Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti-Candida Activities and Nutritional Properties in Different Pistachio (Pistacia vera L.) Hull Cultivars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic and Flavonoid Content
2.2. Polyphenolic Compounds of Pistachio Hulls
2.3. Antioxidant Activity
2.4. Antiglycative Activity
2.5. Nutrients Analyses
2.6. Antifungal Activity
2.7. Multivariate Analyses
3. Materials and Methods
3.1. Plant Materials
3.2. Oil Content
3.3. Nutritional Parameters
3.4. Condensed Tannins Evaluation
3.5. Methanolic Extraction
3.6. Total Phenolic and Flavonoid Content
3.7. Antioxidant Activity
3.7.1. DPPH Assay
3.7.2. ABTS Assay
3.8. Extract Preparation for HPLC
3.9. HPLC Analysis
3.10. Glycated Albumin Preparation
3.11. Protein Glycation and AGEs Formation
3.12. Congo Red Assay
3.13. Testing the Antifungal Activity
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lebaka, V.R. Potential bioresources as future sources of biofuels production: An Overview. In Biofuel Technologies: Recent Developments; Springer: Berlin/Heidelberg, Germany, 2013; pp. 223–258. [Google Scholar] [CrossRef]
- Ahanchi, M.; Tabatabaei, M.; Aghbashlo, M.; Rezaei, K.; Talebi, A.F.; Ghaffari, A.; Khounani, Z. Pistachio (Pistachia vera) wastes valorization: Enhancement of biodiesel oxidation stability using hull extracts of different varieties. J. Clean. Prod. 2018, 185, 852–859. [Google Scholar] [CrossRef]
- FAOSTAT provides free access to food and agriculture statistics. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 November 2022).
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio nuts (Pistacia vera L.): Production, nutrients, bioactives and novel health effects. Plants 2021, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem. 2005, 92, 521–525. [Google Scholar] [CrossRef]
- Rajaei, A.; Barzegar, M.; Mobarez, A.M.; Sahari, M.A.; Esfahani, Z.H. Antioxidant, anti-microbial and antimutagenicity activities of pistachio (Pistachia vera) green hull extract. Food Chem. Toxicol. 2010, 48, 107–112. [Google Scholar] [CrossRef]
- Barreca, D.; Laganà, G.; Leuzzi, U.; Smeriglio, A.; Trombetta, D.; Bellocco, E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chem. 2016, 196, 493–502. [Google Scholar] [CrossRef]
- Nazeri, F.S.; Soltanizadeh, N.; Goli, S.A.H.; Mazaheri, S. Chemical stability of rainbow trout in icing medium containing pistachio (Pistachia vera) green hull extract during chilled storage. JFST 2017, 55, 449–456. [Google Scholar] [CrossRef]
- Erşan, S.; Güçlü Üstündağ, O.; Carle, R.; Schweiggert, R.M. Identification of phenolic compounds in red and green pistachio (Pistacia vera L.) hulls (exo-and mesocarp) by HPLC-DAD-ESI-(HR)-MS n. J. Agric. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Boğa, M.; Guven, I.; Atalay, A.; Kaya, E. Effect of Varieties on Potential Nutritive Value of Pistachio Hulls. Kafkas Univ. Veter Fak. Derg. 2013, 19, 699–703. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Afshari, M.; Sarfaraz, D.; Miroliaei, M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Ind. Crop. Prod. 2020, 154, 112640. [Google Scholar] [CrossRef]
- Wong, C.Y.; Leong, K.H.; He, X.; Zheng, F.; Sun, J.; Wang, Z.; Kong, K.W. Phytochemicals of six selected herbal plants and their inhibitory activities towards free radicals and glycation. Food Biosci. 2022, 46, 101557. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Lai, C.; Liang, Y.; Gao, L.; Kaliaperumal, K.; Jiang, Y. Nutraceutical potential of navel orange peel in diabetes management: The chemical profile, antioxidant, α-glucosidase inhibitory and antiglycation effects of its flavonoids. Food Biosci. 2022, 49, 101943. [Google Scholar] [CrossRef]
- Afshari, M.; Rahimmalek, M.; Miroliaei, M. Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chem. Biodivers. 2018, 15, e1800075. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-Candida agents: A review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef] [Green Version]
