Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Carbonization Temperature on Biochar Yield and Its Chemical Composition
2.2. Thermal Analysis
- Stage 1—Water vaporization was determined in the temperature range between room temperature (RT) and 246 °C. Typical for this stage, an endothermic peak was observed, which normally corresponds to the elimination of humidity, followed by broad exothermal peaks.
- Stage 2—Devolatilization and dehydrogenation (of some hydroxides in the mineral composition) took place in the following temperature range: 175 ÷ 900 °C.
- Stage 3—Fixed carbon combustion was observed at temperatures between 520 and 950 °C. The TGA curves of biochar showed that this stage overlapped with stage 2.
2.3. Fourier-Transform Infrared (FTIR) Spectroscopy
2.4. Surface Area and Pore Volume
3. Materials and Methods
3.1. Feedstock Origin
3.2. Experimental Equipment
3.3. Feedstock and Biochar Characterization
4. Conclusions
- The biochar mass yield slightly decreased with increasing the carbonization temperature. The chemical characterization showed biochar with gradually reduced content of volatile matter, between 40 and 96 wt. % in contrast to THL. The fixed carbon content was increased from 2.11 to 3.68 times the wt. % of fixed carbon in the THL, along with slightly increased ash content. Besides Pb, Si, and Na, most of the elements showed increased concentration in the biochar ash, with increasing the carbonization temperatures. As expected, the ultimate analysis showed significant increase in the C-content, but considerably reduced H- and O-composition, whereas the reduction of the N- and S-content in the high-temperature biochar showed values below the detection limit. This suggested possible biochar application as solid biofuel as well as for soil amendment (e.g., as compensatory fertilizer for trace elements) as discussed in [50].
- The textural analysis (FTIR spectroscopy) showed that the functional groups were gradually lost thus, forming materials characterized merely by polycyclic aromatic structures and high condensation rate.
- The results from the nitrogen physisorption analysis along with those from the FTIR spectroscopy suggested that the proposed utilization technology of THL (specifically the carbonization at 600 and 700 °C) produced biochar, having the properties typical for the microporous adsorbents, which allows for selective adsorption of specific molecules. Based on the latest observations, another possible application was assumed—as a catalyst.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tao, J.; Li, S.; Ye, F.; Zhou, Y.; Lei, L.; Zhao, G. Lignin—An underutilized, renewable and valuable material for food industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 2011–2033. [Google Scholar] [CrossRef] [PubMed]
- Gul, E.; Alrawashdeh, K.A.B.; Masek, O.; Skreiberg, Ø.; Corona, A.; Zampilli, M.; Wang, L.; Samaras, P.; Yang, Q.; Zhou, H.; et al. Production and use of biochar from lignin and lignin-rich residues (such as digestate and olive stones) for wastewater treatment. J. Anal. Appl. Pyrolysis 2021, 158, 105263. [Google Scholar] [CrossRef]
- Ha, J.-M.; Hwang, K.-R.; Kim, Y.-M.; Jae, J.; Kim, K.H.; Lee, H.W.; Kim, J.-Y.; Park, Y.-K. Recent progress in the thermal and catalytic conversion of lignin. Renew. Sustain. Energy Rev. 2019, 111, 422–441. [Google Scholar] [CrossRef]
- Cotana, F.; Cavalaglio, G.; Nicolini, A.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Brinchi, L. Lignin as co-product of second generation bioethanol production from lignocellulosic biomass. Energy Procedia 2014, 45, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic Biomass Valorization for Bioethanol Production: A Circular Bioeconomy Approach. Bioenergy Res. 2022, 15, 1820–1841. [Google Scholar] [CrossRef] [PubMed]
- De Corato, U.; de Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renew. Sust. Energy Rev. 2018, 88, 326–346. [Google Scholar] [CrossRef]
- Yadav, V.; Kumar, A.; Bilal, M.; Nguyen, T.A.; Iqbal, H.M.N. Chapter 12—Lignin removal from pulp and paper industry waste streams and its application. In Nanotechnology in Paper and Wood Engineering; Bhat, R., Kumar, A., Nguyen, T.A., Sharma, S., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 265–283. ISBN 9780323858359. [Google Scholar] [CrossRef]
- Kumar, A.; Anushree, K.J.; Bhaskar, T. Utilization of lignin: A sustainable and eco-friendly approach. J. Energy Inst. 2020, 93, 235–271. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, S.S.; Zhang, S.; Ok, Y.S.; Matsagar, B.M.; Wu, K.C.-W.; Tsang, D.C.W. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresour. Technol. 2019, 291, 121878. [Google Scholar] [CrossRef]
