figure 5a). On the other hand, BRCA, CHOL, and
GBM were associated with the downregulation of C19orf80 expression (Figure 5b). These
results indicate that normal expression of ANGPTL3 and C19orf80 is critical for normal
function, as the downregulation of these genes causes various types of cancers in humans.

Median cancer survival time (Kaplan–Meier plot) was estimated by constructing a sur-
vival curve that provides a summary of data and survival probability. The survival analysis
showed that CHOL, KIRP, and SARC patients with low expression levels of ANGPTL3 had
a shorter survival time, whereas KICH, LAML, and LIHC cancer patients with low expres-
sion levels of ANGPTL3 exhibited a high survival rate (Figure 5b,d,e). The overexpression
of C19orf80 in CHOL and GBM patients was associated with a significantly longer survival
time (Figure 6). These results are consistent with the analysis results obtained for ANGPTL3
and C19orf80 expression. These findings indicate that the downregulation and upregulation
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of ANGPTLs can promote cancer development. The underlying molecular mechanism of
this process should be elucidated and may be a hot topic for future investigations.

The muTarget is a robust tool for predicting target gene expression due to muta-
tion as well as identifying the genes whose mutation affects the expression of another
target gene. Our analysis revealed that the expression of various tumorigenic genes, in-
cluding LINC02167, MYCL, TESMIN, VCP, and TARBP1, was altered by the mutations
in the ANGPTL3 gene. MYCL is a proto-oncogene associated with the apocrine adenosis
of breast and lung cancer [28]. The expression of the TARBP1 gene is upregulated in
hepatocellular carcinoma (HCC), and its expression is associated with the pathological
severity of the disease [29]. Analysis using “Target run” showed that mutations in MAPK1,
CASP5, COL3A1, ITGAM, and TMEM59L genes changed the expression profile of ANGPTL3
(Figure 7a). The MAPK1 encodes a well-known protein (kinase 1) involved in several cell
signaling pathways, such as cell differentiation, proliferation, transcriptional regulation,
and cellular development [30]. A recent study reported that ITGAM regulates myeloid cell
polarization and tumor growth. The authors further suggested that ITGAM negatively regu-
lates immune suppression; therefore, it is a potential target for cancer immunotherapy [31].
The mutations in various genes, such as PCDHA3 and MAP3K19, altered the expression of
C19orf80 in head and neck cancer patients (Figure 7b).

The PCDHA3 gene inhibits epithelial–mesenchymal transition and the metastasis
of squamous cell lung carcinoma [32]. Recent findings indicate that MAP3K19 activates
ERK and JNK kinases, therefore enhancing the viability of mutant lung cancer cells [33].
The expression of ANGPTL3 changed in breast cancer patients owing to the mutations in
genes, including TP53 and PDZD2. Intriguingly, several tumor-suppressor genes, i.e., TP53,
MAPK1, and PDZD2, altered the expression of target genes, which indicates that mutation
in one tumor-suppressor gene may negatively affect other genes of the related category.
This relation may further exacerbate the disease condition. MAPK1 is also involved in
transcriptional regulation. This type of gene-to-gene interaction can be used to establish
tumor biomarkers as well as therapeutic drug targets. Seven high-risk SNPs in ANGPTL3
and four in ANGPTL8 were predicted to be involved in cancer. This study provides a
framework for a new role of ANGPTL3 and ANGPTL8, as well as information on functional
mutations. However, in the future, in vivo studies should be conducted to validate the
significance of the correlation of these SNPs in ANGPTL3 and ANGPTL8 with a specific
type of cancer.

4. Material and Methods
4.1. Retrieval of Protein Sequence Datasets and Identification of High-Risk SNPs

The human ANGPTL3 and ANGPTL8 amino acid sequences were retrieved from
the UniProt sequence database https://www.uniprot.org/ accessed on 25 February 2023
(Supplementary File S1). The missense SNP data for ANGPTL3 and ANGPTL8 were
retrieved from dbSNP [34]. The accession numbers and amino acid sequences of both
proteins are provided in Supplementary File S2. To predict functional consequences of
missense SNPs, various web-based computational tools including nsSNP analyzer [35],
SNP&GO [36], Protein Variation Effect Analyzer (PROVEAN) [37], and PMUT [38] were
used. The SNPs were considered high risk when they were predicted as pathological by at
least three separate tools.

