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Abstract: The Asteraceae family is a promising source of bioactive compounds, such as the famous
Asteraceae plants Tanacetum cinerariifolium (pyrethrin) and Artemisia annua (artemisinin). As a result
of our series of phytochemical studies of the subtropical plants, two novel sesquiterpenes, named
crossoseamines A and B in this study (1 and 2, respectively), one undescribed coumarin-glucoside (3),
and eighteen known compounds (4–21) were isolated from the aerial part of Crossostephium chinense
(Asteraceae). The structures of isolated compounds were elucidated by spectroscopic methods, including
1D and 2D NMR experiments (1H, 13C, DEPT, COSY, HSQC, HMBC, and NOESY), IR spectrum, circular
dichroism spectrum (CD), and high-resolution electrospray ionization–mass spectrometry (HR-ESI–MS).
All isolated compounds were evaluated for their cytotoxic activities against Leishmania major, Plasmodium
falciparum, Trypanosoma brucei (gambiense and rhodesiense), and human lung cancer cell line A549 because
of the high demand for the discovery of new drug leads to overcome the present side effects and
emerging drug-resistant strains. As a result, the new compounds (1 and 2) showed significant activities
against A549 (IC50, 1: 3.3± 0.3; 2: 12.3± 1.0 µg/mL), L. major (IC50, 1: 6.9± 0.6; 2: 24.9± 2.2 µg/mL),
and P. falciparum (IC50, 1: 12.1 ± 1.1; 2: 15.6 ± 1.2 µg/mL).

Keywords: Crossostephium chinense; sesquiterpene; A549; Leishmania major; Plasmodium falciparum;
Trypanosoma brucei

1. Introduction

Crossostephium chinense (Asteraceae) is an evergreen shrub distributed in Japan, China,
and other Asian countries. The shrub naturally grows on coastal raised coral reefs and
can reach 10–40 cm in height. From November to December, the racemes are borne on
the terminal branches and bloom tiny yellow flowers. C. chinense is widely planted as an
ornamental shrub in China because of the high rate of survival for artificial cultivation [1].
The whole plants of C. chinense are traditionally used for the treatment of diabetes and
arthritis in southward China [2]. The extract has been reported to have various activities,
such as preventing the progression of restenosis [3], inhibiting differentiation, formation
and bone resorptive abilities of osteoclasts [4], and larvicidal activity [5]. Flavonoids [6,7],
coumarin [2,8], sesquiterpene [2], and triterpenoid [9] have previously been isolated from C.
chinense; however, the phytochemical analysis is still insufficient, and a detailed evaluation
of biological activities, especially for anticancer and antiparasitic activities, has yet to
be conducted.
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Cancer is a leading cause of death, especially in industrialized countries, and lung
cancer causes the most deaths worldwide [10]. A549 is a cell line derived from human lung
cancer and is frequently used in anticancer drug screening.

Leishmaniasis is a disease caused by protozoan parasites which are transmitted by the
bite of infected phlebotomine sandflies. Some 1.5–2 million new cases occur annually [11],
and emerging drug-resistant strains attract much attention for developing new chemical
agents. Leishmania major is associated with cutaneous leishmaniasis, the most common
form of leishmaniasis.

Trypanosoma brucei gambiense and T. brucei rhodesiense are the pathogens responsible
for West and East African trypanosomiasis, also called sleeping sickness, respectively.
Severe side effects and emerging resistant strains for the present clinical drugs have been
reported [12,13].

Plasmodium falciparum is a unicellular protozoan parasite of humans and causes the
most dangerous malaria, with a high risk of complication and mortality. According to the
WHO malaria report of 2021, there were 247 million cases of malaria worldwide in 2021,
resulting in an estimated 619,000 deaths. Artemisinin is a famous discovery from Artemisia
annua, which belongs to the Asteraceae family and has saved millions of lives. However,
artemisinin-resistant strains have been reported from southeastern Asia and Africa [14,15].

Our group focuses on the discovery of new bioactive compounds against these in-
tractable diseases from natural resources. Asteraceae plants were one of the rich sources
of bioactive compounds, such as pyrethrin from Tanacetum cinerariifolium and artemisinin
from A. anua. Therefore, we are interested in an Asteraceae plant, C. chinense, to discover
anticancer and antiparasitic constituents in this study.

The ethyl acetate soluble fraction from the aerial part of C. chinense was phytochemi-
cally studied, and all isolated compounds were investigated for their cytotoxic activities
against human protozoan pathogens, L. major, P. falciparum, and T. brucei (gambiense and
rhodesiense) and also against a human lung cancer cell line, A549. As a result, two novel
sesquiterpene-amino acid conjugates (1 and 2) and one previously undescribed coumarin-
glucoside (3) were discovered, of which two sesquiterpene-amino acid conjugates showed
significant cytotoxic activity. Among the known compounds identified (4–21), the anti-
Trypanosoma activity of 14 and anti-Plasmodium activity of compounds 1, 2, 11, and 14 are
reported for the first time. Although the anti-Trypanosoma activity of compounds 6–9 and 18
and the anti-Plasmodium activity of compounds 6–9, 12, 13, 15, and 18 have been previously
reported, we tested these compounds using our experimental conditions to allow a direct
comparison with the activities of 1 and 2 [16–27].