- Bergamasco, M.D.; Garnica, M.; Colombo, A.L.; Nucci, M. Epidemiology of candidemia in patients with hematologic malignancies and solid tumours in Brazil. Mycoses 2013, 56, 256–263. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Labbafi, M.; Hosseini, S.S.; Hojjati, M. Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties. Food Chem. 2019, 271, 663–672. [Google Scholar] [CrossRef]
- Bellocco, E.; Barreca, D.; Laganà, G.; Calderaro, A.; El Lekhlifi, Z.; Chebaibi, S.; Trombetta, D. Cyanidin-3-O-galactoside in ripe pistachio (Pistachia vera L. variety Bronte) hulls: Identification and evaluation of its antioxidant and cytoprotective activities. JFF 2016, 27, 376–385. [Google Scholar] [CrossRef]
- Özbek, H.N.; Halahlih, F.; Göğüş, F.; Koçak Yanık, D.; Azaizeh, H. Pistachio (Pistacia vera L.) Hull as a potential source of phenolic compounds: Evaluation of ethanol–water binary solvent extraction on antioxidant activity and phenolic content of pistachio hull extracts. Waste Biomass Valorization 2020, 11, 2101–2110. [Google Scholar] [CrossRef]
- Salami, M.; Rahimmalek, M.; Ehtemam, M.H. Inhibitory effect of different fennel (Foeniculum vulgare) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chem. 2016, 213, 196–205. [Google Scholar] [CrossRef]
- Yoon, S.R.; Shim, S.M. Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT-Food Sci. Technol. 2015, 61, 158–163. [Google Scholar] [CrossRef]
- Rahmanifar, E.; Miroliaei, M. Differential effect of biophenols on attenuation of AGE-induced hemoglobin aggregation. Int. J. Biol. Macromol. 2020, 151, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Takabe, W.; Yamaguchi, T.; Hayashi, H.; Sugimura, N.; Yagi, M.; Yonei, Y. Identification of antiglycative compounds in Japanese red water pepper (red leaf variant of the Persicaria hydropiper sprout). Molecules 2018, 23, 2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu, L.P.; Harris, C.S.; Saleem, A.; Cuerrier, A.; Haddad, P.S.; Martineau, L.C.; Arnason, J.T. Inhibitory effect of the Cree traditional medicine wiishichimanaanh (Vaccinium vitis-idaea) on advanced glycation endproduct formation: Identification of active principles. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2010, 24, 741–747. [Google Scholar] [CrossRef]
- Zhou, L.; Xie, M.; Yang, F.; Liu, J. Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT 2020, 117, 108621. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef] [Green Version]
- Hodaei, M.; Rahimmalek, M.; Arzani, A. Variation in bioactive compounds, antioxidant and antibacterial activity of Iranian Chrysanthemum morifolium cultivars and determination of major polyphenolic compounds based on HPLC analysis. J. Food Sci. Technol. 2021, 58, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Dil, F.A.; Ranjkesh, Z.; Goodarzi, M.T. A systematic review of antiglycation medicinal plants. Diabetes Metab. Syndr. 2019, 13, 1225–1229. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, S.; Tsao, R.; Charles, M.T.; Yang, R.; Khanizadeh, S. In vitro antifungal activity and mode of action of selected polyphenolic antioxidants on Botrytis cinerea. Arch. Phytopathol. 2010, 43, 1564–1578. [Google Scholar] [CrossRef]
- Veličković, I.; Žižak, Ž.; Rajčević, N.; Ivanov, M.; Soković, M.; Marin, P.D.; Grujić, S. Examination of the polyphenol content and bioactivities of Prunus spinosa L. fruit extracts. Arch. Biol. Sci. 2020, 72, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Bisignano, C.; Filocamo, A.; Faulks, R.M.; Mandalari, G. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols. FEMS Microbiol. Lett. 2013, 341, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Aboody, M.S.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Messer, S.A.; Moet, G.J.; Jones, R.N.; Castanheira, M. Candida bloodstream infections: Comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int. J. Antimicrob. Agents 2011, 38, 65–69. [Google Scholar] [CrossRef]
- Rechinger, K.H. Flora iranica. 1963. Available online: https://www.iranicaonline.org/articles/flora-iranica- (accessed on 12 February 2023).