- Sumathi, K.M.S.; Mahimairaja, S.; Naidu, R. Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresour. Technol. 2005, 96, 309–316. [Google Scholar] [CrossRef]
- Dias, J.; Alvim-Ferraz, M.; Almeida, M.; Rivera-Utrilla, J.; Sanchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1996–2005. [Google Scholar] [CrossRef]
- Vassileva, P.S.; Radoykova, T.H.; Detcheva, A.K.; Avramova, I.A.; Aleksieva, K.I.; Nenkova, S.K.; Valchev, I.V.; Mehandjiev, D.R. Adsorption of Ag+ ions on hydrolyzed lignocezllulosic materials based on willow, paulownia, wheat straw and maize stalks. Int. J. Environ. Sci. Technol. 2016, 13, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Low, Y.W.; Yee, K.F. A review on lignocellulosic biomass waste into biochar-derived catalyst: Current conversion techniques, sustainable applications and challenges. Biomass Bioenergy 2021, 154, 106245. [Google Scholar] [CrossRef]
- Zhou, N.; Thilakarathna, W.P.D.W.; He, Q.S.; Rupasinghe, H.P.V. A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects. Front. Energy Res. 2022, 9, 758744. [Google Scholar] [CrossRef]
- Tan, H.; Lee, C.T.; Ong, P.Y.; Wong, K.Y.; Bong, C.P.C.; Li, C.; Gao, Y. A Review on the Comparison Between Slow Pyrolysis and Fast Pyrolysis on the Quality of Lignocellulosic and Lignin-Based Biochar. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1051, p. 012075. [Google Scholar] [CrossRef]
- Kawamoto, H. Lignin pyrolysis reactions. J. Wood Sci. 2017, 63, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Arni, S.A. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Ribau, J.P.; Costa, M. A decision support method for biochars characterization from carbonization of grape pomace. Biomass Bioenergy 2021, 145, 105946. [Google Scholar] [CrossRef]
- Levdansky, A.V.; Vasilyeva, N.Y.; Malyar, Y.M.; Kondrasenko, A.A.; Fetisova, O.Y.; Kazachenko, A.S.; Levdansky, V.A.; Kuznetsov, B.N. Method of Birch Ethanol Lignin Sulfation with a Sulfaic Acid-Urea Mixture. Molecules 2022, 27, 6356. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Akman, F.; Vasilieva, N.Y.; Malyar, Y.N.; Fetisova, O.Y.; Lutoshkin, M.A.; Berezhnaya, Y.D.; Miroshnikova, A.V.; Issaoui, N.; Xiang, Z. Sulfation of Wheat Straw Soda Lignin with Sulfamic Acid over Solid Catalysts. Polymers 2022, 14, 3000. [Google Scholar] [CrossRef]
- Romanenko, I.; Kurz, F.; Baumgarten, R.; Jevtovikj, I.; Lindner, J.-P.; Kundu, A.; Kindler, A.; Schunk, S.A. Lignin Depolymerization in the Presence of Base, Hydrogenation Catalysts, and Ethanol. Catalysts 2022, 12, 158. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.; Ad, S.; Mahmood, N.A.N. Production of Biofuel via Hydrogenation of Lignin from Biomass. In New Advances in Hydrogenation Processes; Ravanchi, M.T., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Shu, R.; Zhang, Q.; Xu, Y.; Long, J.; Ma, L.; Wang, T.; Chen, P.; Wu, Q. Hydrogenation of lignin-derived phenolic compounds over step by step precipitated Ni/SiO2. RSC Adv. 2016, 6, 5214–5222. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Ling, L.-L.; Jiang, H. Selective hydrogenation of lignin to produce chemical commodities by using a biochar supported Ni–Mo 2 C catalyst obtained from biomass. Green Chem. 2016, 18, 4032–4041. [Google Scholar] [CrossRef]
- Biswas, B.; Kumar, A.; Kaur, R.; Krishna, B.B.; Bhaskar, T. Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. Bioresour. Technol. 2021, 337, 125439. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, Y.; Goto, T.; Nonaka, H. Concentrated sulfuric acid hydrolysis of softwood with t-butyl alcohol. Biomass Convers. Biorefinery 2021, 11, 937–941. [Google Scholar] [CrossRef]
- Sandov, O. Construction of a flow reactor for the combustion/pyrolysis of biomass fuels. In Proceedings of the XXIV Scientific Conference with International Participation FPEPM 2019, Sozopol, Bulgaria, 17–20 September 2019; pp. 258–268. [Google Scholar]
- Kürschner, K.; Hoffer, A. Cellulose and cellulose derivatives. Fresenius’ J. Anal. Chem. 1933, 92, 145–154. [Google Scholar] [CrossRef]
- Technical Association of the Pulp and Paper Industry. TAPPI T 222 om-11: Acid-Insoluble Lignin in Wood and Pulp; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 2011. [Google Scholar]
- ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). International Organization for Standardization: Geneva, Switzerland, 2007. Available online: https://bds-bg.org/bg/project/show/bds:proj:80192 (accessed on 14 June 2022).