2. Results and Discussion

Extraction of C. chinense followed by liquid–liquid partitioning, column chromatography,
and HPLC resulted in the isolation of two novel compounds (1, 0.00102% and 2, 0.00175%) and a
previously undescribed coumarin glucoside (3, 0.00125%) (Figure 1), together with the following
18 known compounds, i.e., which isolated and elucidated the structure previously, two coumarin
derivatives (scopoletin (4, 0.0614%) [28] and scopolin (5, 0.00359%) [29,30]), five flavonoids and
flavonoid glucosides (chrysosplenol D (6, 0.0354%) [31], 3-methylquercetin (7, 0.0166%) [32],
luteolin (8, 0.0104%) [33], cosmosiine (9, 0.00168%) [34], quercetin-3-O-(6”-O-α-rhamnosyl)-
β-glucoside (10, 0.00761%) [35]), seven caffeic acid derivatives (4,5-di-O-caffeoylquinic acid
butyl ester (11, 0.0107%) [36], 4,5-di-O-caffeoylquinic acid methyl ester (12, 0.0136%) [37], 3,5-
di-O-caffeoylquinic acid methyl ester (13, 0.0154%) [38], 3,4,5-tri-O-caffeoylqunic acid methyl
ester (14, 0.00876%) [39], chlorogenic acid methyl ester (15, 0.0111%) [40], 2,6-dimethoxy-4-
hydroxymethylphenol-1-O-(6-O-caffeoyl)-β-D-glucopyranoside (16, 0.00497%) [41], and caffeic
acid (17, 0.00333%) [42]), 3,4-dihydroxy benzoic acid (18, 0.00639%) [43], one lignan (tetre-
centronside B (19, 0.00477%) [44]), and two fatty acids (tianshic acid (20, 0.0241%) [45] and
tianshic acid methyl ester (21, 0.00283%) [45]) (Figure 2). Known compounds were identified
by comparison of their physicochemical data with those reported data. The structures of novel
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compounds were elucidated by 1D, 2D NMR, IR, CD, and HR-ESI-MS spectrometry and some
chemical reactions.
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2.1. Structure Determination of Crossoseamines A and B (1 and 2) and a Novel Coumarin
Glucoside (3)
2.1.1. Structure of Crossoseamine A (1)

Crossoseamine A (1) was isolated as a colorless amorphous powder with a specific
optical rotation ( [α]27

D − 97, c 0.2, MeOH) and was found to have a nitrogen function based
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on TLC examination using Dragendorff’s reagent. The molecular formula was determined
as C20H27O5N by HR-ESI-MS data which revealed a protonated molecule [M + H]+ at m/z
362.1962 (calcd for C20H28O5N: 362.1961). The IR spectrum showed the absorption signals
at 3411, 1762, and 1710 cm−1 due to hydroxy and carbonyl functions, of which 1762 cm−1

suggested a γ-lactone functional group. 13C NMR showed that of the eight indices of hydrogen
deficiency, four were ascribed to one double bond (δC 125.2 and 130.0) and three carbonyl
carbons (δC 212.9, 177.0, and 173.9) (Table 1). In addition, the spectra also displayed one
oxymethine (δC 80.8), one aminomethine (δC 66.6), two methines (δC 48.5 and 44.2), one
quaternary carbon (δC 48.4), and two methyl carbons (δC 19.4 and 23.0). The 1H-NMR spectrum
(Table 1) showed a tertiary methyl, δH 1.25 (3H, s, H3-14), and a vinyl methyl, δH 1.86 (3H,
br s, H3-15). The 1D NMR and HSQC spectrum displayed an oxymethine proton signal at
δH 4.80 (1H, dquint-like, J = 11.2, 1.3 Hz, H-6) long-range coupled with the vinyl methyl
group (H3-15) and one of the methylene protons of H2-3. The COSY correlations between
H-5′ and methylene proton H-4′, H-4′ and H-3′, and H-3′ and methine proton H-2′ (Figure 3)
and the 13C signals at δC 173.9 (C-6′), 66.6 (C-2′), 28.6 (C-3′), 23.4 (C-4′), and 53.2 (C-5′)
suggested a proline moiety [46]. The remaining three hydrogen deficiencies and the COSY spin–
spin coupling network from H-13 to H-9 and H-6 implied a eudesmane-type sesquiterpene
lactone, eudesmanolide.
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The HMBC correlations (Figure 3) from H-2′ (δH 3.30, dd, J = 8.7, 4.6 Hz) to C-13,
C-3′, and C-5′; from H-5′ to C-13 and C-2′; and from H-13 to C-12 and C-11 indicated the
attachment of proline moiety at C-13 with N. The lower-shifted chemical shift value of C-13
(δC 51.2) was also consistent with this result. Further analysis on HMBC correlations from
H-14 to C-10, C-9, C-5, and C-1; from H-2 (δH 2.55, ddd, J = 13.6, 7.0, 6.2 Hz, β; δH 2.43,
ddd, J = 13.6, 7.8, 6.6 Hz, α) to C-3 and C-1; and from H-3 (δH 2.35, br dt, J = 17.0, 6.2 Hz, α;
δH 2.26, br dt, J = 17.0, 6.9 Hz, β) to C-1, C-2, C-4, and C-5 suggested the position of the
carbonyl group at C-1. The ESI-MS/MS spectrum (Figure 4) exhibited fragment ion peaks
at m/z (relative intensity, %) 316 (13) and m/z 247 (15), resulting from the loss of a carboxy
and a proline group from the molecular ion, respectively. The base ion peak m/z 128 (100)
also agreed with the proline moiety. Acid hydrolysis of 1 with 1% HCl liberated L-proline
by HPLC analysis with an optical rotation detector.

To determine the absolute configuration of 1, NOESY and CD spectra were measured.
The NOESY correlations between H-6 and H-11, between H-14 and H-6, and between H-9α
and H-7 revealed the relative configuration of 1, as shown in Figure 5. In the CD spectra,
the Cotton effects (∆ε (nm): +4.62 (218), −4.70 (295), MeOH) were similar to the reported
eudesmanolide, gracilin [47] (∆ε (nm): +1.13 (223), −1.70 (294), MeOH), which indicated
the absolute configuration should be 6S, 7S, 10R, 11R, 2′S. Accordingly, the structure of
crossoseamine A (1) was determined as shown in Figure 1.
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Table 1. 13C-NMR and 1H-NMR spectroscopic data for compounds 1 and 2.