- Nouraei, S.; Rahimmalek, M.; Saeidi, G.; Bahreininejad, B. Variation in seed oil content and fatty acid composition of globe artichoke under different irrigation regimes. JAOCS 2016, 93, 953–962. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 1968, 51, 780–785. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef]
- Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G.; Goli, S.A.H.; Talebi, M. Total phenolic content and antioxidant activity of three Iranian endemic Achillea species. Ind. Crop. Prod. 2013, 50, 154–158. [Google Scholar] [CrossRef]
- Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G.; Talebi, M.; Matkowski, A. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech. f. Phytochemistry 2019, 162, 90–98. [Google Scholar] [CrossRef]
- Miroliaei, M.; Khazaei, S.; Moshkelgosha, S.; Shirvani, M. Inhibitory effects of Lemon balm (Melissa officinalis, L.) extract on the formation of advanced glycation end products. Food Chem. 2011, 129, 267–271. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts 4th informational supplement.; Document M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
Genotype | TPC (mg TAE/g DW) | TFC (mg QE/g DW) | Oil Content (%) | Crude Protein (%) | ADF (%) | NDF (%) | Condensed Tannin (%) | DPPH (EC50) | ABTS (g Ascorbic Acid/g Phenolic) |
---|---|---|---|---|---|---|---|---|---|
AHM1 | 50.2 ± 0.09 i | 8.36 ± 0.03 f | 5.5 ± 0.03 f | 12.7 ± 0.01 e | 15.8 ± 0.01 d | 18.8 ± 0.09 e | 1.92 ± 0.03 f | 382.7 ± 0.27 f | 3.1 ± 0.02 e |
AHM2 | 51.8 ± 0.04 h | 8.74 ± 0.02 e | 5.7 ± 0.05 e | 11.3 ± 0.02 h | 14.7 ± 0.01 g | 17.6 ± 0.07 i | 1.83 ± 0.01 g | 395.4 ± 0.19 d | 3.24 ± 0.03 d |
AHM3 | 53.6 ± 0.02 g | 9.45 ± 0.04 d | 5.3 ± 0.03 g | 10.9 ± 0.01 i | 14.9 ± 0..05 f | 17.9 ± 0.02 h | 1.73 ± 0.04 j | 377.8 ± 0.21 h | 3.02 ± 0.08 f |
FAN1 | 56.3 ± 0.02 e | 10.14 ± 0.02 b | 5.8 ± 0.03 e | 10.8 ± 0.03 i | 11.9 ± 0.02 l | 14.8 ± 0.03 k | 1.82 ± 0.05 h | 375.02 ± 0.11 i | 3.31 ± 0.04 c |
FAN2 | 54.1 ± 0.04 f | 10.93 ± 0.06 a | 5.4 ± 0.02 g | 11.7 ± 0.02 g | 13.7 ± 0.01 i | 18.2 ± 0.06 g | 1.96 ± 0.03 e | 369.11 ± 0.08 k | 3.03 ± 0.01 f |
FAN3 | 57.1 ± 0.03 d | 9.96 ± 0.05 c | 5.1 ± 0.01 h | 9.8 ± 0.04 j | 12.8 ± 0.06 k | 16.9 ± 0.02 j | 1.74 ± 0.06 i | 383.26 ± 0.34 e | 3.34 ± 0.03 c |
KAL1 | 68.1 ± 0.02 a | 7.61 ± 0.01 h | 7.2 ± 0.01 c | 15.8 ± 0.04 a | 15.3 ± 0.03 e | 20.2 ± 0.02 d | 2.31 ± 0.02 d | 405.21 ± 0.22 a | 3.96 ± 0.02 a |
KAL2 | 65.8 ± 0.09 c | 7.03 ± 0.04 i | 6.7 ± 0.04 d | 14.4 ± 0.03 c | 13.3 ± 0.03 j | 17.6 ± 0.04 i | 2.44 ± 0.01 c | 398.11 ± 0.1 c | 3.81 ± 0.04 b |
KAL3 | 67.3 ± 0.1 b | 7.81 ± 0.02 g | 6.6 ± 0.02 d | 14.9 ± 0.02 b | 14.1 ± 0.01 h | 18.7 ± 0.01 f | 2.12 ± 0.01 d | 400.06 ± 0.19 b | 3.93 ± 0.09 a |
