Synthesis of Imidazole-Based Molecules under Ultrasonic Irradiation Approaches
Abstract
:1. Introduction
2. Development of Ultrasound-Assisted Imidazole-Based Compounds Synthesis
2.1. Debus–Radziszewski Imidazole Synthesis
2.1.1. Nano-Catalysts
2.1.2. Metal Complex Catalysts
2.1.3. Ionic Liquids Catalysts
2.1.4. Organic Catalysts
2.1.5. Inorganic Catalysts
2.1.6. Oxidant
2.2. Phillips–Ladenburg Imidazole Synthesis
2.3. Ullmann-Type Reaction
2.4. Other Imidazole Synthesis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Luca, L.D. Naturally Occurring and Synthetic Imidazoles: Their Chemistry and Their Biological Activities. Curr. Med. Chem. 2006, 13, 1–23. [Google Scholar]
- Zhu, X.-W.; Luo, D.; Zhou, X.-P.; Li, D. Imidazole-Based Metal-Organic Cages: Synthesis, Structures, and Functions. Coord. Chem. Rev. 2022, 455, 214354. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Dutta, S.; Hossain, M.S.A.; Shiddiky, M.J.A.; Tung, K.; Shieh, F.; Tsung, C.; Wu, K.C.-W.; Yamauchi, Y. Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications. Adv. Mater. 2017, 29, 1700213. [Google Scholar] [CrossRef] [Green Version]
- Ebel, K.; Koehler, H.; Gamer, A.O.; Jäckh, R. Imidazole and Derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Sharma, P.; LaRosa, C.; Antwi, J.; Govindarajan, R.; Werbovetz, K.A. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021, 26, 4213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Peng, X.-M.; Damu, G.L.V.; Geng, R.-X.; Zhou, C.-H. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. Med. Res. Rev. 2014, 34, 340–437. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.-F.; Testori, A.; Grob, J.-J.; et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N. Engl. J. Med. 2011, 364, 2517–2526. [Google Scholar] [CrossRef] [Green Version]
- Eidtmann, H.; de Boer, R.; Bundred, N.; Llombart-Cussac, A.; Davidson, N.; Neven, P.; von Minckwitz, G.; Miller, J.; Schenk, N.; Coleman, R. Efficacy of Zoledronic Acid in Postmenopausal Women with Early Breast Cancer Receiving Adjuvant Letrozole: 36-Month Results of the ZO-FAST Study. Ann. Oncol. 2010, 21, 2188–2194. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beggs, W.H.; Sarosi, G.A.; Steele, N.M. Inhibition of Potentially Pathogenic Yeastlike Fungi by Clotrimazole in Combination with 5-Fluorocytosine or Amphotericin B. Antimicrob. Agents Chemother. 1976, 9, 863–865. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Porto, D.; Bajerski, L.; Donadel Malesuik, M.; Soldateli Paim, C. A Review of Characteristics, Properties, Application of Nanocarriers and Analytical Methods of Luliconazole. Crit. Rev. Anal. Chem. 2022, 52, 1930–1937. [Google Scholar] [CrossRef]
- Goldman, P. The Development of 5-Nitroimidazoles for the Treatment and Prophylaxis of Anaerobic Bacterial Infections. J. Antimicrob. Chemother. 1982, 10, 23–33. [Google Scholar] [CrossRef]
- Sperandio da Silva, G.M.; Felix Mediano, M.F.; Hasslocher-Moreno, A.M.; de Holanda, M.T.; Silvestre de Sousa, A.; Sangenis, L.H.C.; Brasil, P.E.A.A.; Mejía, R.A.; Fux, C.P.; Cubides, J.-C.; et al. Benznidazole Treatment Safety: The Médecins Sans Frontières Experience in a Large Cohort of Bolivian Patients with Chagas’ Disease. J. Antimicrob. Chemother. 2017, 72, 2596–2601. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Cao, J.; Yin, C.; Wang, L.; Wu, L. Quantum Chemical Study on the Adsorption of Megazol Drug on the Pristine BC3 Nanosheet. Supramol. Chem. 2021, 33, 63–69. [Google Scholar] [CrossRef]
- Talke, P.; Richardson, C.A.; Scheinin, M.; Fisher, D.M. Postoperative Pharmacokinetics and Sympatholytic Effects of Dexmedetomidine. Anesth. Analg. 1997, 85, 1136. [Google Scholar] [CrossRef]