1 2

Position 13C 1H 13C 1H

1 212.9 212.2
2 35.5 2.43 (ddd, 13.6, 7.8, 6.6) α 35.2 2.40 (m) α

2.55 (ddd, 13.6, 7.0, 6.2) β 2.58 (m) β
3 32.3 2.35 (br dt, 17.0, 6.2) α 32.4 2.37 (m) α

2.26 (br dt, 17.0, 6.9) β 2.27 (m) β
4 125.2 126.1
5 130.0 128.6
6 80.8 4.80 (dquint-like, 11.2, 1.3) 77.9 4.87 (dquint-like, 11.4, 1.1)
7 48.5 2.02 (m) 57.6 1.88 (m)
8 23.1 1.95 (m) α 66.0

3.89 (td, 10.8, 4.5)1.63 (m) β
9 34.6 1.44 (td, 14.0, 5.1) α 43.1 1.25 (br t, 11.8) α

1.63 (m) β 1.87 (m) β
10 48.4 47.4
11 44.2 2.73 (dt-like, 12.1, 5.4) 44.3 3.01 (m)
12 177.0 175.8
13 51.2 2.86 (dd, 13.2, 5.1) 52.8 2.92 (m)

3.08 (dd, 13.2, 5.7) 3.15 (m)
14 23.0 1.25 (3H, s) 24.1 1.24 (3H, s)
15 19.4 1.86 (3H, br s) 19.3 1.87 (3H, br s)
2′ 66.6 3.30 (dd, 8.7, 4.6) 66.3 3.45 (dd, 9.0, 3.4)
3′ 28.6 1.81 (m) 28.9 1.90 (m)

2.03 (m) 2.07 (dq-like, 12.8, 8.8)
4′ 23.4 1.68–1.79 (2H, m) 23.1 1.74 (m)

1.80 (m)
5′ 53.2 2.58 (dd-like, 9.0, 7.8) 52.8 2.84 (dt, 9.5, 7.5)

2.99 (ddd, 9.0, 7.5, 3.9) 3.00 (m)
6′ 173.9 173.6

500 MHz and 125 MHz (DMSO-d6). Chemical shifts (δ) in ppm. m: multiplet or overlapped signals.
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2.1.2. Structure of Crossoseamine B (2)

Crossoseamine B (2) was isolated as colorless needles with a specific optical rotation
( [α]27

D − 47, c 0.46, MeOH). HR-ESI-MS data displayed a protonated molecule [M + H]+ at m/z
378.1912 (calcd for C20H28O6N: 378.1911), from which the molecular formula was determined as
C20H27O6N suggesting an additional oxygen atom on 2 compared to 1. The fragment ion peaks
from ESI-MS/MS showing m/z 360 (34) [M + H-H2O]+, m/z 332 (19) [M-COOH]+ and 128
(100) [M-C14H17O4 (proline)]+ indicated a similarity to 1 (see Figure S23). The 1H and 13C NMR
spectrum data were similar to compound 1, except for the absence of one methylene carbon
and the presence of an oxymethine carbon (δC 66.0) (Table 1). The HMBC correlations from H-7
(δH 1.88, m) to C-8 and C6 and from H-8 (δH 3.89, td, J = 10.8, 4.5 Hz) to C-6 and C-11 revealed
that the position of oxymethine carbon (δC 66.0) was at C-8. The relative configuration was
deduced as the same as 1 by NOESY analysis (Figure 5), where correlations between H-14 and
H-6, between H-6 and H-11, between H-6 and H-8, and between H-14 and H-8 were observed.
HPLC analysis of acid hydrolysate revealed the presence of L-proline. Ultimately, based on
these spectroscopic data, HPLC analysis, and the similar Cotton effects with compound 1, the
structure of crossoseamine B (2) was established as 6S, 7R, 8S, 10R, 11R, 2′S-8-hydroxy analog of
1 as shown in Figure 1.

2.1.3. Structure of 6′-O-Caffeoyl Scopolin (3)

Compound 3 was isolated as white amorphous powder with negative optical rotation
([α]26

