
Citation: Yoo, S.; Lee, H.; Kim, J.

Deep Learning for Identifying

Promising Drug Candidates in

Drug–Phospholipid Complexes.

Molecules 2023, 28, 4821. https://

doi.org/10.3390/molecules28124821

Academic Editor: Giulio Rastelli

Received: 17 May 2023

Revised: 14 June 2023

Accepted: 15 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Deep Learning for Identifying Promising Drug Candidates in
Drug–Phospholipid Complexes
Soyoung Yoo, Hanbyul Lee and Junghyun Kim *

Department of Artificial Intelligence, Sejong University, Seoul 05006, Republic of Korea;
yooso0731@gmail.com (S.Y.); 99dlgksquf@naver.com (H.L.)
* Correspondence: j.kim@sejong.ac.kr

Abstract: Drug–phospholipid complexing is a promising formulation technology for improving
the low bioavailability of active pharmaceutical ingredients (APIs). However, identifying whether
phospholipid and candidate drug can form a complex through in vitro tests can be costly and time-
consuming due to the physicochemical properties and experimental environment. In a previous
study, the authors developed seven machine learning models to predict drug–phospholipid complex
formation, and the lightGBM model demonstrated the best performance. However, the previous study
was unable to sufficiently address the degradation of test performance caused by the small size of the
training data with class imbalance, and it had the limitation of considering only machine learning
techniques. To overcome these limitations, we propose a new deep learning-based prediction model
that employs variational autoencoder (VAE) and principal component analysis (PCA) techniques
to improve prediction performance. The model uses a multi-layer one-dimensional convolutional
neural network (CNN) with a skip connection to effectively capture the complex relationship between
drugs and lipid molecules. The computer simulation results demonstrate that our proposed model
performs better than the previous model in all performance metrics.

Keywords: deep learning; drug discovery; drug–phospholipid complex; variational autoencoder;
principal component analysis; convolutional neural network

1. Introduction

Drug discovery and development are widely recognized as time-consuming and
expensive processes due to the various stages involved, including target identification and
validation, lead discovery and optimization, as well as preclinical and clinical trials [1].
The development of new drugs often takes more than a decade and requires billions of
dollars, with the costs increasing in proportion to the number of candidate drugs being
considered [2]. Therefore, it is critical to identify promising candidate drugs to reduce costs
by minimizing the number of necessary in vitro tests. In recent years, in silico approaches
have gained popularity for identifying candidate drugs [3,4]. In particular, numerous
studies have utilized machine learning (ML) and deep learning (DL) techniques to identify
candidate drugs [5–8].

In new drug development, optimizing drug solubility is a significant challenge for
pharmaceutical scientists due to the fact that roughly 40% of drugs have received market
approval, and nearly 90% of candidate drugs suffer from poor water solubility problems [9].
Poor water solubility can decrease the bioavailability of drugs and ultimately limit their
effectiveness. Therefore, many studies have been conducted to address this issue.

Phospholipid complexing is considered as one of the effective solutions for overcoming
the poor solubility of certain drugs [10–12]. Phospholipids are amphipathic molecules that
consist of both a polar and a non-polar portion. They can create complexes with potential
drugs, such as active pharmaceutical ingredients (APIs), in aprotic solvents through various
interactions. The phospholipid complex can enhance the oil solubility of hydrophilic drugs
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and the water solubility of hydrophobic drugs. This helps the drug enter the bloodstream
after oral administration, leading to improved bioavailability.

The formation of a drug–phospholipid complex may depend on the complex’s physic-
ochemical properties and the experimental conditions. Therefore, identifying these com-
plexes through in vitro tests can be time-consuming and costly. These cost issues can
be addressed by predicting which candidate drugs are capable of forming phospholipid
complexes using in silico methods, and then conducting experiments accordingly.

