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Abstract: Electrochemical reduction of nitrate has broad application prospects. However, in tradi-
tional electrochemical reduction of nitrate, the low value of oxygen produced by the anodic oxygen
evolution reaction and the high overpotential limit its application. Seeking a more valuable and
faster anodic reaction to form a cathode–anode integrated system with nitrate reaction can effectively
accelerate the reaction rate of the cathode and anode, and improve the utilization of electrical energy.
Sulfite, as a pollutant after wet desulfurization, has faster reaction kinetics in its oxidation reaction
compared to the oxygen evolution reaction. Therefore, this study proposes an integrated cathodic
nitrate reduction and anodic sulfite oxidation system. The effect of operating parameters (cathode
potential, initial NO3

−–N concentration, and initial SO3
2−–S concentration) on the integrated system

was studied. Under the optimal operating parameters, the nitrate reduction rate in the integrated
system reached 93.26% within 1 h, and the sulfite oxidation rate reached 94.64%. Compared with
the nitrate reduction rate (91.26%) and sulfite oxidation rate (53.33%) in the separate system, the
integrated system had a significant synergistic effect. This work provides a reference for solving
nitrate and sulfite pollution, and promotes the application and development of electrochemical
cathode–anode integrated technology.

Keywords: electrochemical; integrated system; nitrate reduction; sulfite oxidation

1. Introduction

In recent years, accelerated industrialization and increasing human activities have led
to severe nitrate pollution [1]. Compared with other techniques, such as biological and
adsorption methods, the electrochemical reduction of nitrate technology has the advan-
tages of fast removal rate, low cost, and no chemical additives [2–4]. It can directly convert
harmful nitrate into valuable ammonia, making it a promising nitrate treatment technology.
In the traditional electrochemical reduction of nitrate process, the anodic half-reaction is
the oxygen evolution reaction (OER), and the economic value of oxygen is limited, so it is
usually directly released into the air. In addition, the occurrence of OER requires a high
overpotential, which to some extent limits the nitrate reduction rate and causes energy
waste [5]. Up to now, researchers have always been keen to develop new materials to
obtain higher nitrate reduction rates and product selectivity in exploring the electrochem-
ical reduction of nitrate, and there is almost no research focusing on the application of
anodic reactions.

Seeking more valuable anodic reactions to match with nitrate reduction reactions to
form an integrated cathodic reduction–anodic oxidation system is highly desirable. In con-
trast to a single anode or cathode reaction, the integrated cathode reduction–anode oxida-
tion system simultaneously focuses on the anode and cathode reactions, achieving matching
reaction rates in a unit system [6]. As a result, the electrochemical cathode–anode integrated
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system has significant advantages: (1) the matching reaction between the cathode and
anode synergistically improves the reaction rates; (2) integrated cathode–anode can simulta-
neously treat two systems, significantly reducing process costs; and (3) cathode–anode cou-
pling replaces the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER)
in separate oxidation and reduction processes, improving energy utilization efficiency [7–9].

Sulfite is the main product after wet desulfurization; excess sulfite will cause water
and soil pollution, decomposition will release SO2 again, and timely oxidation of sulfite
to sulfate can effectively avoid secondary pollution [10,11]. Compared to OER, the oxi-
dation reaction of sulfite (SOR) generated in the desulfurization process exhibits faster
kinetics [9,12]. Therefore, by combining cathodic nitrate reduction with anodic sulfite oxi-
dation through electrochemical reactions, synergistic efficiency can be achieved in treating
wastewater containing nitrate and sulfite.

In this study, the anodic sulfite oxidation reaction (SOR) was employed to replace
the OER, and an electrochemical system integrating cathodic NO3

−RR with anodic SOR
was constructed for the synergistic treatment of both wastewaters. The optimal treatment
conditions of the coupled system were determined by investigating the influencing factors
including the cathodic potential, initial nitrate concentration, and initial sulfite concentra-
tion. The development of this integrated system could provide valuable insights into the
development and applications of synergistic electrochemical technology.