D − 76.5, c = 0.2, MeOH). The molecular formula was determined as C25H24O12 from its
HR-ESI-MS: m/z 539.1160 [M + Na]+ (calcd for C25H24O12Na: 539.1163). HPLC analysis with
an optical rotation detector revealed that acid hydrolysis of 3 with 1M HCl at 80 ◦C released
D-glucose. The results of 1H-NMR and 13C-NMR (Table 2) were similar to those published for
6′-O-sinapinoyl esculin, and indidenes F [48,49] (Table S1). The 1H-NMR spectrum showed
several downfield doublets at δH 6.32 (1H, d, J = 9.5 Hz, H-3), δH 7.65 (1H, d, J = 9.5 Hz, H-4),
δH 6.69 (1H, d, J = 15.9 Hz, H-8”), and δH 7.92 (1H, d, J = 15.9 Hz, H-7”), corresponding to cis-
and trans-double bonds, respectively. Moreover, several characteristic low-field signals at δH
7.31 (1H, d, J = 8.3 Hz, H-5”), δH 7.570 (1H, d, J = 1.8 Hz, H-2”), and δH 7.27 (1H, dd, J = 8.3,
1.8 Hz, H-6”) were ascribed to a 1,3,4-trisubstituted benzene ring. In the 13C-NMR spectrum,
two carbonyl carbons (δC 161.6 and 167.9), seven downfield quaternary carbons (δC 113.5, 127.1,
147.4, 147.8, 149.8, 150.8, and 151.5), one methoxy carbon (δC 56.5), five oxymethine carbons
(δC 102.3, 78.7, 76.1, 74.9, and 71.6), and one oxymethylene carbon (δC 64.6), corresponding
to D-glucose, were observed. HMBC correlations (Figure 6) from H-3 and H-4 to C-2; from
H-3 to C-4a; from H-4 to C-8a and C-5; from H-5 (δH 7.01, 1H, s) to C-6 and C-8a; and from
H-8 (δH 7.568, 1H, s) to C-4a, C-6, and C-7 indicated a coumarin moiety. Moreover, HMBC
correlations from H-7” and H-8” to C-9”; from H-8” to C-1”; and from H-7” to C-2” and C-6”,
together with the characteristic 1,3,4-trisubstituted benzene coupling pattern of H-2”, H-5”, and
H-6”, indicated the presence of a caffeoyl group. The coupling constant of the anomeric proton
(δH 5.80, 1H, d, J = 7.3 Hz, H-1′) indicated the anomeric configuration of glucose should be β.
Finally, the HMBC correlations from H-1′ to C-7 and from H-6′ (δH 4.91, dd, J = 11.9, 6.5 Hz;
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δH 5.11, dd, J = 11.9, 1.9 Hz) to C-9” indicated the connection between coumarin, glucose,
and the caffeoyl groups. Accordingly, the structure of 3 was defined as 6′-O-caffeoyl scopolin
(Figure 1).

Table 2. 13C-NMR and 1H-NMR spectroscopic data for 3.

3

Position 13C 1H Position 13C 1H

2 161.6 4′ 71.6 4.24 (br t, 8.8)
3 114.5 6.32 (d, 9.5) 5′ 76.1 4.37 (ddd, 9.5, 6.5, 1.9)
4 144.0 7.65 (d, 9.5) 6′ 64.6 4.91 (dd, 11.9, 6.5)
4a 113.5 5.11 (dd, 11.9, 1.9)
5 110.2 7.01 (s) 1′′ 127.1
6 147.4 2′′ 116.5 7.570 (d, 1.8)
7 151.5 3′′ 147.8
8 104.6 7.568 (s) 4′′ 149.8
8a 150.8 5′′ 117.3 7.31 (d, 8.3)

6-OCH3 56.5 3.69 (3H, s) 6′′ 122.5 7.27 (dd, 8.3, 1.8)
1′ 102.3 5.80 (d, 7.3) 7′′ 146.6 7.92 (d, 15.9)

2′ 74.9 4.42 (dd-like,
8.8, 7.3) 8′′ 114.9 6.69 (d, 15.9)

3′ 78.7 4.44 (br t, 8.8) 9′′ 167.9
500 MHz and 125 MHz (pyridine-d5). Chemical shifts (δ) in ppm.
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2.1.4. Plausible Biosynthetic Pathway of 1 and 2

The plausible biosynthetic pathway of crossoseamines A and B (1 and 2) is the Michael-
type reaction of the nitrogen of proline to the eudesmanolide moiety (Figure 7). Yoshikawa
et al. (1993) have reported a chemical synthesis of similar proline conjugates by the reaction
of α-methylene γ-lactone type eudesmanolide and proline with Et3N at 90 ◦C [50]. The
demand for a relatively strong base and high temperature for chemical synthesis indi-
cates the involvement of the biosynthetic enzyme to form 1 and 2 in C. chinense, not as
artifacts through the extraction and purification processes. The 6,7-dihydroxy coumarin
moiety of 3 is thought to be the lactone form of caffeic acid, i.e., esculetin, which undergoes
further methylation, glycosylation, and caffeoylation to 3. Given the other isolated com-
pounds having caffeoyl function, C. chinense is considered a rich source of caffeic acid and
its derivatives.
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2.2. Cytotoxic Activities of the Isolated Compounds

All isolated compounds from the EtOAc fraction of C. chinense were evaluated for their
cytotoxic activities against L. major, P. falciparum, T. brucei (gambiense and rhodesiense),
and human lung cancer cell line A549 (Table 3).

Table 3. IC50 of the isolated compounds against A549 and parasites (Mean ± SE, µg/mL, n = 3).

Compounds A549 L. major T. b.
gambiense

T. b.
rhodesiense P. falciparum

1 3.3 ± 0.3 6.9 ± 0.6 26.3 ± 8.5 27.8 ± 10.4 12.1 ± 1.1
2 12.3 ± 1.0 24.9 ± 2.2 39.5 ± 6.9 41.0 ± 8.9 15.6 ± 1.2
6 4.4 ± 1.5 5.4 ± 0.8 2.6 ± 0.1 1.7 ± 0.3 6.0 ± 1.1
7 17.7 ± 4.4 17.5 ± 1.2 4.0 ± 0.2 3.2 ± 0.3 16.5 ± 1.1
8 19.9 ± 5.5 26.9 ± 2.8 4.9 ± 0.3 3.2 ± 0.4 11.0 ±1.3
9 78.3 ± 15.6 58.9 ± 7.5 16.9 ± 0.7 8.6 ± 1.2 8.9 ± 1.0