In a previous study [13], the authors proposed a light gradient-boosting machine
(lightGBM) model to predict the formulation of a drug–phospholipid complex. They
evaluated the performance of seven different machine learning approaches: random forest
(RF), support vector machine (SVM), decision tree (DT), naïve Bayes, extreme gradient
boosting (XGBoost), and lightGBM. Among these approaches, lightGBM achieved the
highest accuracy with a score of 87%. Furthermore, the authors carried out berberine
(BBR)–phospholipid complexation experiments to identify key factors influencing the
complexation rate. The experimental results aligned with the predictions made by the
lightGBM model. The study’s findings suggest that machine learning models hold promise
in identifying drug candidates. However, in the previous study, they did not consider
any deep learning approaches, and it is noteworthy that the lightGBM model failed to
achieve sufficient test performance due to the overfitting problem. Therefore, to overcome
the limitations of previous research, we propose a novel DL-based model for predicting
drug–phospholipid complex formulations.

The proposed model consists of a data preprocessing module for effective model train-
ing and a prediction block. The data preprocessing module includes normalization process,
data augmentation process using variational autoencoder (VAE) [14], and dimensionality
reduction process using principal component analysis (PCA) [15]. For the prediction block,
we designed an advanced prediction model by incorporating a skip connection into a multi-
layer, one-dimensional convolutional neural network (1D-CNN) that has recently achieved
high performance even with its simple structure. Finally, through computer simulation, we
confirmed the performance improvement of the proposed DL-based model compared to the
existing lightGBM. Additionally, we evaluated the impact of the VAE technique proposed
for data augmentation and various resampling techniques on the predictive performance
of the model through performance comparisons.

2. Results and Discussion
2.1. Computer Simulation Results

All feature values in the original training dataset were scaled to values between 0 and
1 using min–max normalization. The class imbalance issue was resolved by adding data
generated through the VAE to the original training dataset. The loss function used for VAE
training consists of reconstruction loss and regularization loss. To balance the two losses,
we set the weight multiplied by the reconstruction loss to 1000. We optimized the VAE
using the Adam algorithm with a learning rate of 0.001 and trained for 5000 iterations.

We generated 500 data samples using the trained VAE. To verify the quality of the
newly generated data, we visualized the class distribution of the original data samples and
generated data samples in the latent space in Figure 1. In Figure 1, the z1-axis represents
the first axis of the latent space vector, and the z2-axis represents the second axis. Circular
points represent original training data, while star points represent generated data. Purple
points indicate cases where drug–phospholipid complexes were formed, and yellow points
indicate cases where they were not. As the class boundaries in Figure 1 are relatively distinct
and data from the same class are densely clustered, we can confirm that the proposed
VAE has been well trained. We also determined that the generated data has a similar
distribution to the original data since the generated data is well situated in the densely
clustered space by class. Therefore, we randomly selected 86 samples from the newly
generated 500 data samples without replacement and added them to the original dataset to
address the data imbalance.
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Figure 1. Two–dimensional (2D) latent space visualization of original and generated data samples.

Figure 2 illustrates the class balance of the dataset used for model training. Figure 2a
represents the original training dataset’s class distribution, and Figure 2b shows the class
distribution of the new training dataset balanced through data augmentation. Through
this, we can confirm that the class imbalance issue in the dataset has been resolved.

Figure 2. The class distribution in (a) the original training dataset; (b) the augmented training dataset.

As the final step in the preprocessing process, we use PCA to reduce the dimensionality
of the dataset. This can also be applied identically to the test data in the test process.
Figure 3 is a scree plot showing eigenvalues and cumulative variance ratios according to
the component number. The blue boxes represent the cumulative variance ratio according
to the principal components, corresponding to the left y-axis, and typically, components
with cumulative values of 85% or higher are selected. The red line represents eigenvalues
according to the principal component number, corresponding to the right y-axis, and the
number of components is chosen near the part where the slope becomes significantly gentler,
i.e., the “elbow”. Through the scree plot, we finally selected 10 principal components based
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on performance validation. As a result, we reduced the dimensionality of the training data
from 46 to 10 using PCA.

Figure 3. Scree plot for PCA.

