Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review
Abstract
:1. Introduction
2. Extraction and Purification Methods of Purslane Polysaccharides
3. Structural Characteristics of Purslane
3.1. Molecular Weight
3.2. Monosaccharide Composition
3.3. Chemical Structures
4. Biological Activities of Purslane Polysaccharides
4.1. Antifatigue Effects
4.2. Antidiabetic Effect
4.3. Antiviral Effects
4.4. Antitumor Effects
4.5. Anticolitis Effects
4.6. Immunomodulatory Effects
4.7. Anti-Lead Poisoning Effects
5. Structure–Activity Relationship and Structural Modification
5.1. Structure–Activity Relationship
5.2. Structural Modification
6. Applications of Purslane Polysaccharides
6.1. In the Food Industry
6.2. In the Pharmaceutical Industry
6.3. In the Cosmetics Industry
6.4. In the Livestock Industry
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Purslane: A review of phytochemistry and pharmacological effects. BioMed Res Int. 2015, 2015, 925631. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sreedharan, S.; Kashyap, A.K.; Singh, P.; Ramchiary, N. A review on bioactive phytochemicals and ethnopharmacological potential of purslane (Purslane oleracea L.). Heliyon 2021, 8, e08669. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Extraction and Natural Bioactive Molecules Characterization in Spinach, Kale and Purslane: A Comparative Study. Molecules 2021, 26, 2515. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Purslane oleracea L.) genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Hossain, M.S.; Nahar, M.A.; Ali, M.E.; Rahman, M.M. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. Sci. World J. 2014, 2014, 951019. [Google Scholar] [CrossRef] [Green Version]
- Carrascosa, A.; Pascual, J.A.; Ros, M.; Petropoulos, S.A.; Alguacil, M.D.M. Agronomical Practices and Management for Commercial Cultivation of Purslane oleracea a Crop: A Review. Plants 2023, 12, 1246. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Tan, D.X.; Manchester, L.C.; Reiter, R.J. Purslane: A plant source of omega-3 fatty acids and melatonin. J. Pineal. Res. 2005, 39, 331–332. [Google Scholar] [CrossRef] [PubMed]
- Iranshahy, M.; Javadi, B.; Iranshahi, M.; Jahanbakhsh, S.P.; Mahyari, S.; Hassani, F.V.; Karimi, G. A review of traditional uses, phytochemistry and pharmacology of Purslane. J. Ethnopharmacol. 2017, 205, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Jalali, J.; Ghasemzadeh Rahbardar, M. Ameliorative effects of Purslane oleracea (purslane) on the metabolic syndrome: A review. J. Ethnopharmacol. 2022, 299, 115672. [Google Scholar] [CrossRef]
- Farag, M.A.; Shakour, Z.T.A. Metabolomics driven analysis of 11 Portulaca leaf taxa as analysed via UPLC-ESI-MS/MS and chemometrics. Phytochemistry 2019, 161, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.L.; Yuan, H.H.; Wang, C.Z.; Fan, W.; Lan, M.B. Polysaccharides from Cymbopogon citratus with antitumor and immunomodulatory activity. Pharm. Biol. 2015, 53, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yuan, Q.; Zhou, X.; Zeng, F.; Lu, X. Extraction of Opuntia dillenii Haw. Polysaccharides and Their Antioxidant Activities. Molecules 2016, 21, 1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Li, X.Q.; Wang, X.; Fan, H.T.; Zhang, X.N.; Hou, Y.; Liu, S.B.; Mei, Q.B. A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. Phytomedicine 2010, 17, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Tanikawa, T.; Hayashi, K.; Asagi, M.; Kasahara, Y.; Hayashi, T. Characterization and biological effects of two polysaccharides isolated from Acanthopanax sciadophylloides. Carbohydr Polym. 2015, 116, 159–166. [Google Scholar] [CrossRef]