AKB1 | 48.1 ± 0.03 j | 4.11 ± 0.03 k | 7.6 ± 0.02 a | 12.2 ± 0.03 f | 16.8 ± 0.02 c | 22.8 ± 0.04 c | 2.68 ± 0.01 b | 381.4 ± 0.29 g | 3.13 ± 0.08 g |
AKB2 | 40.6 ± 0.08 l | 5.22 ± 0.02 j | 7.4 ± 0.03 b | 13.1 ± 0.04 d | 17.1 ± 0.03 b | 23.3 ± 0.01 b | 2.86 ± 0.01 a | 372.11 ± 0.16 j | 3.03 ± 0.07 f |
AKB3 | 46.3 ± 0.1 k | 4.01 ± 0.02 l | 7.2 ± 0.06 c | 12.8 ± 0.02 e | 18.2 ± 0.02 a | 25.6 ± 0.05 a | 2.44 ± 0.02 c | 367.33 ± 0.1 l | 2.98 ± 0.05 e |
Compounds | tR (min) | AHM1 | AHM2 | AHM3 | FAN1 | FAN2 | FAN3 | KAL1 | KAL2 | KAL3 | AKB1 | AKB2 | AKB3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 5.8 | 39.62 ± 0.03 | 36.24 ± 0.01 | 39.51 ± 0.03 | 43.18 ± 0.01 | 45.25 ± 0.04 | 41.89 ± 0.01 | 34.95 ± 0.01 | 33.23 ± 0.01 | 36.36 ± 0.02 | 27.89 ± 0.01 | 28.34 ± 0.01 | 28.19 ± 0.01 |
Cyanidin-3-O-galactoside | 22.8 | 124.31 ± 0.02 | 146.26 ± 0.02 | 128.98 ± 0.01 | 170.59 ± 0.01 | 181.94 ± 0.03 | 173.02 ± 0.06 | 120.81 ± 0.01 | 144.96 ± 0.02 | 125.04 ± 0.01 | 128.69 ± 0.01 | 132.06 ± 0.04 | 140.69 ± 0.03 |
Catechin | 28.9 | 9.31 ± 0.01 | 8.24 ± 0.01 | 10.93 ± 0.01 | 11.01 ± 0.03 | 10.61 ± 0.01 | 10.96 ± 0.01 | 8.57 ± 0.01 | 7.63 ± 0.01 | 9.86 ± 0.04 | 7.2 ± 0.01 | 9.87 ± 0.01 | 8.06 ± 0.01 |
Epicatechin | 40.5 | 3.63 ± 0.01 | 3.04 ± 0.01 | 3.76 ± 0.01 | 4.03 ± 0.01 | 4.62 ± 0.01 | 4.98 ± 0.01 | 2.93 ± 0.01 | 3.04 ± 0.01 | 2.69 ± 0.01 | 3.09 ± 0.01 | 3.85 ± 0.02 | 3.14 ± 0.01 |
Eriodictyol-7-O-glucoside | 51.2 | 13.63 ± 0.04 | 13.42 ± 0.02 | 14.98 ± 0.01 | 15.95 ± 0.01 | 16.02 ± 0.01 | 13.72 ± 0.01 | 13.05 ± 0.01 | 13 ± 0.01 | 14.86 ± 0.02 | 8.16 ± 0.01 | 8.48 ± 0.01 | 7.23 ± 0.01 |
Naringin | 59.3 | 2.32 ± 0.01 | 2.87 ± 0.01 | 2.24 ± 0.01 | 3.63 ± 0.01 | 3.45 ± 0.01 | 3.16 ± 0.01 | 2.12 ± 0.01 | 2.74 ± 0.06 | 2.09 ± 0.01 | 2.43 ± 0.01 | 2.89 ± 0.01 | 2.65 ± 0.04 |
Eriodictyol | 64.2 | 1.61 ± 0.02 | 1.98 ± 0.01 | 1.87 ± 0.02 | 1.61 ± 0.01 | 1.72 ± 0.01 | 1.44 ± 0.01 | 1.57 ± 0.01 | 1.93 ± 0.01 | 1.82 ± 0.01 | 1.74 ± 0.01 | 1.81 ± 0.01 | 1.53 ± 0.01 |
Quercetin | 69.3 | 0.41 ± 0.01 | 0.36 ± 0.01 | 0.49 ± 0.01 | 0.6 ± 0.01 | 0.62 ± 0.01 | 0.58 ± 0.03 | 0.38 ± 0.01 | 0.33 ± 0.01 | 0.44 ± 0.03 | 0.36 ± 0.04 | 0.42 ± 0.01 | 0.32 ± 0.01 |
Naring enin | 71.6 | 0.31 ± 0.02 | 0.28 ± 0.01 | 0.32 ± 0.01 | 0.51 ± 0.03 | 0.46 ± 0.01 | 0.48 ± 0.02 | 0.28 ± 0.03 | 0.26 ± 0.01 | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.29 ± 0.02 | 0.23 ± 0.01 |
Luteolin | 73.4 | 0.49 ± 0.01 | 0.45 ± 0.03 | 0.39 ± 0.01 | 0.54 ± 0.01 | 0.6 ± 0.01 | 0.58 ± 0.01 | 0.47 ± 0.01 | 0.41 ± 0.02 | 0.36 ± 0.01 | 0.41 ± 0.03 | 0.38 ± 0.01 | 0.45 ± 0.02 |