The multi-layer 1D-CNN model of the drug–phospholipid complex prediction block
was optimized using the Adam algorithm with a binary cross-entropy (BCE) loss function
and a learning rate of 0.001. After the training for 2500 iterations using the modified training
dataset, the performance on the training dataset was as follows: accuracy of 0.975, AUC of
0.998, specificity of 0.961, sensitivity of 0.989, and F1-score of 0.975. On the test dataset, the
performance was: accuracy of 0.942, AUC of 0.960, specificity of 0.897, sensitivity of 0.975,
and F1-score of 0.951.

In summary, the proposed model exhibited a performance of over 94% in almost all
metrics for both training and test datasets. Specifically, for the test dataset, the accuracy
was around 94%, and the sensitivity was 97.5%, showcasing very high performance. Fur-
thermore, the number of learning parameters for the prediction model was 3105, and the
training process took 30.18 s.

2.2. Performance Comparison of Data Augmentation Techniques

Data augmentation is used to address the class imbalance issue in a given original
dataset [16]. In this paper, VAE was employed for data augmentation. In traditional data
augmentation approaches that do not utilize DL, resampling techniques are a prominent
example. Resampling techniques can be divided into oversampling, which generates
additional data samples; undersampling, which removes data samples; and combined
sampling, which incorporates both oversampling and undersampling methods.

We applied various resampling techniques instead of VAE to verify the prediction
performance. For oversampling, we selected SMOTE [17]; for undersampling, we chose
ENN [18]; and for combined sampling, we opted for SMOTE-ENN [19]. We maintained the
same structure for the proposed model, with the exception of the data augmentation part.

Table 1 shows the number of class-specific data samples generated using each data
augmentation technique. The number of training samples was 358 when using the over-
sampling method SMOTE and VAE, and 193 when using the undersampling method
ENN. Each dataset was dimensionally reduced to 10 using PCA before being used for the
model training.

Figure 4 shows the test accuracy of the resampling techniques and the proposed VAE
as the number of epochs increases. The prediction accuracy of ENN and SMOTE-ENN was
noticeably lower compared to other methods, and particularly worse than when using the



Molecules 2023, 28, 4821 5 of 15

original training dataset. The accuracy of the original dataset, SMOTE, and VAE increased
similarly as the training progressed, with VAE achieving the highest performance from
approximately the 1600th iteration.

Table 1. Class distribution comparison between original and new training datasets.

Variable Original ENN SMOTE SMOTE-
ENN VAE

Drug–phospholipid complexation Success 179 100 179 138 179
Failure 93 93 179 137 179

Total 272 193 358 275 358

Figure 4. Testing accuracy comparison of sampling techniques.

Table 2 shows the prediction performance based on different data augmentation tech-
niques. Although ENN and SMOTE-ENN, which include undersampling, demonstrated
high performance in the training dataset, they overfit and resulted in a 20% performance
degradation in the test dataset. Oversampling techniques such as SMOTE and VAE did not
overfit and maintained high prediction performance in the test set. In comparison to the
original dataset, both ENN and SMOTE-ENN experienced approximately a 10% perfor-
mance drop in the test dataset, while SMOTE and VAE showed performance improvement.
Notably, when using the proposed VAE, prediction accuracy improved by about 3%.

Table 2. Performance comparison of the sampling techniques for the proposed model.

Methods
Training Set Test Set

Accuracy AUC Specificity Sensitivity F1-Score Accuracy AUC Specificity Sensitivity F1-Score

Original 0.967 0.997 0.946 0.978 0.975 0.913 0.936 0.862 0.95 0.927
ENN 0.985 0.999 0.978 0.99 0.985 0.797 0.846 0.897 0.725 0.806

SMOTE-ENN 1 1 1 1 1 0.826 0.828 0.793 0.85 0.85
SMOTE 0.966 0.998 0.978 0.955 0.966 0.928 0.957 0.931 0.925 0.937

VAE 0.975 0.998 0.961 0.989 0.975 0.942 0.960 0.897 0.975 0.951

2.3. Performance Comparison between the Previous Model and the Proposed Model

In the prior research [13], the authors used seven machine learning models to predict
the formulation of phospholipid complex and proposed lightGBM as the model with
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the best performance. To overcome the performance limitation of the existing model,
we incorporated a data preprocessing module that assists with feature extraction in our
proposed model and designed the prediction block as a multi-layer 1D-CNN with a single
skip connection. We analyzed the performance of the existing model and the proposed
model using the same dataset.