- Tao, H.; Ye, D.L.; Wu, Y.L.; Han, M.M.; Xue, J.S.; Liu, Z.H.; Chen, X.T.; Wang, H.L. The protective effect of polysaccharide extracted from Purslane oleracea L. against Pb-induced learning and memory impairments in rats. Int. J. Biol. Macromol. 2018, 119, 617–623. [Google Scholar] [CrossRef]
- You Guo, C.; Zong Ji, S.; Xiao Ping, C. Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides. Int. J. Biol. Macromol. 2009, 45, 448–452. [Google Scholar] [CrossRef]
- Xu, Z.; Shan, Y. Anti-fatigue effects of polysaccharides extracted from Purslane oleracea L. in mice. Indian J. Biochem. Biophys. 2014, 51, 321–325. [Google Scholar]
- Zhao, R.; Gao, X.; Cai, Y.; Shao, X.; Jia, G.; Huang, Y.; Qin, X.; Wang, J.; Zheng, X. Antitumor activity of Purslane oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr. Polym. 2013, 96, 376–383. [Google Scholar] [CrossRef]
- Dong, C.X.; Hayashi, K.; Lee, J.B.; Hayashi, T. Characterization of structures and antiviral effects of polysaccharides from Purslane oleracea L. Chem. Pharm. Bull. Tokyo 2010, 58, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.R.; Guan, Q.Y.; Li, L.Y.; Tang, Z.M.; Zhang, Q.; Zhao, X.H. In Vitro Immuno-Modulatory Potentials of Purslane (Purslane oleracea L.) Polysaccharides with a Chemical Selenylation. Foods 2021, 11, 14. [Google Scholar] [CrossRef]
- Ayivi-Tosuh, S.M.; Yang, J.; Yang, Y.; Li, X.; Yang, F.; Jiao, L.; Wang, G. Structure analysis of a non-esterified homogalacturonan isolated from Purslane oleracea L. and its adjuvant effect in OVA-immunized mice. Int. J. Biol. Macromol. 2021, 177, 422–429. [Google Scholar] [CrossRef]
- Shen, H.; Tang, G.; Zeng, G.; Yang, Y.; Cai, X.; Li, D.; Liu, H.; Zhou, N. Purification and characterization of an antitumor polysaccharide from Purslane oleracea L. Carbohydr. Polym. 2013, 93, 395–400. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, Y.; Zhang, D.; Wu, X.; Yu, J.; Zhang, Z.; Li, Y.; Sun, C.; Tang, Z.; Liu, L. Protective Effects of Polysaccharide Extracted from Portulacae oleracea L. on Colitis Induced by Dextran Sulfate Sodium. J. Med. Food 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Bai, Y.; Zang, X.; Ma, J.; Xu, G. Anti-Diabetic Effect of Purslane oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. Int. J. Mol. Sci. 2016, 17, 1201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q.; Liang, K.J.; Gao, X.K.; Liu, Y.; Li, Z.T.; Wang, T.T. Optimization of Ultrasound-Assisted Extraction of Polysaccharides from Portulaca oleracea L. Food Res. Dev. 2017, 38, 41–45. [Google Scholar]
- Hu, Q.; Niu, Q.; Song, H.; Wei, S.; Wang, S.; Yao, L.; Li, Y.P. Polysaccharides from Portulacae oleracea L. regulated insulin secretion in INS-1 cells through voltage-gated Na+ channel. Biomed. Pharmacother. 2019, 109, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Z.; Zou, L.L.; Qian, Z.W. Study on Optimization of Dual-Enzymatic Extraction of Polysaccharides from Portulaca oleracea and Their Antioxidant Activity. Storage Process. 2021, 21, 88–93. [Google Scholar]
- Sun, Y.L.; Wu, X.Q.; Hu, Q.Y. Optimization of ultrasonic-complex enzymatic synergistic extraction of polysaccharides from Portulaca oleracea. Feed Res. 2022, 45, 74–77. [Google Scholar] [CrossRef]
- Chen, T.; Wang, J.; Li, Y.; Shen, J.; Zhao, T.; Zhang, H. Sulfated modification and cytotoxicity of Portulaca oleracea L. polysaccharides. Glycoconj. J. 2010, 27, 635–642. [Google Scholar] [CrossRef]
