New Heterocyclic Compounds from Oxazol-5(4H)-one and 1,2,4-Triazin-6(5H)-one Classes: Synthesis, Characterization and Toxicity Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Toxicity Assays
2.2.1. Daphnia magna Bioassay
2.2.2. Saccharomyces cerevisiae Toxicity Assay
2.3. Prediction of the Molecular Mechanism of Action
3. Materials and Methods
3.1. Chemistry
3.1.1. General Information
3.1.2. General Procedure for the Synthesis of 4-Arylidene-2-(4-(4-X-phenylsulfonyl)phenyl)oxazol-5(4H)-ones 3a–d
3.1.3. General Procedure for the Synthesis of 3-(4-(4-X-Phenylsulfonyl)phenyl)-5-(4-arylidene)-2-phenyl-1,2-dihydro-1,2,4-triazin-6(5H)-ones 4a–d
3.2. Toxicity Evaluation
3.2.1. Daphnia magna Toxicity Assay
3.2.2. S. cerevisiae Toxicity Assay
Yeast Strain and Growth Conditions
Cell Growth Assessment
3.3. Prediction of the Molecular Mechanism of Action
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24, 3839. [Google Scholar] [CrossRef] [Green Version]
- Heravi, M.M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef]
- Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, 2nd ed.; John Wiley & Sons: West Sussex, UK, 2011; pp. 139–244. ISBN 9780470714119. [Google Scholar]
- Kakkar, S.; Narasimhan, B. A Comprehensive Review on Biological Activities of Oxazole Derivatives. BMC Chem. 2019, 13, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Yuan, G. Synthesis of 2,4,5-Trisubstituted Oxazoles from 1,2-Diketones and Amines by Using an Electrochemical Method. Tetrahedron 2023, 132, 133246. [Google Scholar] [CrossRef]
- Samuel, Y.; Garg, A.; Mulugeta, E. Synthesis, DFT Analysis, and Evaluation of Antibacterial and Antioxidant Activities of Sulfathiazole Derivatives Combined with In Silico Molecular Docking and ADMET Predictions. Biochem. Res. Int. 2021, 2021, 7534561. [Google Scholar] [CrossRef]
- Kushwaha, N.; Kushwaha, S. Synthetic Approaches and Biological Significance of Oxazolone Moieties: A Review. Biointerface Res. Appl. Chem. 2022, 12, 6460–6486. [Google Scholar] [CrossRef]
- Youssef, A.S.A.; El-Mariah, F.A.; Abd-Elmottaleb, F.T.; Hashem, H.E. Reaction of 2-Phenyl-4-Arylidene-1,3-Oxazolones with Different Nucleophiles for Synthesis of Some New Heterocycles. J. Heterocycl. Chem. 2019, 56, 456–463. [Google Scholar] [CrossRef]
- Al-Warhi, T.; Abualnaja, M.; Abu Ali, O.A.; Althobaiti, F.; Alharthi, F.; Elsaid, F.G.; Shati, A.A.; Fayad, E.; Elghareeb, D.; Abu Almaaty, A.H.; et al. Synthesis and Biological Activity Screening of Newly Synthesized Trimethoxyphenyl-Based Analogues as Potential Anticancer Agents. Molecules 2022, 27, 4621. [Google Scholar] [CrossRef]
- Mavridis, E.; Bermperoglou, E.; Pontiki, E.; Hadjipavlou-Litina, D. 5-(4H)-Oxazolones and Their Benzamides as Potential Bioactive Small Molecules. Molecules 2020, 25, 3173. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, B.; Su, W.; Xu, Z. Erlenmeyer Synthesis for Azlactones Catalyzed by Ytterbium(III) Triflate under Solvent-Free Conditions. Synth. Commun. 2006, 36, 3447–3453. [Google Scholar] [CrossRef]
- Algohary, A.M.; Alhalafi, M.H. Design, Synthesis and Evaluate of Imidazole, Triazine and Metastable Oxazolone Derivatives as Chemosensor for Detecting Metals. J. Saudi Chem. Soc. 2022, 26, 101537. [Google Scholar] [CrossRef]