Table 3 shows the performance of the proposed model compared to the existing model.
The proposed model performs better than the prior model in all metrics except for the
F1-score on the training dataset, and particularly demonstrated an improvement of at least
5% across all metrics on the test dataset. While the accuracy gap between the training and
test datasets was approximately 10% for the lightGBM model, our model achieved a gap
of only 3%, indicating improved generalization performance. Additionally, the sensitivity
metric, which we aimed to highlight among several performance indicators, was very high
with 98.9% on the training dataset and 97.5% on the test dataset. It can be confirmed that the
proposed model can identify the possibility of the phospholipid complex formation with
higher performance compared to the existing model, using appropriate data preprocessing
and effective prediction model construction.

Table 3. Performance comparison between the existing and the proposed models.

Model
Training Set Test Set

Accuracy AUC Specificity Sensitivity F1-Score Accuracy AUC Specificity Sensitivity F1-Score

Gao et al. [13] 0.971 0.998 0.946 0.983 0.978 0.870 0.906 0.793 0.925 0.892
Prop. 0.975 0.998 0.961 0.989 0.975 0.942 0.960 0.897 0.975 0.951

2.4. Ablation Study

Furthermore, we conducted computer simulations for ablation study to validate the
effectiveness of our proposed model. Specifically, we individually excluded VAE and PCA
from our proposed model and evaluated the performance of predicting drug–phospholipid
complex formation prediction. Table 4 shows the results of the simulations. In the first
ablation case, where VAE was excluded, the accuracy of the training dataset was 97.1%,
which was similar to the proposed model, but the accuracy of the test dataset was 91.3%,
about 3% lower than the proposed model. In the second ablation case, excluding PCA, the
accuracy of the training and test datasets was 90.5% and 88.4%, respectively, which was
lower than the proposed model. It is noteworthy that in both ablation cases, the proposed
model performs better than the previous model with a test dataset accuracy of 87%.

Table 4. Computer simulation results for the ablation study.

Model
Training Set Test Set

Accuracy AUC Specificity Sensitivity F1-Score Accuracy AUC Specificity Sensitivity F1-Score

Without VAE 0.971 0.998 0.946 0.983 0.978 0.913 0.928 0.828 0.975 0.929
Without PCA 0.905 0.980 0.855 0.955 0.910 0.884 0.902 0.793 0.950 0.905

Prop. 0.975 0.998 0.961 0.989 0.975 0.942 0.960 0.897 0.975 0.951

Thus, we were able to confirm that both VAE and PCA contribute positively to the per-
formance of the drug–phospholipid complex formation prediction. Particularly, PCA had
a greater impact on performance improvement during the training and testing processes
compared to VAE, as it generates new variables through the novel combinations of various
molecular descriptors. These results indicate that our proposed model is appropriately
designed for predicting drug–phospholipid complex formation.

2.5. Analysis of Contributing Factors

We conducted an analysis of the impact of the molecular descriptors in the dataset on
the prediction outcomes. We performed predictions in our proposed model excluding PCA
and investigated the predictive contributions of each descriptor. Since PCA transforms
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the dimensions of the data, it is difficult to interpret it in terms of the original features.
Therefore, we excluded PCA from our analysis.

Figure 5 represents the 20 descriptors with relatively high contributions to the predic-
tion of drug–phospholipid complex formation among the 46 descriptors. When compared
to the results of the lightGBM model in [13], it is observed that 17 out of the top 20 de-
scriptors match, excluding 3 descriptors. However, there are differences in the order and
contribution ratios of each descriptor due to differences in the prediction models.

Figure 5. The relative importance of the molecular descriptors of the proposed model.