- Chen, L.; He, W.Q.; Cao, Q.Q. Optimization of Enzymatic Extraction Technology of Polysaccharide from Portulaca oleracea by Response Surface Methodology. Food Res. Dev. 2020, 41, 79–84. [Google Scholar]
- Ji, L.L. Optimization of microwave extraction conditions of polysaccharides from Portulaca oleracea L. Biotech. World 2014, 74, 58. [Google Scholar]
- Xu, H.; Zhang, H.Y. Extraction the polysaccharide from Portulaca oleracea L. by ultrahigh pressure. Food Sci. Technol. 2011, 36, 148–153. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, T.; Feng, W.; Wang, W.; Zou, Y.; Zheng, D.; Takase, M.; Li, Q.; Wu, H.; Yang, L.; et al. Purification, characterization and immunomodulating activity of a polysaccharide from flowers of Abelmoschus esculentus. Carbohydr. Polym. 2014, 106, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.Q.; Lu, C.Q.; Cui, S.H.; Pan, L.H.; Zhang, H.L.; Wang, J.H.; Luo, J.P. Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide. Int. J. Biol. Macromol. 2015, 78, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Li, Y.; Liu, C.; Huang, L.P.; Zeng, L.; Wang, S.; Song, H.; Peng, H.; Huang, J.; Chen, C.; et al. Effects of polysaccharide from Purslane on voltage-gated Na+ channel of INS-1 cells. Biomed. Pharmacother. 2018, 101, 572–578. [Google Scholar] [CrossRef]
- Xie, L.; Shen, M.; Hong, Y.; Ye, H.; Huang, L.; Xie, J. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr. Polym. 2020, 229, 115436. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Shao, X.; Jia, G.; Huang, Y.; Liu, Z.; Song, B.; Hou, J. Anti-cervical carcinoma effect of Portulaca oleracea L. polysaccharides by oral administration on intestinal dendritic cells. BMC Complement. Altern. Med. 2019, 19, 161. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Shao, X.; Zhao, R.; Zhang, T.; Zhou, X.; Yang, Y.; Li, T.; Chen, Z.; Liu, Y. Portulaca oleracea L. polysaccharides enhance the immune efficacy of dendritic cell vaccine for breast cancer. Food Funct. 2021, 12, 4046–4059. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, T.; Zhao, H.; Cai, Y. Effects of Portulaca oleracea L. Polysaccharides on Phenotypic and Functional Maturation of Murine Bone Marrow Derived Dendritic Cells. Nutr. Cancer 2015, 67, 987–993. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.H.; Lee, H.N.; Park, T. Prunus mume extract ameliorates exercise-induced fatigue in trained rats. J. Med. Food 2008, 11, 460–468. [Google Scholar] [CrossRef]
- Wang, J.J.; Shieh, M.J.; Kuo, S.L.; Lee, C.L.; Pan, T.M. Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise. Appl. Microbiol. Biotechnol. 2006, 70, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.M.; Wei, P. Anti-fatigue properties of tartary buckwheat extracts in mice. Int. J. Mol. Sci. 2011, 12, 4770–4780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Song, C.; Lei, Z.; Li, Y.; He, X.; Yu, J.; Yang, X. Anti-fatigue effect of traditional Chinese medicines: A review. Saudi Pharm. J. 2023, 31, 597–604. [Google Scholar] [CrossRef]
- Anand, T.; Phani Kumar, G.; Pandareesh, M.D.; Swamy, M.S.; Khanum, F.; Bawa, A.S. Effect of bacoside extract from Bacopa monniera on physical fatigue induced by forced swimming. Phytother. Res. 2012, 26, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S. Diabesity. J. Pak. Med. Assoc. 2013, 63, 532–534. [Google Scholar] [PubMed]
- Toplak, H.; Leitner, D.R.; Harreiter, J.; Hoppichler, F.; Wascher, T.C.; Schindler, K.; Ludvik, B. Diabesity“–Adipositas und Typ-2-Diabetes (Update 2019) [“Diabesity”-Obesity and type 2 diabetes (Update 2019)]. Wien Klin. Wochenschr. 2019, 131 (Suppl. 1), 71–76. (In German) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, F.Z. Type 1 Diabetes Mellitus. Ann. Intern Med. 2022, 175, ITC33–ITC48. [Google Scholar] [CrossRef]