- Farrokh, N.T.; Suopajärvi, H.; Sulasalmi, P.; Fabritius, T. A thermogravimetric analysis of lignin char combustion. Energy Procedia 2019, 158, 1241–1248. Available online: https://www.sciencedirect.com/science/article/pii/S1876610219304357 (accessed on 14 June 2023). [CrossRef]
- Wan, J.; Liu, L.; Ayub, K.S.; Zhang, W.; Shen, G.; Hu, S.; Qian, X. Characterization and adsorption performance of biochars derived from three key biomass constituents. Fuel 2020, 269, 117142. [Google Scholar] [CrossRef]
- Zhao, S.-X.; Ta, N.; Wang, X.-D. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies 2017, 10, 1293. [Google Scholar] [CrossRef] [Green Version]
- Sadaka, S.; Sharara, M.A.; Ashworth, A.; Keyser, P.; Allen, F.; Wright., A. Characterization of Biochar from Switchgrass Carbonization. Energies 2014, 7, 548–567. [Google Scholar] [CrossRef] [Green Version]
- Valchev, I.; Yordanov, Y.; Savov, V.; Antov, P. Optimization of the Hot-Pressing Regime in the Production of Eco-Friendly Fibreboards Bonded with Hydrolysis Lignin. Period. Polytech. Chem. Eng. 2022, 66, 125–134. [Google Scholar] [CrossRef]
- Álvarez, A.; Pizarro, C.; García, R.; Bueno, J.L.; Lavín, A.G. Determination of kinetic parameters for biomass combustion. Bioresour. Technol. 2016, 216, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Petrova, T.; Naydenova, I.; Ribau, J.; Ferreira, A.F. Biochar from Agro-Forest Residue: Application Perspective Based on Decision Support Analysis. Appl. Sci. 2023, 13, 3240. [Google Scholar] [CrossRef]
- Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 2009, 100, 292–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adinata, D.; Daud, M.A.W.; Aroua, M.K. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour. Technol. 2007, 98, 145–149. [Google Scholar] [CrossRef]
- Draganova, R.; Nenkova, S. Chemistry and Structure of Plant Tissues; University of Chemical Technology and Metallurgy: Sofia, Bulgaria, 2002; p. 372. ISBN 954-8954-16-8. (In Bulgarian) [Google Scholar]
- Chowdhury, Z.Z.; Karim, M.Z.; Ashraf, M.A.; Khalid, K. Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. BioResources 2016, 11, 3356–3372. [Google Scholar] [CrossRef] [Green Version]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedlaček, P.; Bielska, L.; Soja, G. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wu, Y.; Zheng, M. A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J. Hazard. Mater. 2014, 280, 450–457. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Zhao, X.; Wang, S.; Xing, G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuel 2013, 27, 5890–5899. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Z.; Ripepi, N.; Kang, B.; Yue, G. Adsorption affinity of different types of coal: Mean isosteric heat of adsorption. Energy Fuels 2015, 29, 3609–3615. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Shaaban, A.; Sea, S.-M.; Mitan, N.M.M.; Dimin, M.F. Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Eng. 2013, 68, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.P.; Wilson, K. The 55 uses of biochar. Biochar J. Arbaz, Switzerland, ISSN 2297-1114. 2014. Available online: www.biochar-journal.org/en/ct/2 (accessed on 7 June 2023).