4.2. Conservation Pattern of High-Risk SNPs in ANGPTL3 and ANGPTL8

Amino acid sequence conservation is associated with protein structure and function.
ConSurf predicts the conservation pattern of amino acids in proteins based on the phyloge-
netic relationships between homologous sequences. The tool uses a color-coded scheme to
present conservation scores from low to high (1–9) and classifies amino acids into variable,
average, and highly conserved groups. Amino acid sequences of both ANGPTL3 and
ABGPTL8 were used as input to ConSurf (https://consurf.tau.ac.il/consurf_index.php)
(Accessed on 3 December 2022). Further, the conservation pattern in various species includ-

https://www.uniprot.org/
https://consurf.tau.ac.il/consurf_index.php
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ing Homo sapiens, Bos taurus, Mus musculus, and Rattus norvegicus was evaluated using the
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) (accessed on 6 December
2022) multiple sequence alignment tool.

4.3. Prediction of Changes in Protein Stability Induced by High-Risk SNPs in ANGPTL3
and ANGPTL8

I-mutant version 3.0, a web-based support vector machine (SVM) tool, was employed
to prioritize the change in protein stability due to high-risk missense SNPs. I-mutant
computes Gibbs free energy (DDG) change using the following formula, [39]

Gibbs free energy (DDG) = Mutant protein-free energy − wild-protein free energy

The free energy is calculated in kcal/mol.
The energy change analyses were performed at default parameters with pH 7 and

temperature 25 ◦C. The functionally deleterious or pathological SNPs were distinguished
from neutral ones based on the concept that protein stability perturbation must be above a
specific free energy threshold of ±1 kcal/mol.

4.4. Structural Consequences of High-Risk nsSNPs

The HOPE (Have Our Protein Explained) tool was used to predict the structural
consequences of high-risk nsSNPs in ANGPTL proteins. The HOPE tool uses PDB,
BLAST, FASTA, HSSP, DSSP, Clustal Omega, YASARA, and DAS web servers to pre-
dict the structural effect of SNPs in protein and also constructs independent homology
models [40]. PinSnps was utilized to predict the phenotypic consequences of high-risk
SNPs in ANGPTL proteins [41]. PinSnps is one of the largest repositories of SNPs data,
comprising 3,209,256 SNPs from the dbSNP database with 10,850 disease-related SNPs
and 1,101,990 SNPs related to cancer (https://fraternalilab.kcl.ac.uk/PinSnps/) (accessed
on 1 April 2023). SNPeffect4.0 was employed to predict changes in integration predic-
tion (TANGO), chaperone-binding prediction (LIMBO), amyloid prediction (WALTZ), and
protein stability (DDG) score for a specific missense mutation [42].

4.5. Tertiary Structure and Ligand-Binding Site Prediction

The tertiary structures of ANGPTL proteins were not found in the Protein Data
Bank (PDB) database. Therefore, the structure of both ANGPTL proteins was predicted
using the Iterative Threading ASSEmbly Refinement (I-TASSER) server (https://zhanglab.
ccmb.med.umich.edu/I-TASSER/) (accessed on 14 November 2022). The ligand-binding
sites were predicted using COACH (http://zhanglab.umich.edu/COACH/) (accessed
on 16 November 2022) and FTSite (http://ftsite.bu.edu/) (accessed on 12 January 2022)
servers. The residues sites simultaneously predicted by both servers were considered
ligand-binding pockets.