10 >100 90.9 ± 5.5 >100 >100 37.0 ± 1.1
11 73.5 ± 13.0 >100 47.4 ± 2.7 34.8 ± 4.6 5.4 ± 1.1
12 115.0 ± 19.3 >100 97.1 ± 0.2 68.9 ± 14.2 4.6 ± 1.1
13 118.2 ± 19.7 >100 >100 80.5 ± 18.4 10.4 ± 1.2
14 42.6 ± 6.9 58.3 ± 6.6 11.0 ± 0.1 12.4 ± 0.8 3.6 ± 1.1
15 79.4 ± 8.7 >100 83.8 ± 13.3 53.6 ± 2.2 10.2 ± 1.1
16 >100 >100 >100 >100 35.5 ± 1.0
17 42.5 ± 0.1 >100 53.2 ± 7.5 42.3 ±2.9 25.0 ± 1.1
18 >100 >100 19.6 ± 2.7 24.8 ± 1.2 15.9 ± 1.2
19 >100 >100 >100 55.2 ± 0.8 30.6 ± 1.1
20 >100 >100 44.1 ± 3.0 32.8 ± 1.8 26.1 ± 1.1
21 >100 >100 58.7 ± 3.0 36.0 ± 0.9 27.1 ± 1.1
PC 17.5 ± 0.3 7.4 ± 0.7 1.3 ± 0.7 1.3 ± 0.5 0.0023 ± 0.0003

PC (Positive control): A549 (Etoposide); L. major (Miltefosine); T. b. gambiense/rhodesiense (Nifurtimox). P. falciparum
(Artemisinin). Compounds 3–5 were not active at 100 µg/mL and omitted.

The cytotoxicity against the human lung cancer cell line, A549, and the pathogen of cuta-
neous leishmaniasis, L. major, were evaluated by MTT method with positive control etoposide
and miltefosine, respectively. The results are summarized in Table 3. Compounds 1 and 2 and
some flavonoids (6–8) showed significant activities comparable to the positive controls.

Crossoseamine (1) and known compounds (6–9, 14, 18) had activities against both
subspecies, T. brucei gambiense and T. brucei rhodesiense (Table 3), by ATP measurement using
luciferase. Although the anti-Trypanosoma activity of compounds 6–9 and 18 was reported
previously [32–36], this is the first time to show the potential of compound 14.

The anti-Plasmodium activity was evaluated by the SYBR Green I method. The activity
of compounds 1, 2, 11, and 14 are reported for the first time, whereas that of compounds
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6–9, 12, 13, 15, and 18 was previously reported [37–40]. The reported activities of the above
compounds were consistent with our results, with some deviations (Table S2). The slight
differences were ascribable to the differences in the assay methods and conditions and
species/strains of the parasites used.

3. Experiments
3.1. General Experimental Procedure

Optical rotations were measured on a P-1030 spectropolarimeter (JASCO, Tokyo, Japan).
IR and UV spectra were measured on FT-720 (HORIBA, Kyoto, Japan) and V-520 UV/Vis
spectrophotometers (JASCO, Japan), respectively. 1H- and 13C-NMR spectra were measured
on Avance III HD spectrometer (Bruker, Billerica, MA, USA) at 500 and 125 MHz, respec-
tively, with the residual solvent signal as references. Positive- and negative-ion HR-ESI-MSs
were recorded on an LTQ Orbitrap XL spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA), and MS/MS fragments of precursor ions were detected by the CID mode with a
collision energy of 35 eV.

Silica gel column chromatography (CC) and reversed-phase octadecyl silanized silica
gel (ODS) CC were performed on silica gel 60 (Merck, Darmstadt, Germany) and Cosmosil
75C18-OPN (Nacalai Tesque, Kyoto, Japan). HPLC was performed on an Inertsil ODS-3
column (GL Science, Tokyo, Japan; Φ = 10 mm, L = 25 cm) or a Cosmosil πNAP column
(Nacalai Tesque, Kyoto, Japan; Φ = 10 mm, L = 25 cm), and the eluate was monitored
with a refractive index detector. TLC was performed on precoated silica gel 60 F254 plates
(E. Merck; 0.25 mm in thickness). Sugars and proline were analyzed by HPLC on an amino
and HILIC columns using a chiral detector (JASCO OR-2090 plus) (Asahipak NH2P-50 4E
(Shodex, Tokyo, CH3CN-H2O (3:1), 1.0 mL/min); Cosmosil HILIC (Nacalai Tesque, Kyoto,
Japan, CH3CN-H2O (4:1), 0.7 mL/min)).

3.2. Plant Material

The aerial parts of C. chinense were collected in July 2008 in Okinawa, Japan, and a voucher
specimen was deposited in the Herbarium of the Department of Pharmacognosy, Graduate
School of Biomedical Sciences, Hiroshima (deposition number: 08-CC-Okinawa-0708).

3.3. Extraction and Isolation

Air-dried aerial parts of C. chinense (3.5 kg) were extracted with MeOH (3 × 10 L) at
room temperature. The methanol extract was concentrated to 1.5 L and then partitioned
with an equal volume of n-hexane to obtain an n-hexane-soluble layer (27.7 g). The
remaining layer was evaporated and resuspended in 1.5 L of water and then extracted with
1.5 L of EtOAc and 1.5 L of 1-BuOH successively to obtain EtOAC (74.3 g), 1-BuOH (30.5 g),
and H2O (171.2 g) soluble fractions.