The fact that three descriptors of experimental conditions are positioned in the top
ranks suggests that experimental conditions play a significant role in drug–phospholipid
complex formation. Additionally, it is evident that the distribution of data significantly
influences the prediction performance. For instance, the number of heavy atoms in lipids
depicted in Figure 6c has only one value of 52 for all samples, regardless of the formation of
drug–phospholipid complexes. Such features provide no assistance in the prediction. The
reason why most molecular descriptors for the phospholipids have lower contributions is
also due to this factor. Therefore, when performing predictions using such a dataset, feature
selection or dimensionality reduction techniques like PCA are essential. The significant
impact of PCA on performance observed in the ablation study can also be interpreted from
this perspective.

On the other hand, among the molecular descriptors for the solvents, the dielectric
constant exhibited the highest contribution in the proposed model, unlike the lightGBM
model. This confirms the proposed neural network architecture and data augmentation
have contributed to the high importance of this molecular descriptor. From the result,
we can conclude that we can overcome the limitations of the given experimental data
by leveraging various deep learning techniques. Additionally, the interpretable results
provided by deep learning technology offer valuable insights for conducting additional
experiments aimed at improving performance.
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Figure 6. The distribution of the parameter in the original training dataset: (a) molecular weight for
drugs; (b) LogP for drugs; (c) Heavy atom count for lipid; (d) Reaction temperature.

3. Materials and Methods
3.1. Materials

We utilized the drug–phospholipid complex data selected in the previous research [13].
The data were collected from published literature between 1999 and 2019 in the Web of
Science, Scopus, and CNKI databases using a keyword search strategy. To ensure data
reliability, the authors selected literature containing complexation rate information or other
characterizations. As a result, 341 valid formulations and 59 APIs were gathered from the
literature data.

The data were characterized by molecular descriptors to describe the structural and
physicochemical properties of the APIs, phospholipids, and all reaction solvents. Specifi-
cally, to describe the structural and physiochemical properties of APIs, we selected 11 molec-
ular descriptors, including molecular weight, XlogP3, hydrogen bond donor count, hydro-
gen bond acceptor count, rotatable bond count, topological polar surface area, heavy atom
count, complexity, logP, logS, and melting temperature. Additionally, for phospholipids
description, we utilized 18 molecular descriptors such as unsaturation index, hydrophilic
factor, Ghose–Crippen molar refractivity, topological polar surface area, number of nitro-
gen atoms, etc. All reaction solvents were characterized using 13 molecular descriptors,
including molecular weight, XlogP3, logP, hydrogen bond donor count, hydrogen bond
acceptor count, rotatable bond count, topological polar surface area, heavy atom count,
complexity, electric constant, boiling point, vapor pressure, and polar index. Furthermore,
temperature and time were chosen as descriptors to explain the experimental conditions.

The entire dataset was divided into two subsets: a training set (272 formulas) and a
test set (69 compositions) using the molecular distance-based feature importance sampling
(MD-FIS) algorithm [20]. Since the size of the entire dataset was not large, a validation set
was not defined. For each data sample, if the complexation rate was 80% or higher, it was
labeled as “success”, and if it was lower than 80%, it was labeled as “failure”.

3.2. Proposed Model

The proposed model for predicting drug–phospholipid complex formation consists of
a data preprocessing module and a prediction block. In the data preprocessing module,
we employ min–max normalization for data normalization, VAE for data augmentation,
and PCA for dimensionality reduction. Data augmentation is applied only to the training
dataset to address the class imbalance problem. The transformed training dataset, obtained
through data preprocessing, is subsequently used for training the prediction model. Within
the prediction block, the model employs a multi-layer 1D-CNN structure which includes
a single skip connection. The overall architecture of the proposed model is illustrated
in Figure 7.
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Figure 7. Architecture of the proposed model for phospholipid complex formation prediction.