- Richmond, D.V.; Phillips, A. The Effect of Benomyl and Carbendazim on Mitosis in Hyphae of Botrytis cinerea Pers. ex Fr. and Roots of Allium cepa L. Pestic. Biochem. Physiol. 1975, 5, 367–379. [Google Scholar] [CrossRef]
- Debus, H. Ueber Die Einwirkung Des Ammoniaks Auf Glyoxal. Justus Liebigs Ann. Chem. 1858, 107, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Radzisewski, B. Ueber Glyoxalin Und Seine Homologe. Berichte Dtsch. Chem. Ges. 1882, 15, 2706–2708. [Google Scholar] [CrossRef] [Green Version]
- Ladenburg, A. Derivate von Diaminen. Berichte Dtsch. Chem. Ges. 1875, 8, 677–678. [Google Scholar] [CrossRef]
- Ladenburg, A. Condensationsvorgänge in Der Orthoreihe. Berichte Dtsch. Chem. Ges. 1877, 10, 1123–1131. [Google Scholar] [CrossRef]
- Phillips, M.A. CCCXVII.—The Formation of 2-Substituted Benziminazoles. J. Chem. Soc. Resumed 1928, 2393–2399. [Google Scholar] [CrossRef]
- Phillips, M.A. CCCCXIV.—Heterocyclic Compounds of Arsenic. Part V. Benziminazolearsinic Acids. J. Chem. Soc. Resumed 1928, 3134–3140. [Google Scholar] [CrossRef]
- Phillips, M.A. CCCLXXXII.—The Formation of 1-Substituted Benziminazoles. J. Chem. Soc. Resumed 1929, 2820–2828. [Google Scholar] [CrossRef]
- Wallach, O. Ueber Die Einwirkung von Phosphorpentachlorid Auf Säureamide. Justus Liebigs Ann. Chem. 1882, 214, 257–327. [Google Scholar] [CrossRef]
- Wallach, O. Ueber Die Einwirkung von Phosphorpentachlorid Auf Säureamide. Justus Liebigs Ann. Chem. 1877, 184, 1–127. [Google Scholar] [CrossRef]
- Weidenhagen, R.; Herrmann, R. Eine Neue Synthese von Imidazol-Derivaten. Berichte Dtsch. Chem. Ges. B Ser. 1935, 68, 1953–1961. [Google Scholar] [CrossRef]
- Bredereck, H.; Theilig, G. Imidazolsynthesen mit Formamid (Formamid-Reaktionen, I. Mitteil.). Chem. Ber. 1953, 86, 88–96. [Google Scholar] [CrossRef]
- Lawson, A.; Morley, H.V. 2-Mercaptoglyoxalines. Part IX. The Preparation of 1: 5-Disubstituted 2-Mercaptoglyoxalines from α-Amino-Acids. J. Chem. Soc. Resumed 1955, 1695–1698. [Google Scholar] [CrossRef]
- Van Leusen, A.M.; Wildeman, J.; Oldenziel, O.H. Chemistry of Sulfonylmethyl Isocyanides. 12. Base-Induced Cycloaddition of Sulfonylmethyl Isocyanides to Carbon,Nitrogen Double Bonds. Synthesis of 1,5-Disubstituted and 1,4,5-Trisubstituted Imidazoles from Aldimines and Imidoyl Chlorides. J. Org. Chem. 1977, 42, 1153–1159. [Google Scholar] [CrossRef]
- Zheng, X.; Ma, Z.; Zhang, D. Synthesis of Imidazole-Based Medicinal Molecules Utilizing the van Leusen Imidazole Synthesis. Pharmaceuticals 2020, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Mason, T.J. Ultrasound in Synthetic Organic Chemistry. Chem. Soc. Rev. 1997, 26, 443–451. [Google Scholar] [CrossRef]
- Saranya, S.; Radhika, S.; Afsina Abdulla, C.M.; Anilkumar, G. Ultrasound Irradiation in Heterocycle Synthesis: An Overview. J. Heterocycl. Chem. 2021, 58, 1570–1580. [Google Scholar] [CrossRef]
- Chatel, G. Sonochemistry: New Opportunities for Green Chemistry; World Scientific: Hackensack, NJ, USA, 2017. [Google Scholar]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules 2023, 28, 2639. [Google Scholar] [CrossRef]
- Wood, R.W.; Loomis, A.L. XXXVIII. The Physical and Biological Effects of High-Frequency Sound-Waves of Great Intensity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1927, 4, 417–436. [Google Scholar] [CrossRef]
- Schulz, R.; Henglein, A. Über Den Nachweis von Freien Radikalen, Die Unter Dem Einfluß von Ultraschallwellen Gebildet Werden, Mit Hilfe von Radikal-Kettenpolymerisation Und Diphenyl-Pikryl-Hydrazyl. Z. Naturforschung—Sect. B J. Chem. Sci. 1953, 8, 160–161. [Google Scholar] [CrossRef]