2. Results and Discussion
2.1. Characterizations of CuO&Cu2O@C Electrode

The physical phases of the constructed electrode were analyzed via XRD. Figure 1a
shows the electrode as a mixed composition of CuO (JCPDS No. 78–2076) and Cu2O (JCPDS
No. 89–2529). The strong diffraction peaks at 36.4◦ and 42.3◦ are attributed to the (1 1 1) and
(2 0 0) crystal planes of Cu2O. The characteristic diffraction peaks at 35.6◦, 38.7◦, 48.8◦, and
58.2◦ are associated with the (−1 1 1) (1 1 1) (−2 0 2) (2 0 0) crystalline plane of CuO. SEM
characterization was used to analyze the surface morphology of the prepared electrode. As
shown in Figure 1b,c, the surface of the CC substrate material was uncontaminated, and
the constructed electrode surface formed uniform nanoparticles. In order to further clarify
the composition and microstructure of the surface nanoparticles, TEM characterization was
performed. The TEM image in Figure 1d further shows that nanoparticles were forming
on the CC surface. In the HRTEM image (Figure 1e–i), the lattice spacing of the stripes
with 0.211 nm, 0.247 nm, and 0.232 nm is attributed to the (2 0 0) and (1 1 1) crystal faces of
Cu2O and the (1 1 1) crystal face of CuO [13,14], respectively. This is consistent with the
XRD results and fully demonstrates that the composition of the nanoparticles formed on
the electrode surface is CuO and Cu2O.

In order to gain a deeper understanding of the nanoparticles on the electrode surface,
the element composition and related valence states of the electrode were analyzed via
XPS characterization. The XPS full spectrum (Figure 2a) shows the presence of Cu and
O elements on the electrode surface, further proving the existence of Cu–related species
on the electrode surface. As shown in Figure 2b, the high-resolution C1s spectrum was
deconvoluted into three peaks, which could be assigned as C=C/C–C (284.8 eV), C–O
(285.6 eV), and C=O (288.4 eV), respectively [13]. The high-resolution Cu 2p spectrum
(Figure 2c) contains characteristic peaks of Cu(I) and Cu(II). The peaks at 933.8 eV and
953.6 eV are attributed to the Cu 2p3/2 and Cu 2p1/2 of Cu2O, respectively [15]. A clear
satellite peak appears near the peaks at 935.4 eV and 955.1 eV, which is a typical feature
of Cu(II) [16]. The high-resolution O 1s spectra (Figure 2d) can be deconvoluted into two
peaks, which are hydroxyl oxygen (–OH, 531.7 eV) and lattice oxygen (Olatt, 530.1 eV) [17].
The XPS results are consistent with the TEM results, further proving the synthesis of the
CuO&Cu2O@C electrode.
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Figure 2. (a) XPS full-range spectra; (b) high-resolution Cu 1s; (c) high-resolution Cu 2p; (d) high-
resolution O 1s of CuO&Cu2O@C.

2.2. Electrochemical Reduction of Nitrate

After confirming the structure of the CuO&Cu2O@C electrode, the nitrate reduction
activity of this electrode was investigated using different cathodic potentials. Figure 3a
shows a significant decay trend of nitrate concentration within 60 min under different
potentials, indicating that CuO/Cu2O@C electrode can effectively reduce nitrate. As the
potential increases from −1.2 V to −1.8 V, the removal rate shows a volcano-like change.
When applying −1.2 V cathodic potential, the removal rate is the lowest, at only 51.59%.
This is because at a lower potential, there are not enough electrons provided to reduce
nitrate [18]. As the cathodic potential further increases to −1.4 V, the nitrate removal rate
increases to 91.61%. This is because the increase in the cathodic potential results in an
increase in the amount of electron transfer in the system. When the cathodic potential
becomes more negative than −1.4 V, the competitive hydrogen evolution reaction gradually
increases, leading to the inhibition of nitrate reduction reaction and a gradual decrease
in the removal rate [19]. In order to evaluate the rate of electrochemical reduction of
nitrate, the nitrate reduction process was fitted with a pseudo-first-order kinetic model,
and the result is shown in Figure S1. R2 indicates that the nitrate reduction conforms to the
pseudo-first-order kinetic model and has the fastest reaction rate at −1.4 V, with a kinetic
constant (kr) of 2.4386 h−1.
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To investigate the reduction products of nitrate, the concentration changes of NO2
−–N

and NH4
+–N were continuously detected. In the early stage of the reaction, the concen-

trations of both NO2
−–N and NH4

+–N showed an increasing trend. However, in the
later stages of the reaction, the concentration of NO2