3.3. Min–Max Normalization

Deep learning involves the process of updating the weights and biases of neurons to
minimize the loss function. When a dataset containing variables with different scales is
used for deep learning training, each variable is affected differently by weight updates,
which can make parameter optimization challenging and lead to a decline in prediction
performance. Therefore, data standardization or normalization is employed for scaling
purposes. Among them, min–max normalization is one of the most common methods.
Min–max normalization is a scaling approach that utilizes the maximum and minimum
values of each variable and is defined as follows:

Xnormalization =
X − Xmin

Xmax − Xmin
, (1)

where X represents the variable to be scaled. After scaling, the variable has values ranging
between 0 and 1.

To determine the necessity of the normalization technique introduced above for the
dataset, we visualized the distribution of some variables within the original training dataset
in Figure 6. Figure 6a–d show the distributions of molecular weight, logP, number of heavy
atoms in lipids, and reaction temperature, respectively. The molecular weight and logP
of the drugs ranged from 200 to 1100 and −2 to 8, as shown in Figure 6a,b. This means
that the original dataset exhibits significant scale differences between variables. Since
the PCA, which we will use later, can be significantly impacted by large-scale variables
when selecting principal components, it is essential to standardize or normalize the data in
advance. Therefore, we first applied min–max normalization, and as a result, all elements
of the training dataset have values between 0 and 1.

3.4. Variational Autoencoder

VAE is a type of generative model that learns to represent complex data distributions
by encoding input data into a lower-dimensional latent space and then decoding it back to
the original space. VAE consists of two main components: an encoder and a decoder. The
encoder learns to map the input data to a lower-dimensional latent space, represented by a
probability distribution over latent variables. The decoder then takes samples from this
distribution and reconstructs the input data.

One of the key features of VAE is the incorporation of a regularization term in their
training objective. This term encourages the learned latent space to have a specific structure,
typically a multivariate Gaussian distribution with a mean of zero and an identity covari-
ance matrix. This constraint ensures that the latent space is smooth and well structured,
allowing for more meaningful interpolations and sampling.

The training process of VAE involves optimizing both the encoder and decoder net-
works using a combination of two loss functions: the reconstruction loss and the regulariza-
tion loss. The reconstruction loss measures how well the decoder can reconstruct the input
data from the encoded latent variables, while the regularization loss enforces the desired
structure on the latent space. By minimizing the combined loss, VAE learns to generate
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samples that closely resemble the training data while maintaining a well-structured latent
space. Our training dataset comprises a total of 272 rows, with 179 cases involving the
formation of drug–phospholipid complexes and 93 cases without drug–phospholipid com-
plex formation, displaying imbalanced characteristics. Small and imbalanced datasets can
negatively impact the generalization performance and accuracy of deep learning models in
classification problems. This is because predictive models tend to be more biased towards
the features of the larger class compared to the smaller class. Among various methods to
address data imbalance issues, we employed a data augmentation technique called VAE.
Specifically, we used VAE to generate additional data samples from the smaller class, equal
to the difference in sample size between the larger and smaller classes, and incorporated
them into the original dataset.

Figure 8 illustrates the architecture of the VAE model we constructed. All layers of
the VAE are composed of fully connected layers. The encoder passes through two hidden
layers with 50 and 25 neurons, respectively, and outputs the mean and log-variance for
generating the latent space. The proposed VAE’s latent space is set to 2 dimensions. The
decoder is symmetric to the encoder and passes through two hidden layers with 25 and
50 neurons, respectively, reconstructing the input data with the same dimensions. For
activation functions, we used ReLU functions [21] in all hidden layers and a sigmoid
function in the output layer. Biases in all layers were initialized to 0, and weights were
initialized with random values following a He normal distribution [22].

Figure 8. Architecture of the proposed VAE.

3.5. Principal Component Analysis

Some features in the dataset used for model training may have little or no impact on
the prediction results, be less important, or exhibit high correlations with other features.
In such cases, performing dimensionality reduction before training can help reduce the
model’s complexity and training time while improving prediction performance [23–26].
In the proposed model, we used PCA as a dimensionality reduction technique. PCA is a
widely used statistical technique for dimensionality reduction and feature extraction in
data analysis. The primary goal of PCA is to transform a dataset with multiple variables
into a new set of variables called principal components while retaining as much of the
original variation as possible. These principal components are linear combinations of the
original variables and are orthogonal to each other, meaning that they are uncorrelated.