- Almalki, A.J.; Ibrahim, T.S.; Taher, E.S.; Mohamed, M.F.A.; Youns, M.; Hegazy, W.A.H.; Al-Mahmoudy, A.M.M. Synthesis, Antimicrobial, Anti-Virulence and Anticancer Evaluation of New 5(4H)-Oxazolone-Based Sulfonamides. Molecules 2022, 27, 671. [Google Scholar] [CrossRef]
- Savariz, F.C.; Foglio, M.A.; De Carvalho, J.E.; Ruiz, A.L.T.G.; Duarte, M.C.T.; Da Rosa, M.F.; Meyer, E.; Sarragiotto, M.H. Synthesis and Evaluation of New β-Carboline-3-(4-Benzylidene)-4H-Oxazol-5-One Derivatives as Antitumor Agents. Molecules 2012, 17, 6100–6113. [Google Scholar] [CrossRef]
- Albelwi, F.F.; Al-anazi, M.; Naqvi, A.; Hritani, Z.M.; Okasha, R.M.; Afifi, T.H.; Hagar, M. Novel Oxazolones Incorporated Azo Dye: Design, Synthesis Photophysical-DFT Aspects and Antimicrobial Assessments with In-Silico and In-Vitro Surveys. J. Photochem. Photobiol. 2021, 7, 100032. [Google Scholar] [CrossRef]
- Parveen, M.; Ali, A.; Ahmed, S.; Malla, A.M.; Alam, M.; Pereira Silva, P.S.; Silva, M.R.; Lee, D.U. Synthesis, Bioassay, Crystal Structure and Ab Initio Studies of Erlenmeyer Azlactones. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 104, 538–545. [Google Scholar] [CrossRef]
- Saour, K.Y.; Al-Bayati, R.I.H.; Shia, J.S. Synthesis of 4-Benzylidene-2-(4-Nitro-Phenyl)-4H-Oxazol-5-One Derivatives with Suspected Biological Activity. Chem. Mat. Res. 2015, 7, 105–109. [Google Scholar]
- Mohamed, L.W.; El-Badry, O.M.; El-Ansary, A.K.; Ismael, A. Design & Synthesis of Novel Oxazolone & Triazinone Derivatives and Their Biological Evaluation as COX-2 Inhibitors. Bioorg. Chem. 2017, 72, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-X.; Xu, G.-L.; Hou, B.-B.; Ao, G.-Z. Synthesis and Anti-Inflammatory Activities of Oxazolone Compounds. Chin. J. Synth. Chem. 2015, 23, 1175–1177. [Google Scholar] [CrossRef]
- Kuş, C.; Uğurlu, E.; Özdamar, E.D.; Can-Eke, B. Synthesis and Antioxidant Properties of New Oxazole-5(4H)-One Derivatives. Turk. J. Pharm. Sci. 2017, 14, 174–178. [Google Scholar] [CrossRef]
- Mariappan, G.; Saha, B.P.; Datta, S.; Kumar, D.; Haldar, P.K. Design, Synthesis and Antidiabetic Evaluation of Oxazolone Derivatives. J. Chem. Sci. 2011, 123, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Kumar, N.; Roy, R.K.; Singh, A. Triazines—A Comprehensive Review of Their Synthesis and Diverse Biological Importance. Curr. Med. Drug Res. 2017, 1, 173. [Google Scholar]
- Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An Overview on the Recent Developments of 1,2,4-Triazine Derivatives as Anticancer Compounds. Eur. J. Med. Chem. 2017, 142, 328–375. [Google Scholar] [CrossRef]
- Pal, R.; Kumar, B.; Guruubasavaraja, S.P.M.; Chawla, P.A. Design, Synthesis of 1,2,4-Triazine Derivatives as Antidepressant and Antioxidant Agents: In Vitro, in Vivo and in Silico Studies. Bioorg. Chem. 2023, 131, 106284. [Google Scholar] [CrossRef] [PubMed]
- El-Barbary, A.A.; Imam, D.R.; El–Tahawy, M.M.T.; El-Hallouty, S.M.; Kheder, N.A.; Khodair, A.I. Unexpected Synthesis, Characterization, Biological Evaluations, and Computational Details of Novel Nucleosides Containing Triazine-Pyrrole Hybrid. J. Mol. Struct. 2023, 1272, 134182. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Alaryani, F.S.; Qahl, S.H.; Hamza, R.Z. Synthesis, Spectroscopic Studies for Five New Mg (II), Fe (III), Cu (II), Zn (II) and Se (IV) Ceftriaxone Antibiotic Drug Complexes and Their Possible Hepatoprotective and Antioxidant Capacities. Antibiotics 2022, 11, 547. [Google Scholar] [CrossRef]