−–N showed a decreasing trend,
while NH4

+–N continued to increase (Figure 3b,c). This indicates that NO2
−–N is the

intermediate product of NO3
−–N reduction, and NH4

+–N is the final product of nitrate
reduction [20]. The cumulative amount of NH4

+–N increases with the increase of cathodic
potential, which is consistent with the change law of nitrate removal rate, and also shows
a volcano-like shape. This is because the decay of nitrate determines the generation of
the final product NH4

+–N. At high nitrate removal rates, it allows more NO3
−–N to be

converted to NH4
+–N.

2.3. Self-Oxidation and Anodic Electro-Oxidation of Sulfite

To investigate the electro-oxidation performance of SO3
2−–S on a Pt sheet electrode, a

separate study of the electrochemical oxidation of sulfite was conducted, and self-oxidation
experiments were conducted to eliminate the effect of air on sulfite oxidation. As shown in
Figure 4, the SO3

2−–S concentration remained essentially constant during the self-oxidation,
indicating that SO3

2−–S was not oxidized by air in the H-type sealed electrolytic cell. In
addition, the oxidation of SO3

2−–S was all electrically driven during the electro-oxidation
process. As the cathodic potential increased from −1.2 V to −1.8 V, the oxidation rate
of SO3

2−–S increased from 13.5% to 100%; moreover, the oxidation was complete within
45 min at −1.8 V. This demonstrates that the Pt electrode possessed effective SO3

2−–S
oxidization capability. The electro-oxidation process was fitted with a pseudo-first-order
kinetic model, and the kinetic constants obtained for different cathodic potentials indicated
that the electro-oxidation process of SO3

2−–S conforms to the pseudo-first-order kinetic
process (Figure S2). As the cathodic potential increases, the kinetic constant of the electro-
oxidation process of SO3

2−–S also increases, which is because at higher potentials, more
electrons are generated, thereby accelerating the reaction rate [21].

2.4. Integrated Electrochemical System

Based on the single system of electrochemical reduction of nitrate and sulfite oxidation,
the two were paired to construct an integrated system to achieve simultaneous treatment
of nitrate and sulfite.
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Figure 4. SO3
2−–S concentration during self-oxidation and electro-oxidation at different potentials.

2.4.1. Effect of the Applied Cathode Potentials

In electrochemical reactions, electrode potential plays a crucial role; therefore, the
effect of cathode potential on the integrated system was explored. As shown in Figure 5a,
in the integrated system, as the cathode potential increases from −1.2 V to −1.4 V, the
NO3

−–N removal rate increases from 56.28% to 93.26%. Continuing to improve the cathode
potential to −1.8 V, the removal rate remains above 90%. The pseudo-first-order kinetic
model fitting results for NO3

−–N reduction (Figure S3a) indicate that NO3
−–N reduction

in the integrated system still belongs to the pseudo-first-order kinetic process. The reaction
kinetic constant is highest at a cathode potential of −1.4 V, reaching 2.6622 h−1. Figure 5b,c
shows the changes in the products NO2

−–N and NH4
+–N in the integrated system at

different potentials. The accumulation of NO2
−–N remains at a low level of 5 mg L−1 for

1 h at different potentials. The accumulation of NH4
+–N increases first and then decreases

with the increase of potential, and the highest accumulation was −1.4 V. The reason for
the above phenomenon is consistent with that in the single reduction system. At lower
potentials, the insufficient electrons produced eventuate NO3

−–N removal, while at higher
potentials, a large amount of hydrogen evolution reaction becomes the primary reaction,
hindering the conversion of NO3

−–N [22]. As shown in Figure 5d, with the increase of
cathode potential, the oxidation rate of SO3

2−–S in the integrated system increases from
64.91% to 100%. As shown in Figure S3b, the oxidation of SO3

2−–S in the integrated system
is also a pseudo-first-order kinetic process.