The EtOAC fraction (57.4 g of 74.3 g) was subjected to normal-phase open column
CC (silica gel, Φ = 6, L = 25 cm) with increasing amounts of MeOH in CHCl3[(CHCl3,
2.0 L), CHCl3-MeOH (20:1, 2.0 L), CHCl3-MeOH (15:1, 2.0 L), CHCl3-MeOH (10:1, 2.0 L),
CHCl3-MeOH (7:1, 2.0 L), CHCl3-MeOH (5:1, 2.0 L), CHCl3-MeOH (3:1, 2.0 L), CHCl3-
MeOH (2:1, 2,0 L), and (MeOH, 2.0 L)] to obtain nine fractions [Fr. 1 (0.23 g), Fr. 2
(4.7 g), Fr. 3 (24.3 g), Fr. 4 (4.8 g), Fr. 5 (7.0 g), Fr. 6 (5.0 g), Fr. 7 (1.6 g), Fr. 8 (1.7 g),
and Fr. 9 (4.1 g)] named CC-E 1 to CC-E 9. The fraction CC-E 3 (24.3 g) was separated
by reversed-phase open column CC (ODS) with step gradient elution [(MeOH-H2O 2:3,
0.5 L), (MeOH-H2O 1:1, 0.5 L), (MeOH-H2O 3:2, 0.5 L), (MeOH-H2O 7:3, 0.5 L), (MeOH-
H2O 4:1, 0.5 L), (MeOH-H2O 9:1, 0.5 L), (MeOH, 0.5 L), and (Acetone, 0.5 L)] to ob-
tain eight subfractions [CC-E 3-1 (7.48 g), CC-E 3-2 (5.25 g), CC-E 3-3 (1.93 g), CC-E 3-4
(2.14 g), CC-E 3-5 (1.92g), CC-E 3-6, (1.28 g), CC-E 3-7, (1.05 g), and CC-E 3-8, (0.19 g)]. Of the
5.25 g of Fr. CC-E 3-2, 1.19 g was purified by ODS HPLC [Acetone-H2O (3:7, v/v)] to obtain
scopoletin (4, 186.6 mg). Fr. CC-E 3-3 (1.93 g) was separated by ODS HPLC [Acetone-H2O
(4.5:5.5, v/v)+ 0.1% TFA] to acquire chrysosplenol D (6, 107.4 mg). Fr. CC-E 4 (4.81 g) was
fractionated by reversed-phase silica gel CC (ODS) with solvent [(MeOH-H2O 3:7, 0.5 L),
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(MeOH-H2O 2:3, 0.5 L), (MeOH-H2O 1:1, 0.5 L), (MeOH-H2O 3:2, 0.5 L), (MeOH-H2O
7:3, 0.5 L), (MeOH-H2O 4:1, 0.5 L), (MeOH-H2O 9:1, 0.5 L), (MeOH, 0.5 L), and (Acetone,
0.5 L)] to yield nine subfractions [CC-E 4-1 (0.78 g), CC-E 4-2 (0.38 g), CC-E 4-3 (0.61 g),
CC-E 4-4 (0.51 g), CC-E 4-5 (0.36 g), and CC-E 4-6~ 4-9 (1.55 g)]. Subfraction CC-E 4-1
(0.78 g) was purified with πNAP HPLC [Acetone-H2O (3.5:6.5, v/v)] to obtain caffeic acid
(17, 10.1 mg) and 3,4-dihydroxyl benzoic acid (18, 19.4 mg). CC-E 4-3 (0.61 g) [Acetone-H2O
(2:3, v/v)] was separated by ODS HPLC to obtain 3-methylquercetin (7, 50.3 mg) and lute-
olin (8, 31.5 mg). Fr. CC-E 4-4 (0.51 g) was purified by ODS HPLC [Acetone-H2O (1:1, v/v)]
to obtain 4,5-di-O-caffeoylquinic acid butyl ester (11, 32.4 mg), tianshic acid (20, 73.1 mg),
and tianshic acid methyl ester (21, 8.6 mg). Fr. CC-E 5 (7.0 g) was fractionated by reversed-
phase silica gel CC [(MeOH-H2O 3:7, 0.5 L), (MeOH-H2O 2:3, 0.5 L), (MeOH-H2O 1:1,
0.5 L), (MeOH-H2O 3:2, 0.5 L), (MeOH-H2O 7:3, 0.5 L), (MeOH-H2O 4:1, 0.5 L), (MeOH-
H2O 9:1, 0.5 L), (MeOH, 0.5 L), and (Acetone, 0.5 L)] to afford nine subfractions [CC-E 5-1
(1.27 g), CC-E 5-2 (2.29 g), CC-E 5-3 (0.7 g), CC-E 5-4 (0.48 g), and CC-E 5-5~5-9 (1.8 g)]. Of
the 2.29 g of Fr. CC-E 5-2, 1.29 g was purified by ODS HPLC [Acetone-H2O (3.5:6.5, v/v)]
to acquire 6′-O-caffeoyl scopolin (3, 3.8 mg), 4,5-di-O-caffeoylquinic acid methyl ester (12,
41.3 mg), and 3,5-di-O-caffeoylquinic acid methyl ester (13, 46.7 mg). CC-E 5-4 (0.48 g) was
separated by πNAP HPLC [Acetone-H2O (3.8:6.2, v/v)] to afford tetrecentronside B (19,
14.5 mg). Fraction CC-E 6 (5.03 g) was subjected to reversed-phase silica gel CC [(MeOH-
H2O 1:4, 0.5 L), (MeOH-H2O 3:7, 0.5 L), (MeOH-H2O 2:3, 0.5 L), (MeOH-H2O 1:1, 0.5 L),
(MeOH-H2O 3:2, 0.5 L), (MeOH-H2O 7:3, 0.5 L), (MeOH-H2O 4:1, 0.5 L), (MeOH-H2O 9:1,
0.5 L), (MeOH, 0.5 L), and (Acetone, 0.5 L)] to obtain ten subfractions [CC-E 6-1 (0.62 g),
CC-E 6-2 (1.36 g), CC-E 6-3 (1.24 g), CC-E 6-4 (0.64 g), CC-E 6-5 (0.37 g), and CC-E 6-6~6-10
(1.02 g)]. Fr. CC-E 6-1 (0.62 g) was purified with πNAP HPLC [Acetone-H2O (1:4, v/v)] to
obtain scopolin (5, 10.9 mg). CC-E 6-2 (1.36 g) was purified by πNAP HPLC [Acetone-H2O
(1:4, v/v)] to obtain chlorogenic acid methyl ester (15, 33.6 mg) and 2,6-dimethoxyl-4-
hydroxymethyl-phenol-1-O-(6-O-caffeoyl)-β-D-glucopyranoside (16, 15.1 mg). CC-E 6-3
(1.24 g) was purified with ODS HPLC [Acetone-H2O (2:3, v/v)] to obtain cosmoslin (9,
5.1 mg). CC-E 6-5 (0.37 g) was purified with πNAP HPLC [Acetone-H2O (2:3, v/v)] to
afford 3,4,5-tri-O-caffeoylqunic acid methyl ester (14, 26.6 mg). Fraction CC-E 7 (1.63 g)
was combined with CC-E 8 (1.68 g) and then separated by ODS CC [(MeOH-H2O 1:9,
0.5 L), (MeOH-H2O 1:4, 0.5 L), (MeOH-H2O 3:7, 0.5 L), (MeOH-H2O 2:3, 0.5 L), (MeOH-
H2O 1:1, 0.5 L), (MeOH-H2O 3:2, 0.5 L), (MeOH-H2O 7:3, 0.5 L), (MeOH-H2O 4:1, 0.5 L),
(MeOH-H2O 9:1, 0.5 L), (MeOH, 0.5 L), and (Acetone, 0.5 L)] to obtain eleven subfractions
[CC-E 7-1 (0.15 g), CC-E 7-2 (0.12 g), CC-E 7-3 (0.26 g), CC-E 7-4 (0.98 g), and CC-E 7-5~7-11
(1.45 g)]. Fraction CC-E 7-3 (0.26 g) was purified with πNAP HPLC [Acetone-H2O (1.5:8.5,
v/v)] to obtain crossoseamine B (2, 5.3 mg). CC-E 7-4 (0.98 g) was purified with πNAP
HPLC [Acetone-H2O (1:1, v/v)] to obtain quercetin-3-O-(6”-O-α-rhamnosyl)-β-glucoside
(10, 23.1 mg). Fraction CC-E 9 (4.13 g) was separated by reversed-phase silica gel CC
[(MeOH-H2O 1:9, 0.5 L), (MeOH-H2O 1:4, 0.5 L), (MeOH-H2O 3:7, 0.5 L), (MeOH-H2O 2:3,
0.5 L), (MeOH-H2O 1:1, 0.5 L), (MeOH-H2O 3:2, 0.5 L), (MeOH-H2O 7:3, 0.5 L), (MeOH-H2O
4:1, 0.5 L), (MeOH-H2O 9:1, 0.5 L), (MeOH, 0.5 L), and (Acetone, 0.5 L)] to obtain eleven
subfractions [CC-E 9-1 (1.49 g), CC-E 9-2 (0.16 g), CC-E 9-3 (0.63 g), and CC-E 9-4~9-11
(1.74 g)]. Fr. CC-E 9-3 (0.63 g) was purified with ODS HPLC [Acetone-H2O (1.8:8.2, v/v)] to
obtain crossoseamine A (1, 3.1 mg).