- Wang, P.C.; Zhao, S.; Yang, B.Y.; Wang, Q.H.; Kuang, H.X. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr. Polym. 2016, 148, 86–97. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, pdb-rot095505. [Google Scholar] [CrossRef]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. [Google Scholar] [CrossRef] [Green Version]
- Damonte, E.B.; Matulewicz, M.C.; Cerezo, A.S. Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 2004, 11, 2399–2419. [Google Scholar] [CrossRef] [PubMed]
- Witvrouw, M.; De Clercq, E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen. Pharmacol. 1997, 29, 497–511. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil-New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef] [PubMed]
- Rosenbohm, C.; Lundt, I.; Christensen, T.I.; Young, N.G. Chemically methylated and reduced pectins: Preparation, characterisation by 1H NMR spectroscopy, enzymatic degradation, and gelling properties. Carbohydr. Res. 2003, 338, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Chen, M.; Ding, Y.; Yang, P.; Wang, M.; Zhang, H.; He, Y.; Ma, H. Polysaccharides as Potential Anti-tumor Biomacromolecules—A Review. Front. Nutr. 2022, 9, 838179. [Google Scholar] [CrossRef] [PubMed]
- Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr. Polym. 2012, 90, 1395–1410. [Google Scholar] [CrossRef]
- Chang, R. Bioactive polysaccharides from traditional Chinese medicine herbs as anticancer adjuvants. J. Altern. Complement Med. 2002, 8, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Huang, G. Antitumor Activity of Polysaccharides: An Overview. Curr. Drug Targets 2018, 19, 89–96. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, T.; Ma, B.; Li, X. Antitumor Activity of Portulacae oleracea L. Polysaccharide on HeLa Cells through Inducing TLR4/NF-κB Signaling. Nutr. Cancer 2017, 69, 131–139. [Google Scholar] [CrossRef]
- Li, L.Y.; Guan, Q.Y.; Lin, Y.R.; Zhao, J.R.; Wang, L.; Zhang, Q.; Liu, H.F.; Zhao, X.H. Monosaccharide Composition and In Vitro Activity to HCT-116 Cells of Portulacae oleracea L. Polysaccharides after a Covalent Chemical Selenylation. Foods 2022, 11, 3748. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Wang, C.L.; Wang, L.; Sun, C.; Zhang, D.B.; Liu, J.L.; Liang, Y.N.; Tang, D.X.; Tang, Z.S. Tryptanthrin Protects Mice against Dextran Sulfate Sodium-Induced Colitis through Inhibition of TNF-α/NF-κB and IL-6/STAT3 Pathways. Molecules 2018, 23, 1062. [Google Scholar] [CrossRef] [Green Version]
- Micallef, M.J.; Iwaki, K.; Ishihara, T.; Ushio, S.; Aga, M.; Kunikata, T.; Koya-Miyata, S.; Kimoto, T.; Ikeda, M.; Kurimoto, M. The natural plant product tryptanthrin ameliorates dextran sodium sulfate-induced colitis in mice. Int. Immunopharmacol. 2002, 2, 565–578. [Google Scholar] [CrossRef]
- Oz, H.S.; Chen, T.; de Villiers, W.J. Green Tea Polyphenols and Sulfasalazine have Parallel Anti-Inflammatory Properties in Colitis Models. Front. Immunol. 2013, 4, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.A.; Rose-John, S. The role of soluble receptors in cytokine biology: The agonistic properties of the sIL-6R/IL-6 complex. Biochim. Biophys. Acta 2002, 1592, 251–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, H.; Miyaura, C.; Pilbeam, C.C.; Tamura, T.; Ohsugi, Y.; Koishihara, Y.; Kubodera, N.; Kawaguchi, H.; Raisz, L.G.; Suda, T. Transcriptional induction of cyclooxygenase-2 in osteoblasts is involved in interleukin-6-induced osteoclast formation. Endocrinology 1997, 138, 2372–2379. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hu, X.; Wang, S.; Jiao, Z.; Sun, T.; Liu, T.; Song, K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol. 2020, 145, 985–997. [Google Scholar] [CrossRef]