Table 1 shows the comparison of performance parameters between single electrochem-
ical systems and integrated electrochemical systems. In the integrated system, the removal
rate of NO3

−–N and the oxidation rate of SO3
2−–S are both improved at different cathode

potentials. This implies that the constructed integrated system has synergistic effects. This
is because in the single NO3

−–N reduction system, the anode reaction is oxygen evolution,
while in the integrated system, the anode reaction is SO3

2−–S oxidation, which has lower
activation energy and only requires two electrons to complete the reaction, while the oxy-
gen evolution reaction has higher activation energy and requires four electrons. As a result,
the oxidation reaction rate SO3

2−–S is faster in the integrated system, making for a higher
reaction current, which promotes the reduction of NO3

−–N [12]. As for the single sulfite
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reaction system, the cathode is hydrogen evolution reaction, and the hydrogen evolution
reaction rate of the prepared CuO&Cu2O@C electrode is slow. However, in the integrated
system, the CuO&Cu2O@C electrode accelerates the reduction rate of NO3

−–N, and thus
elevates the ability of the anode to oxidize SO3

2−–S. It is worth noting that the enhancement
amplitude of NO3

−–N removal is low at lower potentials of −1.2 V and −1.4 V, while it is
significant at higher potentials of −1.6 V and −1.8 V. This is because at high negative poten-
tials, a large amount of hydrogen evolution reaction occurs in the single reduction system,
which inhibits the reduction of NO3

−–N, while at low potentials, the hydrogen evolution
reaction does not occur violently [23]. In the integrated system, SO3

2−–S oxidation inhibits
the occurrence of hydrogen evolution reaction [24], and therefore the magnitude of the
potentiation varies at different potentials. In addition, the increase of NH4

+–N selectivity
at different potentials is consistent with the pattern of NO3

−RR increase. This is due to the
fact that NO3

−RR is directly related to the formation of the final product NH4
+–N [25].
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Figure 5. Effect of cathodic potential on the performance of integrated electrochemical systems.
(a) NO3

−–N concentration; (b) NO2
−–N concentration; (c) NH4

+–N concentration; (d) SO3
2−–S

concentration. Experimental conditions: initial NO3
−–N concentration = 100 mg L−1; initial SO3

2−–S
concentration = 1.0 g L−1.

Table 1. Comparison of single system and integrated system performance parameters.

R (NO3−–N)/% S (NO2−–N)/% S (NH4
+–N)/% O (SO32−–S)/%

Single Integrated Single Integrated Single Integrate Single Integrated

−1.2 V 51.59 56.28 7.64 6.80 55.14 53.50 13.15 64.91
−1.4 V 91.61 93.26 1.22 1.25 78.41 74.90 53.33 94.64
−1.6 V 84.46 90.46 1.05 2.10 67.21 73.20 81.82 100.00
−1.8 V 82.89 92.19 0.40 2.60 61.39 66.70 100.00 100.00
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By comparing various performance indicators, it can be seen that the NO3
−–N removal

rate is optimal at −1.4 V, the NO2
−–N selectivity is the lowest, the NH4

+–N selectivity is the
highest, and although the SO3

2−–S oxidation rate is not the highest, it still exhibits excellent
performance. Therefore, it was reasonable to choose −1.4 V for the subsequent experiments.

2.4.2. Effect of Initial NO3
−–N Concentration

In integrated electrochemical systems, changes in the half-reaction rate can affect the
overall system reaction rate [26]. Changes in the initial NO3

−–N concentration affect the
cathodic reaction NO3

−RR rate [27], so the effect of different initial NO3
−–N concentrations

on the integrated system was investigated. As shown in Figure 6a and Figure S4a, as
the initial NO3

−–N concentration increases from 50 mg L−1 to 100 mg L−1, the NO3
−–N

removal rate first increases and reaches a maximum of 93.26% at 100 mg L−1, with the fastest
reaction rate. As the initial NO3