The known compounds were identified by comparison of their physicochemical data,
[α]D, IR, MS, 1H, and 13C NMR) with the reported data.

Crossoseamine A (1): a colorless amorphous powder, [α]27
D − 97 (c = 0.2, MeOH); IR

(film) νmax: 3411, 2943, 1762, 1710, 1633, 1450, 1374, 1319, 1225, 1038. UV λmax (MeOH)
nm (log ε): 205 (4.12); CD (MeOH) ∆ε (nm): +4.62 (218), −4.70 (295); 1H NMR (500 MHz,
DMSO-d6), Table 1; 13C NMR (125 MHz, DMSO-d6), Table 1; positive-ion HR-ESI-MS: m/z
362.1962 [M + H]+ (calcd for C20H28O5N: 362.1961); ESI MS/MS: m/z 362 [M + H]+ (48), 316
[M–COOH]+ (12), 247 [M–C5H8O2N (proline)]+ (15), 128 [M–C14H17O3 (eudesmanolide
part)]+ (100).
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Crossoseamine B (2): colorless needles, [α]27
D − 47 (c = 0.46, MeOH); mp. 210–214 ◦C;

IR (film) νmax: 3248, 2980, 1758, 1711, 1625, 1450, 1379, 1310, 1033. UV λmax (MeOH) nm
(log ε): 204 (4.13); CD (MeOH) ∆ε (nm): +1.84 (233), −4.61 (294); 1H NMR (500 MHz,
DMSO-d6), Table 1; 13C NMR (125 MHz, DMSO-d6), Table 1; positive-ion HR-ESI-MS: m/z
378.1912 [M + H]+ (calcd for C20H28O6N: 378.1911); ESI-MS/MS: m/z 378 [M + H]+ (66),
360 [M + H-H2O]+ (34), m/z 332 [M-COOH]+ (19) and 128 [M-C14H17O4 (eudesmanolide
part)]+ (100).

6′-O-caffeoyl scopolin (3): a colorless amorphous powder, [α]27
D − 76.5 (c = 0.2, MeOH);

IR (film) νmax: 3393, 2952, 2849, 1689, 1639, 1511, 1389, 1278, 1164, 1019. UV λmax (MeOH)
nm (log ε) 225sh (3.92), 250sh (3.62), 292 (3.66), 331 (3.75); 1H NMR (500 MHz, pyridine-
d5), Table 2; 13C NMR (125 MHz, pyridine-d5), Table 2; positive-ion HR-ESI-MS: m/z
539.1160 [M + Na]+ (calcd for C25H24O12Na: 539.1163). ESI-MS/MS: m/z 521 [M + Na–H2O]+

(4), m/z 377 [M + Na–C9H6O3 (caffeoyl)]+ (5), m/z 347 [M + Na-C10H8O4 (scopoletin)]+ (100)
and 215 [M + Na–C15H16O8 (6-O-caffeoylglucose]+ (29).