- Zaki, I.; Abdelhameid, M.K.; El-Deen, I.M.; Abdel Wahab, A.H.A.; Ashmawy, A.M.; Mohamed, K.O. Design, Synthesis and Screening of 1, 2, 4-Triazinone Derivatives as Potential Antitumor Agents with Apoptosis Inducing Activity on MCF-7 Breast Cancer Cell Line. Eur. J. Med. Chem. 2018, 156, 563–579. [Google Scholar] [CrossRef]
- Salem, M.S.; El-Helw, E.A.E.; Derbala, H.A.Y. Development of Chromone–Pyrazole-Based Anticancer Agents. Russ. J. Bioorg. Chem. 2020, 46, 77–84. [Google Scholar] [CrossRef]
- Verma, T.; Sinha, M.; Bansal, N. Triazinone Derivatives as Antibacterial and Antimalarial Agents. Asian Pac. J. Health Sci. 2019, 6, 1–20. [Google Scholar] [CrossRef]
- Kaushik, D.; Khan, S.A.; Chawla, G. Design & Synthesis of 2-(Substituted Aryloxy)-5-(Substituted Benzylidene)-3-Phenyl-2,5-Dihydro-1H-[1,2,4] Triazin-6-One as Potential Anticonvulsant Agents. Eur. J. Med. Chem. 2010, 45, 3960–3969. [Google Scholar] [CrossRef] [PubMed]
- Al-Said, M.S.; Ghorab, M.M.; Nissan, Y.M. Dapson in Heterocyclic Chemistry, Part VIII: Synthesis, Molecular Docking and Anticancer Activity of Some Novel Sulfonylbiscompounds Carrying Biologically Active 1,3-Dihydropyridine, Chromene and Chromenopyridine Moieties. Chem. Cent. J. 2012, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, D.; Khazalpour, S.; Ranjbar, M.; Momeni, S. A Green Strategy for the Synthesis of Sulfone Derivatives of p-Methylaminophenol: Kinetic Evaluation and Antibacterial Susceptibility. Sci. Rep. 2017, 7, 4436. [Google Scholar] [CrossRef]
- Mady, M.F.; Awad, G.E.A.; Jørgensen, K.B. Ultrasound-Assisted Synthesis of Novel 1,2,3-Triazoles Coupled Diaryl Sulfone Moieties by the CuAAC Reaction, and Biological Evaluation of Them as Antioxidant and Antimicrobial Agents. Eur. J. Med. Chem. 2014, 84, 433–443. [Google Scholar] [CrossRef]
- Neamati, N.; Mazumder, A.; Zhao, H.; Sunder, S.; Burke, T.R.; Schultz, R.J.; Pommier, Y. Diarylsulfones, a Novel Class of Human Immunodeficiency Virus Type 1 Integrase Inhibitors. Antimicrob. Agents Chemother. 1997, 41, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaoui, N.; Hanna, E.; Abbas, O.; Kibbi, A.G.; Kurban, M. Update on the Use of Dapsone in Dermatology. Int. J. Dermatol. 2020, 59, 787–795. [Google Scholar] [CrossRef]
- Roșca, E.V.; Apostol, T.V.; Chifiriuc, M.C.; Grădișteanu Pîrcălăbioru, G.; Drăghici, C.; Socea, L.I.; Olaru, O.T.; Nițulescu, G.M.; Pahonțu, E.M.; Hrubaru, M.; et al. In Silico and Experimental Studies for the Development of Novel Oxazol-5(4H)-Ones with Pharmacological Potential. Farmacia 2020, 68, 453–462. [Google Scholar] [CrossRef]
- Rosca, E.V.; Apostol, T.V.; Draghici, C.; Olaru, O.T.; Socea, L.I.; Iscrulescu, L.; Saramet, G.; Barbuceanu, F.; Pahontu, E.M.; Baraitareanu, S.; et al. Synthesis, Characterization and Cytotoxicity Evaluation of New Compounds from Oxazol-5(4H)-Ones and 1,2,4-Triazin-6(5H)-Ones Classes. Rev. Chim. 2019, 70, 3769–3774. [Google Scholar] [CrossRef]
- Bărbuceanu, F.; Roşca, E.V.; Apostol, T.V.; Şeremet, O.C.; Drăghici, C.; Mihai, D.P.; Negreş, S.; Niţulescu, G.M.; Bărbuceanu, Ş.F. New 2-(4-(4-Bromophenylsulfonyl)Phenyl)-4-Arylidene-Oxazol-5(4H)-Ones: Analgesic Activity and Histopathological Assessment. Rom. J. Morphol. Embryol. 2020, 61, 493–502. [Google Scholar] [CrossRef]
- Apostol, T.V.; Marutescu, L.G.; Draghici, C.; Socea, L.I.; Olaru, O.T.; Nitulescu, G.M.; Pahontu, E.M.; Saramet, G.; Enache-Preoteasa, C.; Barbuceanu, S.F. Synthesis and Biological Evaluation of New N-Acyl-α-amino Ketones and 1,3-Oxazoles Derivatives. Molecules 2021, 26, 5019. [Google Scholar] [CrossRef] [PubMed]