−–N concentration continues to increase, the NO3
−–N

removal rate continues to decrease, with the lowest removal rate at 250 mg L−1, only 46.91%,
and the slowest reaction rate. The lower removal rate at a low initial NO3

−–N concentration
is due to the limited binding capacity of NO3

−–N, which leads to a decrease in the effective
collision frequency of active molecules [28]. At higher concentrations, the lower NO3

−–N
removal rate is due to the limited catalytic active sites on the CuO&Cu2O@C electrode
surface [29]. As shown in Figure 6b,c, with the increase of initial NO3

−–N concentration,
the selectivity of NO2

−–N first increases and then decreases, while the selectivity of NH4
+–

N shows the opposite trend. This is because at low initial NO3
−–N concentrations, the rate

of conversion of NO3
−–N to the intermediate product NO2

−–N is lower than the rate of
conversion of NO2

−–N to NH4
+–N, while at higher initial NO3

−–N concentrations, the
rate of conversion of NO3

−–N to the intermediate product NO2
−–N is higher than the rate

of conversion of NO2
−–N to NH4

+–N.
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As shown in Figure 6d, as the initial NO3
−–N concentration increases from 50 mg L−1

to 100 mg L−1, the SO3
2−–S oxidation rate increases from 70.91% to 94.64%. As the initial

NO3
−–N concentration further increases, the SO3

2−–S oxidation rate gradually decreases
and decreases to 80.70% at 250 mg L−1. As shown in Figure S4b, the oxidation kinetic
constant ko first increases and then decreases with the rise in initial NO3

−–N concentration,
which is consistent with the changing trend of cathodic reduction NO3

−–N kinetic constant.
This indicates that the change in the cathodic reaction rate will cause the same change trend
in the anodic reaction rate, which is due to the mutual matching relationship between the
cathodic and anodic reaction rates. When the rates of the two half-reactions do not match,
they will decrease simultaneously.

By comparing the NO3
−–N reduction rate, SO3

2−–S oxidation rate, NO2
−–N selec-

tivity, and NH4
+–N selectivity, it is easy to find that the initial NO3

−–N concentration of
100 mg L−1 showed excellent performance in all the above indexes, so it was chosen as the
initial NO3

−–N concentration for the subsequent study.

2.4.3. Effect of Initial SO3
2−–S Concentration on Integrated Electrochemical System

The initial SO3
2−–S concentration in the anode chamber is closely related to the SOR

rate [30], which affects the cathodic reaction rate. Based on this, the effect of initial SO3
2−–S

concentration on the integrated system was investigated. As shown in Figure 7a, as the
initial SO3

2−–S concentration increases from 0.4 g L−1 to 1.0 g L−1, the SO3
2−–S oxidation

rate increases continuously from 80.00% to 94.64%. When the initial SO3
2−–S concentration

is further increased to 1.2 g L−1, the SO3
2−–S oxidation rate decreases to 90.91%. As the

initial SO3
2−–S concentration increases, the oxidation kinetic constant ko shows a trend of

first increasing and then declining (Figure S5a). At concentrations of 0.4, 0.6, 0.8, 1.0, and
1.2 g L−1, the reduction rates of NO3

−–N are 80.51%, 84.42%, 87.80%, 93.26%, and 86.37%,
respectively (Figure 7b). The fitting results of cathodic reduction NO3

−–N to first-order
kinetics show (Figure S5b) that as the initial SO3

2−–S concentration continuously increases,
kr increases from 1.5891 h−1 to 2.6622 h−1 and then decreases to 1.9384 h−1. This changing
trend is consistent with the SO3

2−-S oxidation kinetic constant trend. This once again
indicates that at lower initial SO3

2−–S concentration, the anodic oxidation reaction cannot
match the cathodic reduction reaction, resulting in a decrease in the cathodic and anodic
reaction rates in the integrated system. As the initial SO3

2−–S concentration increases, the
anodic and cathodic reactions gradually match, resulting in the highest rates of sulfite
oxidation and nitrate reduction at an initial SO3

2−–S concentration of 1.0 g L−1. When the
initial SO3

2−–S concentration continues to increase to 1.2 g L−1, this mismatch reappears,
resulting in a decrease in the performance of the integrated system.