- Wan, X.; Yin, Y.; Zhou, C.; Hou, L.; Cui, Q.; Zhang, X.; Cai, X.; Wang, Y.; Wang, L.; Tian, J. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants. Carbohydr. Polym. 2022, 276, 118739. [Google Scholar] [CrossRef]
- Artyomov, M.N.; Sergushichev, A.; Schilling, J.D. Integrating immunometabolism and macrophage diversity. Semin. Immunol. 2016, 28, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xiong, Q.; Lai, X.; Li, X.; Wan, M.; Zhang, J.; Yan, Y.; Cao, M.; Lu, L.; Guan, J.; et al. Molecular Modification of Polysaccharides and Resulting Bioactivities. Compr. Rev. Food Sci. Food Saf. 2016, 15, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yao, F.; Ming, K.; Wang, D.; Hu, Y.; Liu, J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016, 21, 1705. [Google Scholar] [CrossRef] [PubMed]
- White, L.D.; Cory-Slechta, D.A.; Gilbert, M.E.; Tiffany-Castiglioni, E.; Zawia, N.H.; Virgolini, M.; Rossi-George, A.; Lasley, S.M.; Qian, Y.C.; Basha, M.R. New and evolving concepts in the neurotoxicology of lead. Toxicol. Appl. Pharmacol. 2007, 225, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Salehi, I.; Karamian, R.; Komaki, A.; Tahmasebi, L.; Taheri, M.; Nazari, M.; Shahidi, S.; Sarihi, A. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity. Brain Res. 2015, 1629, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Perazella, M.A. Lead and the kidney: Nephropathy, hypertension, and gout. Conn. Med. 1996, 60, 521–526. [Google Scholar]
- Toscano, C.D.; Guilarte, T.R. Lead neurotoxicity: From exposure to molecular effects. Brain Res. Brain Res. Rev. 2005, 49, 529–554. [Google Scholar] [CrossRef]
- Bu, T.; Tang, D.; Liu, Y.; Chen, D. Trends in Dietary Patterns and Diet-related Behaviors in China. Am. J. Health Behav. 2021, 45, 371–383. [Google Scholar] [CrossRef]
- Dedhia, N.; Marathe, S.J.; Singhal, R.S. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr. Polym. 2022, 287, 119355. [Google Scholar] [CrossRef]
- Kontogiorgos, V. Polysaccharides at fluid interfaces of food systems. Adv. Colloid Interface Sci. 2019, 270, 28–37. [Google Scholar] [CrossRef]
- Dong, S.G.; Hou, W.Y.; Dai, S.Q.; Xiao, L.M.; Hou, W.J.; Wang, W. Compound Fermented Portulaca Hercure Wine and Process. CN103642623A, 19 March 2014. [Google Scholar]
- De Souza, P.G.; Rosenthal, A.; Ayres, E.M.M.; Teodoro, A.J. Potential Functional Food Products and Molecular Mechanisms of Purslane on Anticancer Activity: A Review. Oxid. Med. Cell Longev. 2022, 2022, 7235412. [Google Scholar] [CrossRef]
- Srivastava, R.; Srivastava, V.; Singh, A. Multipurpose benefits of an underexplored species purslane (Portulaca oleracea L.): A critical review. Environ. Manag. 2021. [Google Scholar] [CrossRef]
- Amirul Alam, M.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Kamal Uddin, M.; Alam, M.Z.; Latif, M.A. Genetic improvement of Purslane (Portulaca oleracea L.) and its future prospects. Mol. Biol. Rep. 2014, 41, 7395–7411. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Qi, J.; Du, D.; Liu, Y.; Jiang, X. Current advances of Dendrobium officinale polysaccharides in dermatology: A literature review. Pharm. Biol. 2020, 58, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A pharmacological review on Portulaca oleracea L.: Focusing on anti-inflammatory, anti-oxidant, immuno-modulatory and antitumor activities. J. Pharmacopunct. 2019, 22, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ham, H.; An, S.M.; Lee, E.J.; Lee, E.; Kim, H.O.; Koh, J.S. Itching sensation and neuronal sensitivity of the skin. Skin Res. Technol. 2016, 22, 104–107. [Google Scholar] [CrossRef]