Kaempferol | 79.6 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 |
Compound | C.a (I) | C.a (II) | C.g (I) | C.g (II) | C.p (I) | C.p (II) | C.k (I) | C.k (II) | C.t | C.au | |
---|---|---|---|---|---|---|---|---|---|---|---|
Fluconazole | 0.25 | 0.5 | 2 | 4 | 1 | 0.5 | 8 | >32 | 1 | >64 | |
1 | AHM1 | 6.25 | 12.5 | 3.12 | 1.56 | 6.25 | 6.12 | 12.5 | 6.25 | 6.25 | 12.5 |
2 | AHM2 | 1.56 | 3.12 | 1.56 | 3.12 | 6.25 | 3.12 | 12.5 | 6.25 | 6.25 | 25 |
3 | AHM3 | 6.25 | 3.12 | 3.12 | 3.12 | 3.12 | 12.5 | 12.5 | 12.5 | 12.5 | 25 |
4 | FAN1 | 3.12 | 12.5 | 1.56 | 6.25 | 6.25 | 6.25 | 12.5 | 12.5 | 6.25 | 12.5 |
5 | FAN2 | 6.25 | 6.25 | 6.25 | 6.25 | 12.5 | 12.5 | 25 | 25 | 12.5 | 25 |
6 | FAN3 | 12.5 | 12.5 | 6.25 | 6.25 | 12.5 | 12.5 | 25 | 25 | 12.5 | 50 |
7 | KAL1 | 12.5 | 6.5 | 3.12 | 3.12 | 12.5 | 12.5 | 12.5 | 6.25 | 12.5 | 12.5 |
8 | KAL2 | 3.12 | 3.12 | 6.25 | 6.25 | 6.25 | 6.25 | 6.25 | 12.5 | 6.25 | 12.5 |
9 | KAL3 | 6.25 | 12.5 | 3.12 | 3.12 | 12.5 | 6.25 | 12.5 | 12.5 | 12.5 | 25 |
10 | AKB1 | 6.25 | 12.5 | 3.12 | 1.56 | 12.5 | 12.5 | 12.5 | 12.5 | 6.25 | 25 |
11 | AKB2 | 12.5 | 12.5 | 6.25 | 3.12 | 25 | 6.25 | 12.5 | 25 | 12.5 | 50 |
12 | AKB3 | 6.25 | 6.25 | 3.12 | 3.12 | 12.5 | 12.5 | 12.5 | 12.5 | 6.25 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharibi, S.; Matkowski, A.; Sarfaraz, D.; Mirhendi, H.; Fakhim, H.; Szumny, A.; Rahimmalek, M. Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti-Candida Activities and Nutritional Properties in Different Pistachio (Pistacia vera L.) Hull Cultivars. Molecules 2023, 28, 4772. https://doi.org/10.3390/molecules28124772
Gharibi S, Matkowski A, Sarfaraz D, Mirhendi H, Fakhim H, Szumny A, Rahimmalek M. Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti-Candida Activities and Nutritional Properties in Different Pistachio (Pistacia vera L.) Hull Cultivars. Molecules. 2023; 28(12):4772. https://doi.org/10.3390/molecules28124772
Chicago/Turabian StyleGharibi, Shima, Adam Matkowski, Danial Sarfaraz, Hossein Mirhendi, Hamed Fakhim, Antoni Szumny, and Mehdi Rahimmalek. 2023. "Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti-Candida Activities and Nutritional Properties in Different Pistachio (Pistacia vera L.) Hull Cultivars" Molecules 28, no. 12: 4772. https://doi.org/10.3390/molecules28124772
APA StyleGharibi, S., Matkowski, A., Sarfaraz, D., Mirhendi, H., Fakhim, H., Szumny, A., & Rahimmalek, M. (2023). Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti-Candida Activities and Nutritional Properties in Different Pistachio (Pistacia vera L.) Hull Cultivars. Molecules, 28(12), 4772. https://doi.org/10.3390/molecules28124772