Figure 7c,d shows the changes of the products NO2
−–N and NH4

+–N at different
initial SO3

2−–S concentrations, respectively. The accumulation of NO2
−–N first decreased

with the increase of initial SO3
2−–S concentration, reaching a minimum at 1.0 g L−1, and

then increased with the further increase in SO3
2−–S concentrations. The NH4

+–N produc-
tion showed a trend of increasing and then decreasing, with the highest production at the
initial SO3

2−–S concentration of 1.0 g L−1. This indicates that the decrease in the reaction
rate during the cathodic reduction of nitrate leads to the accumulation of intermediate
products, affecting the transformation of intermediate products to final products.

In this system, NO3
− is converted to NH4

+ at the cathode and SO3
2− is converted to

SO4
2− at the anode. The final products could be recycled via crystallization and utilized to

form valuable compounds such as magnesium ammonia phosphate (struvite precipitate,
NH4MgPO4·6H2O) [31,32], calcium sulfate (CaSO4), barium sulfate (BaSO4), Ettringite
(Ca6Al2(SO4)3(OH)12) [33], etc., thus achieving more effective treatment of nitrate and
sulfite in wastewater.
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3. Materials and Methods
3.1. Reagents

The reagents in this work are of analytical grade or above and were used without
further purification.

3.2. Fabrication of CuO&Cu2O@C Electrode

In this study, a Pt foil (1 cm × 1.5 cm × 0.1 mm) was used as the anode, and a Ag/AgCl
electrode was used as the reference electrode. To investigate the accelerating effect of the
SOR instead of OER, a highly NO3

−RR-efficient CuO&Cu2O@C electrode (effective area of
1 cm × 1.5 cm) was synthesized and used as the cathode.

The CuO&Cu2O@C electrode was constructed using a redox strategy based on the
previously reported research protocol with modifications [1,34]. Specifically, a carbon cloth
(1 cm × 2 cm) was subjected to ultrasound treatment with a mixture of nitric acid (10 wt.%
HNO3) and sulfuric acid (10 wt.% H2SO4), acetone, ethanol, and deionized water for 1 h
to remove surface impurities. Subsequently, 8 mL of ethylene glycol, 8 mL of ethanol,
and 3 mmol Cu(NO3)2·3H2O were added to a beaker, and the mixture was thoroughly
stirred for 1 h to obtain a transparent blue solution. The pretreated carbon cloth was
then immersed in the solution for 4 h, and the entire system was transferred to a 25 mL
hydrothermal autoclave and reacted at 180 °C for 6 h. After the hydrothermal autoclave
was cooled to room temperature, the modified carbon cloth was taken out and sonicated
in anhydrous ethanol for 15 s, washed several times with water and ethanol, and dried at
60 °C in a vacuum oven for 6 h. Finally, the modified carbon cloth was annealed in a muffle
furnace at 350 ◦C for 2 h to obtain the CuO&Cu2O@C electrode.
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3.3. Characterizations

X-ray diffraction (XRD, Bruker, Billerica, MA, USA, D8 FOCUS) was used to analyze
the physical phase of the electrode. Scanning electron microscopy (SEM, Zeiss, Oberkochen,
Germany, G300) and transmission electron microscopy (TEM, FEI, Tecnai G2 F30) were used
to record the morphology and crystal lattice information. X-ray photoelectron spectroscopy
(XPS, Thermo, Waltham, MA, USA, ESCALAB 250XI, Al Kα) was applied to examine the
chemical and binding states of the CuO&Cu2O@C electrode. The binding energy was
calibrated using C 1s spectrum at 284.8 eV.

3.4. Batch Experiments

Batch experiments were conducted in an H-type electrolytic cell (Figure 8), with an
anode and cathode distance of 8 cm, separated by a Nafion 117 proton exchange membrane,
and using Ag/AgCl as the reference electrode.
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3.4.1. Single Electrochemical Reduction of Nitrate

In a three-electrode system, a mixture of 30 mL of 100 mg L−1 (K)NO3
−–N and 0.5 mol L−1

K2SO4 solution was added to the cathode chamber, and 30 mL 0.5 mol L−1 K2SO4 solution
was added to the anode chamber. The cathodic potentials of −1.2 V, −1.4 V, −1.6 V, and
−1.8 V (vs. Ag/AgCl) were applied to drive the reactions to study the electrochemical
reduction of nitrate systems alone.