- Guilhermino, L.; Diamantino, T.; Carolina Silva, M.; Soares, A.M.V.M. Acute Toxicity Test with Daphnia magna: An Alternative to Mammals in the Prescreening of Chemical Toxicity? Ecotoxicol. Environ. Saf. 2000, 46, 357–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, M.; Schwanewilm, P.; Ludwig, J.; Lichtenberg-Fraté, H. Use of PMA1 as a Housekeeping Biomarker for Assessment of Toxicant-Induced Stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2006, 72, 1515–1522. [Google Scholar] [CrossRef] [Green Version]
- Kolaczkowski, M.; Goffeau, A. Active Efflux by Multidrug Transporters as One of the Strategies to Evade Chemotherapy and Novel Practical Implications of Yeast Pleiotropic Drug Resistance. Pharmacol. Ther. 1997, 76, 219–242. [Google Scholar] [CrossRef]
- Haneen, D.S.A.; Abou-Elmagd, W.S.I.; Youssef, A.S.A. 5(4H)-Oxazolones: Synthesis and Biological Activities. Synth. Commun. 2021, 51, 215–233. [Google Scholar] [CrossRef]
- Schiketanz, I.; Draghici, C.; Saramet, I.; Balaban, A.T. Aminoketone, Oxazole and Thiazole Synthesis. Part 15.1 2-[4-(4-Halobenzenesulphonyl)-Phenyl]-5-Aryloxazoles. Arkivoc 2002, 2002, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Schiketanz, I.; Draghici, C.; Saramet, I.; Balaban, A.T. Aminoketone, Oxazole and Thiazole Synthesis. Part 16.1 Novel 5-aryl-2-(para-Benzenesulfonylphenyl)-Oxazoles. Rev. Roum. Chim. 2002, 47, 235–238. [Google Scholar]
- Apostol, T.-V.; Barbuceanu, S.-F.; Olaru, O.T.; Draghici, C.; Saramet, G.; Socea, B.; Enache, C.; Socea, L.-I. Synthesis, Characterization and Cytotoxicity Evaluation of New Compounds from Oxazol-5(4H)-Ones and Oxazoles Class Containing 4-(4-Bromophenylsulfonyl)Phenyl Moiety. Rev. Chim. 2019, 70, 1099–1107. [Google Scholar] [CrossRef]
- Rodrigues, C.A.B.; Mariz, I.F.A.; Maçôas, E.M.S.; Afonso, C.A.M.; Martinho, J.M.G. Unsaturated Oxazolones as Nonlinear Fluorophores. Dyes. Pigm. 2013, 99, 642–652. [Google Scholar] [CrossRef]
- Nitulescu, G.; Nicorescu, I.M.; Olaru, O.T.; Ungurianu, A.; Mihai, D.P.; Zanfirescu, A.; Nitulescu, G.M.; Margina, D. Molecular Docking and Screening Studies of New Natural Sortase A Inhibitors. Int. J. Mol. Sci. 2017, 18, 2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecoza, C.E.; Nitulescu, G.M.; Draghici, C.; Caproiu, M.T.; Olaru, O.T.; Bostan, M.; Mihaila, M. Synthesis and Anticancer Evaluation of New 1,3,4-Oxadiazole Derivatives. Pharmaceuticals 2021, 14, 438. [Google Scholar] [CrossRef]
- Brachmann, C.B.; Davies, A.; Cost, G.J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J.D. Designer Deletion Strains Derived from Saccharomyces cerevisiae S288C: A Useful Set of Strains and Plasmids for PCR-Mediated Gene Disruption and Other Applications. Yeast 1998, 14, 115–132. [Google Scholar] [CrossRef]
- Kelly, D.E.; Lamb, D.C.; Kelly, S.L. Genome-Wide Generation of Yeast Gene Deletion Strains. Comp. Funct. Genom. 2001, 2, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Sherman, F. Getting Started with Yeast. Methods Enzymol. 2002, 350, 3–41. [Google Scholar] [CrossRef] [PubMed]
- Amberg, D.C.; Burke, D.; Strathern, J.N. Measuring Yeast Cell Density by Spectrophotometry. In Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual; Burke, D., Dawson, D., Stearns, T., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2005; pp. 163–165. ISBN 0879697288. [Google Scholar]