- Ramos, L.P.; Suota, M.J.; Pavaneli, G.; Corazza, M.L. The role of biomass pretreatment for sustainable biorefineries. Bulg. Chem. Commun. 2019, 51, 62–68. [Google Scholar]
- Hermansson, F.; Janssen, M.; Svanström, M. Prospective study of lignin-based and recycled carbon fibers in composites through meta-analysis of life cycle assessments. J. Clean. Prod. 2019, 223, 946. [Google Scholar] [CrossRef]
- Mahmood, S.F.; Batchelor, B.L.; Jung, M.; Park, K.; Voit, W.E.; Novak, B.M.; Yang, D. Study of a melt processable polymer precursor for carbon fiber. Carbon Lett. 2019, 29, 605–612. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
Parameter Studied | THL 2 | Biochar 500 °C | Biochar 600 °C | Biochar 700 °C |
---|---|---|---|---|
Proximate analysis, wt. % | ||||
Volatiles, db | 65.27 | 38.36 | 6.42 | 2.16 |
Fixed carbon, db 1 | 23.34 | 49.32 | 81.41 | 85.99 |
Moisture | 7.78 | 4.98 | 3.74 | 3.48 |
Ash, db | 3.61 | 7.35 | 8.00 | 8.37 |
Ultimate analysis, wt. %, db | ||||
C | 55.54 | 76.70 | 83.72 | 85.39 |
H | 7.10 | 3.5 | 2.65 | 1.64 |
N | 0.26 | - | - | - |
S | 0.74 | 0.05 | 0.05 | - |
O 1 | 24.97 | 7.42 | 1.84 | 1.12 |
HHV, db, MJ/kg | 23.27 | 31.36 | 29.17 | 29.20 |
Lignocellulosic analysis, wt. %, db | ||||
Cellulose | 25.5 | - | - | - |
Lignin | 72.6 | - | - | - |
Mineral substances | 2.8 | - | - | - |
Cellulose | 25.5 | - | - | - |
Biochar mass yield, wt. % | - | 42.95 | 40.10 | 37.99 |
Chemical Elements, g/kg | THL | Biochar 500 °C | Biochar 700 °C |
---|---|---|---|
Al | 1.329 | 4.045 | 4.860 |
Ba | 0.069 | 0.135 | 0.132 |
Ca | 1.790 | 3.937 | 4.267 |
Cu | 0.028 | 0.047 | 0.049 |
Fe | 0.362 | 0.729 | 0.807 |
Pb | 0.002 | <0.01 | <0.01 |
Mg | 0.142 | 0.324 | 0.354 |
Mn | 0.010 | 0.020 | 0.025 |
K | 0.378 | 1.330 | 1.458 |
Na | 0.093 | 0.128 | 0.058 |
Sr | 0.016 | 0.047 | 0.049 |
Zn | 0.006 | 0.014 | <0.01 |
Si | 0.138 | 0.041 | 0.074 |
C | <0.01 | <0.01 | <0.01 |
Ti | <0.01 | <0.01 | <0.01 |
S | 0.587 | 1.776 | 1.680 |
Stage | Mass Loss | Temperature at Max Loss Rate | Max Mass Loss Rate | Total Mass Loss | Heat Effect |
---|---|---|---|---|---|
No. | wt. % | °C | %/min | wt. % | MJ/kg |
THL | |||||
1 | 6.58 | 63.7 | 1.456 | 87.79 | 26.48 |
2 | 1.71 | 136.5 | 0.785 | ||
3 | 79.5 | 378.5 | 4.777 | ||
Biochar 500 °C | |||||
1 | 2.59 | 70.62 | 0.653 | 90.51 | 73.28 |
2 | 87.9 | 477.4 | 2.879 | ||
Biochar 600 °C | |||||
1 | 1.6 | 54.9 | 0.370 | 90.82 | 74.01 |
2 | 89.22 | 522.4 | 2.429 | ||
Biochar 700 °C | |||||
1 | 3.26 | 57.93 | 0.871 | 91.36 | 87.59 |
2 | 88.1 | 549.5 | 2.267 |
Sample | SBET, m2/g | Vt, cm3/g | VMI, cm3/g | DAV, nm | SMI, m2/g | SEXT, m2/g |
---|---|---|---|---|---|---|
THL | 4 | 0.03 | - | 28 | - | - |
Biochar 600 °C | 378 | 0.19 | 0.10 | 2.0 | 267 | 111 |
Biochar 700 °C | 430 | 0.17 | 0.13 | 1.6 | 383 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naydenova, I.; Radoykova, T.; Petrova, T.; Sandov, O.; Valchev, I. Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue. Molecules 2023, 28, 4842. https://doi.org/10.3390/molecules28124842
Naydenova I, Radoykova T, Petrova T, Sandov O, Valchev I. Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue. Molecules. 2023; 28(12):4842. https://doi.org/10.3390/molecules28124842
Chicago/Turabian StyleNaydenova, Iliyana, Temenuzhka Radoykova, Tsvetelina Petrova, Ognyan Sandov, and Ivo Valchev. 2023. "Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue" Molecules 28, no. 12: 4842. https://doi.org/10.3390/molecules28124842
APA StyleNaydenova, I., Radoykova, T., Petrova, T., Sandov, O., & Valchev, I. (2023). Utilization Perspectives of Lignin Biochar from Industrial Biomass Residue. Molecules, 28(12), 4842. https://doi.org/10.3390/molecules28124842