- Legeas, C.; Misery, L.; Fluhr, J.W.; Roudot, A.C.; Ficheux, A.S.; Brenaut, E. Proposal for Cut-off Scores for Sensitive Skin on Sensitive Scale-10 in a Group of Adult Women. Acta Derm. Venereol. 2021, 101, adv00373. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, K.H.; Park, C.; Lee, J.S.; Kim, Y.H. Purslaneextracts protect human keratinocytes and fibroblasts from UV-induced apoptosis. Exp. Dermatol. 2014, 23 (Suppl. 1), 13–17. [Google Scholar] [CrossRef]
- Wang, Y.; Viennet, C.; Jeudy, A.; Fanian, F.; He, L.; Humbert, P. Assessment of the efficacy of a new complex antisensitive skin cream. J. Cosmet. Dermatol. 2018, 17, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zheng, J.; Jiao, S.; Cheng, G.; Feng, C.; Du, Y.; Liu, H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr. Polym. 2019, 220, 60–70. [Google Scholar] [CrossRef]
- Yang, C.M.; Han, Q.J.; Wang, K.L.; Xu, Y.L.; Lan, J.H.; Cao, G.T. Astragalus and ginseng polysaccharides improve developmental, intestinal morphological, and immune functional characters of weaned piglets. Front. Physiol. 2019, 10, 418. [Google Scholar] [CrossRef] [Green Version]
Extraction | Purification | Ref. | ||||||
---|---|---|---|---|---|---|---|---|
Polysaccharide Fraction | Extraction Methods | Time (h/min) | Temperature (°C) | Solid–Liquid Ratio | Total Yield (%) | Polysaccharide Fraction | Purification Methods | |
POP-T | Hot water extraction | 6 h | 100 °C | 1:20 | 4.84% | POP-T | Sevag method and dialysis | [15] |
Purslane polysaccharides | Hot water extraction | 6 h | 100 °C | 1:8 | 7.00% | Purslane polysaccharides | HPLC | [16] |
POP-X | Hot water extraction | 9 h | 100 °C | 1:10 | 9.41% | POP-X | Filtering and centrifuging | [17] |
POL-P | Hot water extraction | 6 h | 95 °C | 1:4 | N/A | POL-P3b | DEAE cellulose and Sephadex G-200 column chromatography | [18] |
RH1 and RH2 | Hot water extraction | 3 h | N/A | 69:122 | 0.43 × 10−3% | RN | Ion-exchange column chromatography and gel filtration | [19] |
0.10 × 10−2% | RA | |||||||
0.35 × 10−2% | RP | |||||||
PSPO | Enzyme-assisted method | 4 h | 90 °C | 1:20 | N/A | PSPO | N/A | [20] |
CPOPW | Hot water extraction | 9 h | 100 °C | 4:25 | N/A | POPW-HG | DEAE -cellulose column and Sepharose CL-6B gel column | [21] |
DCPOP | Hot water extraction | 9 h | 75 °C | 1:40 | 0.90% | POP-S | DEAE- Cellulose anion-exchange chromatography and Sepharose CL-6B gel-permeation chromatography | [22] |
POLP | Hot water extraction | 12 h | 100 °C | N/A | 6.08% | POLP | Sevagmethod | [23] |
CPOP | Hot water extraction | 9 h | 80 °C | 1:20 | N/A | N/A | N/A | [24] |
POP-Z | UAE | 53 min | 61 °C | 1:39 | 13.55% | POP-Z | Centrifugal | [25] |
POP-H | Hot water extraction | 4.5 h | 90 °C | 1:15 | N/A | POP-H | DEAE cellulose, Sephadex G-200 column chromatography and dialysis | [26] |
POP-Y | Double-enzyme extraction method | 100 min | 50 °C | 1:25 | 19.83% | POP-Y | Centrifugal | [27] |
POP-Su | Ultrasonic complex enzymatic method | 51 min | N/A | 1:31 | 21.23% | POP-Su | N/A | [28] |
Crude POP | N/A | 42.30% | POP1-C | Dialysis and SphadexG-100 column | [29] | |||
N/A | 4.50% | POP2-C | ||||||
N/A | 6.20% | POP3-C | ||||||
POP-Ch | EAE | 2 h | 39 °C | 1:20 | 4.22% | POP-Ch | N/A | [30] |
POP-J | MAE | 10 min | 60 °C | 1:30 | 13.87% | POP-J | N/A | [31] |
POP-Xu | UHP | 5 min | N/A | 1:20 | 22.21% | POP-Xu | Sevag method | [32] |