3.4. Acid Hydrolysis of Compounds 1 and 2

Compounds 1 and 2 (0.2 mg each) were treated with 1% aqueous hydrochloric acid
(HCl) (0.5 mL) at room temperature for 12 h. The reaction mixture was extracted with
EtOAc to obtain the EtOAc and aqueous layers. The latter was subjected to HPLC analysis
with an optical rotation detector (OR-2090 plus; JASCO) on a HILIC column (Cosmosil
HILIC, 10 × 250 mm, CH3CN-H2O (4:1, v/v), flow rate: 0.7 mL/min). The peaks from 1
and 2 were identical with an authentic standard, L-proline (tR: 30.0 min, negative optical
rotation) [51].

3.5. Sugar Analysis of Compound 3

Compound 3 (0.5 mg) was hydrolyzed with 1M HCl (0.2 mL) at 80 ◦C for 2 h. After
cooling, EtOAc was used to extract the reaction mixture, and the aqueous layer was
subjected to HPLC analysis with an optical rotation detector (OR-2090 plus; JASCO) on
an amino column [Asahipak NH2P-50 4E, 4.6 × 250 mm, CH3CN-H2O (3:1, v/v), flow
rate: 1 mL/min] to identify the D-glucose from 3, which was determined by comparison
of its retention time and optical rotation sign with authentic sample (tR: 7.3 min, positive
optical rotation).

3.6. Growth Inhibition Activity

The evaluation of cytotoxic activities against A549, L. major, P. falciparum, and T. brucei
(gambiense and rhodesiense) was conducted following previous reports.

In brief, the human lung cancer cell line A549 was maintained in 10% FCS-supplemented
DMEM. Various concentrations of samples in dimethylsulfoxide (DMSO) and A549
(5 × 103 cells/well) were cultured in a CO2 incubator for 72 h. The medium was replaced
with 100 µL of MTT solution and incubated for 1.5 h in the same condition. The viability
was calculated from the absorbance of formed MTT formazan at 550 nm using a microplate
reader [52]. Etoposide was used as a positive control.

The leishmanicidal activities of the isolated compounds were also evaluated using an
MTT assay. In a 96-well plate, various concentrations of sample solutions in dimethylsulfox-
ide (DMSO) and L. major (2× 105 parasite/well) in 100 µL of M199 medium were incubated
for 72 h at 25 ◦C. Then, 100 µL of MTT solution was replaced and incubated overnight. The
absorbance of the formazan solution in DMSO was recorded using a microplate reader at
550 nm [11]. Miltefosine was used as a positive control.

The trypanocidal activities of the isolated compounds were performed in 96-well
plates with slight modifications [53]. In brief, each well contains 100 µL of parasite culture
(1 × 104 parasites/well) with serial dilutions of compounds. After incubation for 72 h at
37 ◦C under 5% CO2, 25 µL of CellTiter-GloTM Luminescent Cell Viability Assay reagent
(Promega Japan, Tokyo, Japan) was added to evaluate intracellular ATP concentration
according to the instruction. Nifurtimox was used as a positive control.
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Anti-Plasmodium activity of the isolated compounds was evaluated according to the
previous report [54]. In brief, 100 µL of P. falciparum 3D7 parasite culture [55] was plated
in a 96-well plate with various concentrations of the compounds. After incubation for 72 h
at 37 ◦C in a humidified chamber under a gas mixture of 90% N2, 5% O2, and 5% CO2, the
parasitemia was determined by SYBR Green I assay (Lonza Ltd., Basel, Switzerland) with a
microplate reader at 485 and 530 nm. Artemisinin dissolved in DMSO was used as a positive
control, and DMSO was used as a negative control. Human erythrocytes and plasma were
obtained from the Nagasaki Red Cross Blood Center, and their usage was approved by the
ethical committee of the Institute of Tropical Medicine, Nagasaki University.

The 50% inhibitory concentration (IC50) values were obtained for each compound by
linear regression method.

4. Conclusions

The ethyl acetate extract of C. chinense was intensively fractionated to obtain previously
undescribed sesquiterpene-amino acid conjugate crossoseamines A and B (1 and 2) and a
coumarin glucoside, 6′-O-caffeoyl scopolin (3) together with 18 known compounds (4–21).
The plausible biosynthetic pathway of crossoseamines A and B (1 and 2) is the Michael-type
reaction of the nitrogen of proline to the eudesmanolide moiety (Figure 7).

Crossoseamine A (1) showed potent activity against A549 and L. major, while the
introduction of the hydroxy function on position 8 (crossoseamine B (2)) decreased the
activity. The polarity and/or functionality of eudesmane moiety may be necessary for the
cytotoxicity against these targets. Among the evaluated compounds, chrysosplenol D (6)
showed substantial toxicity for all tested organisms, probably by general toxicity, and has
already been reported previously [21,25,56]. While some flavonoids (7–9) and caffeic acid
derivatives (14) are relatively specific for both Trypanosoma and Plasmodium, compounds
(11–13, 15, 18) showed specificity for Plasmodium. As a result, these compounds have the
potential to treat human cancer, leishmaniasis, malaria, and trypanosomiasis. However,
further chemical modification and mechanism analyses are needed in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
molecules28124696/s1, Figures S1–S32: 1D, 2D NMR spectra, MS and CD data of compounds 1–3.
Table S1: Comparison of NMR data of 3 with related compounds A and B. Table S2: Reported IC50
values of the identified known compounds.
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