PCA works by calculating the covariance matrix of the original dataset, then finding
the eigenvectors and eigenvalues of this matrix. The eigenvectors represent the directions
of the principal components, while the eigenvalues represent the magnitude of the variance
explained by each principal component. The principal components are then sorted in
descending order according to their corresponding eigenvalues, with the first principal
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component explaining the largest amount of variance in the data, the second principal
component explaining the next largest amount, and so on. By projecting the original data
onto a lower-dimensional subspace formed by the top k principal components, PCA can
reduce the dimensionality of the data while retaining most of the original variation. This
reduced-dimensional representation can help in visualizing high-dimensional data, remov-
ing noise, and improving the performance of machine learning algorithms by reducing the
risk of overfitting and the computational cost associated with high-dimensional data.

Determining the number of principal components in PCA is crucial, as it can influence
the final prediction performance. To address this, we employed a scree plot. The plot
shows the eigenvalues, which represent the amount of variance explained by each principal
component, in descending order. Each eigenvalue is plotted on the y-axis, while the
corresponding principal component’s order is plotted on the x-axis. Typically, the plot
shows a steep drop in the eigenvalues initially, followed by a leveling off or an “elbow”
shape. This elbow point indicates that the addition of more principal components beyond
that point would not significantly improve the explained variance. To determine the optimal
number of principal components, one can look for the “elbow” or the point where the plot
starts to level off. Retaining principal components up to this point ensures that a substantial
amount of the original variance is preserved while reducing the dimensionality of the
data. Alternatively, by calculating the cumulative explained variance, the components that
achieve the cumulative value of 85% or higher can be chosen as the principal components.

3.6. Multi-Layer 1D-CNN

A 1D-CNN [27] is a variation of the traditional CNN designed to handle one-dimensional
data, such as time series or sequences. Like regular CNNs, 1D-CNNs consist of several layers,
including convolutional layers, pooling layers, and fully connected layers. The main difference
is that the convolution and pooling operations are performed only along one spatial dimension
instead of two, as in the case of 2D-CNNs for images.

In a 1D-CNN, the convolutional layer employs one-dimensional filters that move
across the input sequence, identifying local patterns or characteristics within a specific
window or receptive area. The learned filters can capture temporal dependencies or other
local structures within the data. After the convolutional layers, pooling layers are often used
to reduce the dimensionality of the feature maps and extract the most important features.
Commonly used pooling techniques in 1D-CNNs include max pooling, average pooling,
and global average pooling. Finally, the output from the convolutional and pooling layers
is typically flattened and passed through one or more fully connected layers to produce the
final output, such as a classification or regression result. In recent studies, such 1D-CNN
models have achieved high performance with only fewer than 10,000 parameters [28–30].

Figure 9 illustrates the proposed multi-layer 1D-CNN architecture. We configured
the kernel size and stride of the 1D-CNN to be 1 and increased the number of channels
sequentially as the layers deepen to 8, 16, and 32. Here, the number of channels refers to
the number of filters for feature extraction, and increasing this number allows for more
complex and diverse feature extraction.

The feature maps generated by the first 1D convolutional layer are combined with
the feature maps generated by the third 1D convolutional layer to prevent the loss of
information from the lower layers. Since increasing the number of channels could lead to
overfitting, we mitigated this risk by adding a pooling layer. In the proposed architecture,
the pooling size is set to 2. After the pooling, additional convolution and pooling layers are
applied to extract the final features. The final output feature maps are flattened through a
flatten layer and then passed through a dense layer to produce the predicted values for the
drug–phospholipid complex formation.
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Figure 9. Architecture of the proposed multi-layer 1D-CNN.