Compound Name | Molecular Weight | Monosaccharide Composition | Structure | Analytical Technique | Ref. |
---|---|---|---|---|---|
RN | 8.3 kDa | Glu:Man:Arab:Gal = 0.1:38.8:13.7:5.3 | RN contained 1,4-linked Manp, 1,4-linked Glcp and 1,2,4-linked Glcp residues with small amounts of 1,4,6-linked Manp, 1,4,6-linked Glcp and terminal-linked Galp residues, and Araf residue was suggested to be mainly present as nonreducing terminal-linked residues. | GC, HPLC | [19] |
RA | 58 kDa | Ara:Gal:Rha:Xyl:GlcA = 23.2:67.0:2.8:2.9:4.1 | RA consists of a-1,3-linked β-d-Galp main chain, partially substituted at C-6 by 1,6-linked β-d-Galp side chains. Moreover, GlcA was present in RA in the forms of terminal-linked and 1,4-linked residues. | ||
RP | 87 kDa | GalA:Gal:GlcA:Ara:Rha = 67.8:11.3:10.6:5.8:4.3 | RP consists of a-1,4-linked GalA residues that are highly methylated and partially acetylated. | ||
POP1-C | 55.8 kDa | N/A | N/A | FT-IR, NMR | [29] |
Purslane polysaccharide | N/A | Glu:Gal = 2.3:1 | N/A | HPLC, PDA | [16] |
POP-T | 1.55 × 104 kDa | Gal:Ara:Rha = 50.92:32.32:16.75 | There were hydroxyl groups, C-O, β-configurations and uronic acid in the structure of POP-T. | GC, HPGPC, FT-IR | [15] |
POP-S | 24.6 kDa | Man:Ara:Glu:Gal = 2.1:5.2:2.1:11.2 | N/A | GC, HPGPC | [22] |
POP-H | 11 kDa | Man:Rha:GlcA:GalA:Glu:Gal:Ara = 5.3:5.9:1.3:27.6:1:18.8:14.6 | N/A | HPLC, IR, HPGPC | [26] |
POL-P3b | 0.253688 kDa | Glu:Gal= 0.75:1.00 | POL-P3b structure had hydroxyl groups and β-glucoside bonds. | HPLC, UV, IR | [18] |
POP-L | 8.03 kDa | Rha:Ara:Glc:Gal = 1:1.16:0.23:0.59 | N/A | N/A | [35] |
POPW-HG | 41.2 kDa | Galacturonic acid = 95% A trace of Man and Rha | POPW-HG consists of 1, 4-GALA with hydroxyl, uronic acid and pyranose rings. | HPSEC, GC, NMR, FI-IR | [21] |
CPOP | 7.3 kDa, 11.9 kDa, 93 kDa | Rha:Ara:Xyl:Man:Glu:Gal = 1:1.1:1.3:1.9:2.4:3.4:1 | N/A | GC, HPSEC | [24] |
Biological Activity | Polysaccharide Name | In Vitro or In Vivo | Indicated Concentration | Models/Test System | Action or Mechanism | Ref. |
---|---|---|---|---|---|---|
Antifatigue effects | POP-X | In vivo | 75, 150 and 300 mg/kg | Male KM mice | POP prolongs riding time and extreme swimming time in mice, reduces blood lactate and serum urea nitrogen levels and increases liver and muscle glycogen content. | [17] |
Antidiabetic effects | POP-L | In vitro | 0.5 mg/mL | INS-1 cells | POP increases mitochondrial membrane potential and ATP production; depolarises cell membrane potential (MP), intracellular Ca2+ levels ([Ca2+]) and Nav1.3 expression levels; and decreases Nav1.7 expression levels. | [26] |
CPOP | In vivo | 100, 200 and 400 mg/kg | SD rats | CPOP appears to significantly reduce FBG, TNF-6, IL-6 and MDA levels and increase FINS, ISI and ROS levels in diabetic rats. | [24] | |
Antiviral effects | RP | In vitro | 234 mg | Cells and Viruses V ero and Madin–Darby canine kidney (MDCK) cells were grown in minimal essential medium (MEM) containing 5% fetal bovine serum (FBS) | RP has been shown to exert potential anti-HSV-2 activity by inhibiting viral penetration without inhibiting viral adsorption. | [19] |
Antitumor effects | POP1(POP1-s1, POP1-s2, POP1-s3 and POP1-s4) | In vitro | 100–2000 μg/mL | HepG2 and Hela cells | Inhibits the growth of Hela cells in S-phase and induces apoptosis through cell cycle arrest. | [29] |
POL-P3b | In vitro | 100 or 200 mg/mL | HeLa cells | POL-P3b induces apoptosis in HeLa cells by upregulating Bax levels and downregulating Bcl-2 protein levels, while inducing apoptosis in part by regulating the Bcl-2 family. The target of POL-P3b is probably TLR4 on HeLa cells, and POL-P3b induces apoptosis through activation of the TLR4/NF-kB pathway. | [36] | |