4.6. Prediction of PTMs Sites
4.6.1. Phosphorylation, Kinase-Specific Phosphorylation, and O-Glycosylation Sites

Phosphorylation is a chemical process that involves the addition or transfer of phos-
phate (PO43-) group to serine (Ser), Threonine (Thr), or Tyrosine (Tyr), primarily associated
with protein activity and protein expression regulation. Netphos 2.0, an artificial-neural-
network-based bioinformatics tool, was employed to identify phosphorylation sites in
human ANGPTL proteins [43]. The threshold value >0.8 was selected to indicate potential
phosphorylation sites. Subsequently, kinase-specific phosphorylation residues were identi-
fied using GPS 3.0 [44] and KinasePhos 2.0 [45]. YinOYang, a web-based server [45], was
employed to predict O-glycosylation sites in ANGPTL3 and ANGPTL8. NetsurfP [46] was
used to determine the surface accessibility of predicted phosphorylation sites.

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://fraternalilab.kcl.ac.uk/PinSnps/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://zhanglab.umich.edu/COACH/
http://ftsite.bu.edu/
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4.6.2. Ubiquitylation Sites

Three web-based bioinformatics tools, iUbiq-lys (http://www.jci-bioinfo.cn/iUbiq-
Lys) (accessed on 24 November 2022), CKSAAP UbSite (http://protein.cau.edu.cn/cksaap_
ubsite/) (accessed on 24 November 2022), and BDM-PUB (http://bdmpub.biocuckoo.org/
prediction.php) (accessed on 8 November 2022), were employed to identify ubiquitination
sites in all ANGPTL proteins. Ubiquitination sites predicted by at least two servers were
considered to have a high potential for ubiquitination.

4.6.3. Palmitoylation and Methylation Sites

CSS-PALM 3.0 (http://csspalm.biocuckoo.org/index.php), (accessed on 22 November
2022) a java-based web server, was employed to identify potential palmitoylation sites
in ANGPTLs with CC and CXXC patterns. C indicates Cysteine and X indicates any
amino acid residue. PMes (http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx) (accessed on
14 November 2022), a support vector machine program, was used to identify methylation
sites in ANGPTL proteins.

4.6.4. Acetylation and Sumoylation Site

PAIL (http://bdmpail.biocuckoo.org/results.php) (accessed on 10 November 2022) and
ASEB (http://bioinfo.bjmu.edu.cn/huac/predict_p/) (accessed on 13 November 2022),
web servers, were used to predict acetylation sites in ANGPTL proteins. Sumoylation
is a reversible modification associated with many diseases. Three online computational
tools, SUMOplotTM (http://www.abgent.com/sumoplot) (accessed on 9 December 2022),
SUMOhydro (http://protein.cau.edu.cn/) (accessed on 16 November 2022), and SUMOsp
2.0 (http://sumosp.biocuckoo.org/) (accessed on 8 January 2023), were used to predict
sumoylation sites in ANGPTL proteins. The threshold for SUMOplot was set at >0.6 and
the medium level was selected for prediction using the SUMOsp 2.0 tool. The sumoylation
sites predicted by at least 2 servers were considered high-potential sumoylation sites.

4.7. Protein–Protein Interactions (PPIs) and Prediction of High-Risk SNPs Associated with Cancer

The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database
(http://string-db.org/cgi/input) (accessed on 28 November 2022) and PinSnps (http:
//fraternalilab.kcl.ac.uk/PinSnps/) (accessed on 29 November 2022) were utilized to
perform PPI analysis. PinSnps was also used for the prediction of high-risk SNPs associated
with various types of cancer.

4.8. Protein Structure Preparation and Docking

All 3D protein structures were assessed using ERRAT score, i.e., amino acids with
an ERRAT score confidence level lower than 90%, were rejected [47]. RAMPAGE was
utilized to produce Ramachandran plots. Ramachandran plots provide information on
the percentage of the individual residue in a specific position [48]. The structure was
uploaded to Guru-level HADDOCK (High Ambiguity Driven protein–protein Docking)
interface prediction server [49]. The top cluster was further refined for better orientation
to improve the HADDOCK score. C-port (consensus prediction of interface residues in
transient complexes) was utilized to predict the active and passive residues in ANGPTLs
and interacting proteins. The structures were prepared in Chimera and then submitted to
C-port to predict active and passive residues [50].