- Nitulescu, G.M.; Iancu, G.; Nitulescu, G.; Iancu, R.C.; Bogdanici, C.; Vasile, D. Brave New Hope for Breast Cancer Aminopyrazole Derivates between Rational Design and Clinical Efficacy. Rev. Chim. 2017, 68, 754–757. [Google Scholar] [CrossRef]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards Direct Deposition of Bioassay Data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
Compound | LC50 48h 1 (µM) | 95% CI48h 2 (µM) |
---|---|---|
3a | 482.6 | 264.6–880.3 |
3b | 319 | 268.5–378.9 |
3c | 195.2 | 131.6–289.7 |
3d | 227.1 | 143.2–360.1 |
4a | 65.53 | 45.47–94.44 |
4b | 34.68 | 30.67–39.22 |
4c | 46.06 | 30.13–70.42 |
4d | 102.5 | 86.06–122.1 |
Effect | Compound | |||||||
---|---|---|---|---|---|---|---|---|
3a | 3b | 3c | 3d | 4a | 4b | 4c | 4d | |
Angiogenesis inhibitor | 0.53 | 0.48 | 0.52 | 0.48 | - | - | - | - |
Antineoplastic (all) | - | - | - | - | 0.37 | 0.31 | 0.37 | 0.31 |
Antineoplastic (lung cancer) | - | - | - | - | 0.25 | 0.19 | 0.21 | 0.17 |
Antineoplastic (pancreatic cancer) | - | - | 0.22 | 0.21 | - | - | - | - |
Antineoplastic (sarcoma) | - | - | 0.17 | 0.16 | ||||
Kinase inhibitor | 0.44 | 0.33 | 0.33 | - | 0.38 | 0.30 | 0.30 | - |
Aurora-C kinase inhibitor | - | - | 0.21 | 0.20 | 0.11 | 0.11 | 0.23 | 0.22 |
Focal adhesion kinase 2 inhibitor | 0.39 | 0.36 | 0.32 | 0.30 | 0.24 | 0.21 | - | - |
Focal adhesion kinase inhibitor | 0.27 | 0.26 | 0.23 | 0.22 | - | - | - | - |
Platelet-derived growth factor receptor kinase inhibitor | 0.37 | 0.43 | 0.27 | 0.33 | 0.43 | 0.47 | 0.34 | 0.39 |
Protein kinase CK1 inhibitor | - | - | 0.13 | 0.14 | 0.14 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbuceanu, S.-F.; Rosca, E.-V.; Apostol, T.-V.; Socea, L.-I.; Draghici, C.; Farcasanu, I.C.; Ruta, L.L.; Nitulescu, G.M.; Iscrulescu, L.; Pahontu, E.-M.; et al. New Heterocyclic Compounds from Oxazol-5(4H)-one and 1,2,4-Triazin-6(5H)-one Classes: Synthesis, Characterization and Toxicity Evaluation. Molecules 2023, 28, 4834. https://doi.org/10.3390/molecules28124834
Barbuceanu S-F, Rosca E-V, Apostol T-V, Socea L-I, Draghici C, Farcasanu IC, Ruta LL, Nitulescu GM, Iscrulescu L, Pahontu E-M, et al. New Heterocyclic Compounds from Oxazol-5(4H)-one and 1,2,4-Triazin-6(5H)-one Classes: Synthesis, Characterization and Toxicity Evaluation. Molecules. 2023; 28(12):4834. https://doi.org/10.3390/molecules28124834
Chicago/Turabian StyleBarbuceanu, Stefania-Felicia, Elena-Valentina Rosca, Theodora-Venera Apostol, Laura-Ileana Socea, Constantin Draghici, Ileana Cornelia Farcasanu, Lavinia Liliana Ruta, George Mihai Nitulescu, Lucian Iscrulescu, Elena-Mihaela Pahontu, and et al. 2023. "New Heterocyclic Compounds from Oxazol-5(4H)-one and 1,2,4-Triazin-6(5H)-one Classes: Synthesis, Characterization and Toxicity Evaluation" Molecules 28, no. 12: 4834. https://doi.org/10.3390/molecules28124834
APA StyleBarbuceanu, S. -F., Rosca, E. -V., Apostol, T. -V., Socea, L. -I., Draghici, C., Farcasanu, I. C., Ruta, L. L., Nitulescu, G. M., Iscrulescu, L., Pahontu, E. -M., Boscencu, R., Saramet, G., & Olaru, O. T. (2023). New Heterocyclic Compounds from Oxazol-5(4H)-one and 1,2,4-Triazin-6(5H)-one Classes: Synthesis, Characterization and Toxicity Evaluation. Molecules, 28(12), 4834. https://doi.org/10.3390/molecules28124834