3.7. Evaluation Metrics

For comparison with previous research [13], the same metrics were used for per-
formance evaluation. Accuracy is commonly used to evaluate model performance in
classification tasks. It is the ratio of correct predictions to total predictions made. It is
defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
, (2)

where TP = true positive, FP = false positive, TN = true negative, and FN = false negative.
From the perspective of predicting drug–phospholipid complex formation, TP repre-

sents the number of cases where the model accurately predicts the formation of a complex
when it is indeed formed. FP represents the number of cases where the model erroneously
predicts the formation of a complex when it is not actually formed. TN represents the
number of cases where the model correctly predicts that no complex is formed when it is
indeed not formed. FN represents the number of cases where the model incorrectly predicts
that a complex is not formed when it is actually formed.

Sensitivity, also known as recall, is the ratio of correctly predicted positive samples to
the total actual positive samples. It is defined as follows:

Sensitivity =
TP

TP + FN
. (3)

Specificity is the ratio of correctly predicted negative samples to the total actual
negative samples. It is defined as follows:

Speci f icity =
TN

TN + FP
. (4)
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Precision is the ratio of correctly predicted positive samples to the total predicted
positive samples. It is defined as follows:

Precision =
TP

TP + FP
. (5)

F1-score is the harmonic mean of precision and recall, often used for binary classifica-
tion problems with imbalanced classes. It is defined as follows:

F1 =
2 × (Precision × Recall)

(Precision + Recall
(6)

Area under the curve (AUC) is a performance metric that is often used in binary
classification problems to evaluate the effectiveness of a model. Specifically, it measures the
area under the receiver operating characteristic (ROC) curve, which is a plot that illustrates
the true positive rate, sensitivity against the false positive rate, and 1-specificity at various
classification threshold levels.

The AUC value ranges from 0 to 1, with an AUC of 0.5 representing a random
classifier and an AUC of 1 representing a perfect classifier. In general, the higher the
AUC value, the better the classification model’s performance. AUC is particularly useful
for evaluating classification models when the classes are imbalanced or when there is
a varying cost associated with false positives and false negatives. Additionally, AUC
takes both sensitivity and specificity into account, providing a comprehensive view of the
classifier’s performance.

All of the performance metrics mentioned above have values ranging from 0 to 1, with
higher values indicating better predictive performance of the model. The predictive model
serves as a preliminary screening tool to identify as many candidate drugs as possible
that may form drug–phospholipid complexes. Therefore, in this study, it is particularly
important for the prediction model to maximize sensitivity, along with accuracy and other
performance metrics.

4. Conclusions

In this paper, we addressed a drug–phospholipid complex formation prediction tech-
nique that can be utilized to identify promising candidate complexes prior to experimental
validation. In previous studies, we compared the performance of seven machine learning
models for predicting drug–phospholipid complex formation and suggested lightGBM as
the best-performing model. However, the existing model had limitations in demonstrating
sufficiently high performance on the test dataset. Therefore, we propose a new prediction
model based on deep learning to prevent overfitting and ensure high generalization per-
formance. In detail, we devised a preprocessing module to tackle the challenges of scale
disparities in variables and class imbalance in the original training dataset. This module
incorporates min–max normalization, data augmentation using VAE, and dimensionality
reduction via PCA. Furthermore, to facilitate efficient prediction model design, we utilized
a multi-layered 1D-CNN with skip connections.

From the computer simulation results, it is confirmed that the proposed VAE yielded
the most significant improvement in prediction performance when compared to various
resampling techniques. Additionally, comparing the proposed model with the existing
model using lightGBM, it was evident that the proposed model exhibited superior predic-
tion performance even without the proposed data preprocessing steps. The final proposed
model, incorporating the preprocessing steps, effectively reduced the accuracy discrepancy
between the training and test datasets approximately from 10% to 3% and achieved an
improvement in test dataset accuracy from 87% to 94.2%. Furthermore, the proposed model
successfully identified promising candidate drugs with a high sensitivity of 97.5%. These
results provide valuable insights into the necessity of the preprocessing module to address
class imbalance issues in the dataset and enable the development of efficient prediction
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models. Taking into account the overall results of this study, it is expected that the proposed
model and techniques will significantly contribute to diverse potential applications in the
process of identifying candidate compounds for new drug development.
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