4.9. Comparative Modeling and Visualization of Wild-Type Proteins and Their Mutated Structures

Predictive 3D modeling was performed along with the structural comparison between
wild-type and mutated models to explore whether the high-risk SNPs significantly alter
the resultant mutated protein. The nsSNPs at the specific positions in the native protein
sequence were made and I-TASSER was used for the structural modeling of mutated
ANGPTL3 and ANGPTL8 proteins. The mutated models were then analyzed using the
TM-align tool (https://zhanggroup.org/TM-align/) (accessed on 4 April 2023). The TM-
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http://protein.cau.edu.cn/
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http://string-db.org/cgi/input
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align output consists of a modeling score (0–1) and root mean square deviation (RMSD)
value for the comparison of protein structures based on the superimposition of structure to
determine the differences.

4.10. Analysis of Survival Rate and Gene Expression Analysis

The gene expression profiling interactive analysis (GEPIA) tool presents the expression
profiles of a specific gene as a box plot or dot plot and performed overall survival analysis
using the log-rank test (http://gepia.cancer-pku.cn/) (accessed on 14 March 2022). GEPIA
is an interactive database that is used to interpret RNA sequencing expression data from
the genotype tissue expression GTEx project and cancer genome atlas (TCGA) database.
The name of the candidate gene, i.e., ANGPTL3 and C19orf80 (ANGPTL8) and cancer type
were used as input for the expression profile and survival analysis.

4.11. Analysis of the Correlation between Expression Level and Mutation in ANGPTL3 and
C190orf80 Genes

The correlation between gene expression and mutations was analyzed using a “geno-
type” or “target” run. The genotype run determines the changes in gene expression
that are related to a specific mutation. The target run is used to predict mutations that
affect the expression of a target gene. muTARGET uses the TCGA database to deter-
mine the correlation between gene expression and somatic mutation implicated in cancer
(https://www.mutarget.com/analysis) (accessed on 13 March 2023).

5. Conclusions

The current study’s findings indicate that ANGPTL3 and ANGPTL8 proteins are
tumor suppressors and are aberrantly expressed in various types of cancer. Mutations in
these proteins are suggested to be associated with perturbed protein structure and function.
A total of 79 high-risk nsSNPs were identified in ANGPTL3 and ANGPTL8; these are
potentially pathological and decrease protein stability, suggesting their deleterious effect
on protein structure. Further analysis showed seven high-risk SNPs (L57H, F295L, L309F,
K329M, R332L, S348C, and G409R) in ANGPTL3 and four high-risk SNPs (P23L, R85W,
R138S, and E148D) in ANGPTL8 associated with various types of cancer, including large
intestine cancer, breast cancer, liver cancer, skin cancer, and head and neck cancer. We
believe that the comprehensive analysis of nsSNPs in ANGPTL3 and ANGPTL8 represents
a significant advancement in our understanding of these proteins and their role in cancer.
By understanding the genetic basis of cancer, researchers and healthcare providers are
in a better position to provide personalized cancer screening and prevention strategies.
We hope the current study will serve as a benchmark for the development of potential
diagnostic tools and therapeutic interventions. However, a large-scale, population-based
study should be conducted to validate the effect of these nsSNPs on the structure and
function of the proteins and their associations with cancer.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28124648/s1, Figure S1: ANGPTL3 3D struc-
ture cartoon and sphere representation, Figure S2: Protein-protein interaction analysis network of
ANGPTL3 with other related proteins., Figure S3: Protein-protein interaction analysis network of
ANGPTL8 with other related proteins, Figure S4: Interaction of ANGPTL3 (Chain A) with ITGB3
(Left) and ITGAV (right), Figure S5: Interaction of ANGPTL8 (Chain A) with RASSF5 (Left) and
FNDC5 (right), Figure S6: Comparative homology modeling of wild type and mutated ANGPTL3
and ANGPTL8. The wilt-type structures are shown in green while mutants are shown in red color,
Figure S7: Gene expression analysis of ANGPTL3 and C19orf80 in all tumor types paired with normal
tissue using the GEPIA database; Table S1: Prediction results for nsSNPs in the ANGPTL3 protein,
Table S2: Prediction results for nsSNPs in the ANGPTL8 protein, Table S3: Details of high-risk SNPs
in ANGPTL3 and ANGPTL8 that cause cancer.
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