POP-S | In vivo | 25, 50, and 100 mg/kg | ICR mice | POP significantly inhibits the growth of transplantable sarcoma 180, increases the number of white blood cells (WBC) and CD4+ T lymphocytes and increases the CD4+/CD8+ ratio. In addition, oral administration of POP significantly increases the number of peripheral blood leukocytes and reduces serum AST, ALT, BUN and creatinine levels in tumor-bearing mice. | [22] | |
POL-P3b | In vivo | 50, 100 and 200 mg/kg | Female KM mice | Pol-p3b induces tumor-induced apoptosis in DC cells by stimulating the TLR4-PI3K/AKT-NF-κB signaling pathway. | [37] | |
POL-P3b | In vivo | 50 µg/mL and 100 mg/mL | BALB/c female mice | The mechanism of action may be related to the enhancement of specific antitumor immune responses involving the TLR4/MyD88/NF-κB signaling pathway. | [38] | |
POL-P3b | In vitro and in vivo | 250, 500 and 1000 μg/mL 50, 100 and 200 mg/kg | HeLa and U14 cells, Female KM mice | POL-P3b inhibits the growth of cervical cancer cells in vitro and in vivo, and also significantly inhibits tumor growth in U14 mice. | [18] | |
Anticolitis effects | POLP | In vivo | 0.75, 0.5 and 0.25 g/mL | KM mice | POLP exerts its protective effect through regulation of the IL-6/STAT3/COX-2 pathway. | [23] |
Immunomodulatory effects | PSPO (SePSPO-1, SePSPO-2) | In vitro | 753.8 and 1325.1 mg/kg | Female BALB/c | The higher the degree of selenylation of PSPO, the stronger the immunomodulatory effect on model cells, the increased phagocytosis of macrophages and the increased secretion of cytokines related to immunity. | [20] |
POL-P3b | In vivo | 250, 500 and 1000 μg/mL | Recombinant mouse GM-CSF, mouse CD11c, FITC antimouse CD80, FITC antimouse CD83, PE antimouse CD86 and PE antimouse MHC-II | The expression of TLR-4 is significantly increased in POL-P3b-treated dc, which may induce dc maturation through TLR-4, and this has important implications for the molecular mechanism of POL-P3b immune enhancement. | [39] | |
Purslane polysaccharide | In vitro and in vivo | 1, 5, 10, 20 and 40 μg/mL | Wistar rats; thymocytes | Purslane polysaccharides scavenge excess free radicals and boost the immune system. | [16] | |
Anti-lead poisoning effects | POP-T | In vitro and in vivo | 600 mg/kg/day | PC12 cells and rats | POP is protective against pb-induced oxidative toxicity in PC12 cells by reducing ROS production and increasing cell viability and also attenuates cognitive deficits in brain CA1 and DG regions and significantly reverses pb-induced spinal deficits in brain CA1 and DG regions. | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, C.; Li, J.; Hu, W.; Yu, A.; Tang, H.; Li, J.; Kuang, H.; Zhang, H. Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review. Molecules 2023, 28, 4813. https://doi.org/10.3390/molecules28124813
Wang M, Li C, Li J, Hu W, Yu A, Tang H, Li J, Kuang H, Zhang H. Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review. Molecules. 2023; 28(12):4813. https://doi.org/10.3390/molecules28124813
Chicago/Turabian StyleWang, Meng, Caijiao Li, Jiaye Li, Wenjing Hu, Aiqi Yu, Haipeng Tang, Jiayan Li, Haixue Kuang, and Huijie Zhang. 2023. "Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review" Molecules 28, no. 12: 4813. https://doi.org/10.3390/molecules28124813
APA StyleWang, M., Li, C., Li, J., Hu, W., Yu, A., Tang, H., Li, J., Kuang, H., & Zhang, H. (2023). Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review. Molecules, 28(12), 4813. https://doi.org/10.3390/molecules28124813