3.4.2. Self-Oxidation and Single Electro-Oxidation of Sulfite

In a three-electrode system, 30 mL of 0.5 mol L−1 K2SO4 solution was added to the
cathode chamber, and a mixture of 30 mL of 1.0 g L−1 (K2)SO3

2−–S and 0.5 mol L−1

K2SO4 solution was added to the anode chamber. The study on sulfite self-oxidation was
conducted without applying an electric current. In the single electrochemical oxidation of
sulfite, in order to investigate the oxidation rate in the absence of nitrate reduction reaction,
the aforementioned potential was still used for the study.

3.4.3. Integrated Electrochemical Batch Experiments

The cathode compartment was filled with a mixed solution of 30 mL of 1.0 g L−1

(K2)SO3
2−–S and 100 mg L−1 (K)NO3

−–N, while the anode compartment was filled with
30 mL of 1.0 g L−1 (K2)SO3

2−–S and 0.5 mol L−1 K2SO4 mixed solution. Both the cath-
ode and anode compartments were stirred at 300 rpm, and the batch experiments were
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conducted for 1 h. At a time interval of 15 min, 0.4 mL of solution was taken from the
cathode compartment to detect the concentrations of NO3

−–N, NO2
−–N, and NH4

+–N,
and 1 mL of solution was taken from the anode compartment to detect the concentration
of SO3

2−–S. The method for the determination of ion concentrations and calculation for
removal rate and selectivity were illustrated in the supporting information. Additionally,
this study investigated the effects of different cathode potentials (−1.2 V, −1.4 V, −1.6 V,
−1.8 V vs. Ag/AgCl), initial NO3

−–N concentration (50 mg L−1, 100 mg L−1, 150 mg L−1,
200 mg L−1, 250 mg L−1), and initial SO3

2−–S concentration (0.4 g L−1, 0.6 g L−1, 0.8 g L−1,
1.0 g L−1, 1.2 g L−1) on the integrated system.

4. Conclusions

In summary, a cathode material for efficient electrochemical reduction of nitrate was
designed, which achieved effective removal of nitrate. However, in the single reduction
process, the anodic oxygen evolution reaction (OER) has certain limitations and wastes
energy. Therefore, an electrochemical reduction of nitrate integrated with a sulfite oxidation
system was developed. By exploring the operating parameters (cathode potential, initial
nitrate concentration, and initial sulfite concentration) in the integrated system, the results
show that compared with the single reduction and oxidation system, the integrated system
has a faster reaction rate while achieving simultaneous treatment of harmful nitrate and
sulfite. At −1.4 V (vs. Ag/AgCl) cathodic potential, 100 mg L−1 initial nitrate, and 1.0 g L−1

sulfite concentrations, the nitrate removal rate and sulfite oxidation rate within 1 h reached
93.26% and 94.64%, respectively. This study provides more references for solving the
mutual constraint between half-reactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28124666/s1, Figure S1: Fitting results of pseudo-first-order
kinetic model for single electrochemical reduction of nitrate at different potentials. Figure S2. Fitting
results of pseudo-first-order kinetic model for single electrochemical oxidation of sulfite at different
potentials. Figure S3. Fitting results of pseudo-first-order kinetic model for integrated electrochemical
system at different potentials; (a) nitrate reduction reaction; (b) sulfite oxidation reaction. Figure S4.
Fitting results of pseudo-first-order kinetic model for integrated electrochemical system at different
initial NO3

−–N concentrations; (a) nitrate reduction reaction; (b) sulfite oxidation reaction. Figure S5.
Fitting results of pseudo-first-order kinetic model for integrated electrochemical system at different
initial SO3

2−–S concentrations; (a) sulfite oxidation reaction; (b) nitrate reduction reaction.
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