- Lierke, E.G.; Grießhammer, G. The Formation of Metal Powders by Ultrasonic Atomization of Molten Metals. Ultrasonics 1967, 5, 224–228. [Google Scholar] [CrossRef]
- Marmottant, P.; Hilgenfeldt, S. Controlled Vesicle Deformation and Lysis by Single Oscillating Bubbles. Nature 2003, 423, 153–156. [Google Scholar] [CrossRef]
- Cravotto, G.; Cintas, P. Power Ultrasound in Organic Synthesis: Moving Cavitational Chemistry from Academia to Innovative and Large-Scale Applications. Chem. Soc. Rev. 2006, 35, 180–196. [Google Scholar] [CrossRef]
- Dos Santos, J.R.N.; Januario, M.A.P.; Corrêa, A.G. Greener Organic Synthetic Methods: Sonochemistry and Heterogeneous Catalysis Promoted Multicomponent Reactions. Ultrason. Sonochem. 2021, 78, 105704. [Google Scholar]
- Mason, T.J. 30 Years of Sonochemistry Links with China. Ultrason. Sonochem. 2020, 68, 105173. [Google Scholar] [CrossRef]
- Ashokkumar, M. Editorial Note. Ultrason. Sonochem. 2014, 21, 1907. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Smith, L.C.; Garcia, D.R.; Yadav, R.N.; Banik, B.K. An Expeditious Green Route toward 2-Aryl-4-Phenyl-1H-Imidazoles. Org. Med. Chem. Lett. 2014, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safari, J.; Zarnegar, Z. Magnetic Fe3O4 Nanoparticles as a Highly Efficient Catalyst for the Synthesis of Imidazoles under Ultrasound Irradiation. Iran. J. Catal. 2012, 2, 121–128. [Google Scholar]
- Safari, J.; Zarnegar, Z. Magnetic Nanoparticle Supported Ionic Liquid as Novel and Effective Heterogeneous Catalyst for Synthesis of Substituted Imidazoles under Ultrasonic Irradiation. Mon. Für Chem.—Chem. Mon. 2013, 144, 1389–1396. [Google Scholar] [CrossRef]
- Safari, J.; Gandomi-Ravandi, S.; Akbari, Z. Sonochemical Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Using Nanocrystalline MgAl2O4 as an Effective Catalyst. J. Adv. Res. 2013, 4, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Safa, K.D.; Allahvirdinesbat, M.; Namazi, H.; Panahi, P.N. Synthesis of Organosilyl Compounds-Containing 1,2,4,5-Tetraaryl Imidazoles Sonocatalyzed by M/SAPO-34 (M = Fe, Co, Mn, and Cu) Nanostructures. Comptes Rendus Chim. 2015, 18, 883–890. [Google Scholar] [CrossRef]
- Safa, K.D.; Feyzi, A.; Allahvirdinesbat, M.; Sarchami, L.; Panahi, P.N. Synthesis of Novel Organosilicon Compounds Possessing Fully Substituted Imidazole Nucleus Sonocatalyzed by Fe-Cu/ZSM-5 Bimetallic Oxides. Synth. Commun. 2015, 45, 382–390. [Google Scholar] [CrossRef]
- Safa, K.D.; Allahvirdinesbat, M.; Namazi, H. Synthesis of Novel Organosiliconsulfur-Containing Tetrasubstituted Imidazoles Sonocatalyzed by LaxSr1−xFeyCo1−yO3 Nanoperovskites. Synth. Commun. 2015, 45, 1205–1214. [Google Scholar] [CrossRef]
- Reddy, B.; Vijayakumar, V.; Arasu, M.; Al-Dhabi, N. γ-Alumina Nanoparticle Catalyzed Efficient Synthesis of Highly Substituted Imidazoles. Molecules 2015, 20, 19221–19235. [Google Scholar] [CrossRef] [Green Version]
- Sanasi, P.D.; Majji, R.K.; Bandaru, S.; Bassa, S.; Pinninti, S.; Vasamsetty, S.; Korupolu, R.B. Nano Copper Ferrite Catalyzed Sonochemical, One-Pot Three and Four Component Synthesis of Poly Substituted Imidazoles. Mod. Res. Catal. 2016, 5, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Doustkhah, E.; Rostamnia, S.; Hassankhani, A. The Raise of SBA-SO3H Catalytic Activity by Inducing Ultrasound Irradiation in the Multicomponent Syntheses. J. Porous Mater. 2016, 23, 549–556. [Google Scholar] [CrossRef]
- Eidi, E.; Kassaee, M.Z.; Nasresfahani, Z. Synthesis of 2,4,5-Trisubstituted Imidazoles over Reusable CoFe2O4 Nanoparticles: An Efficient and Green Sonochemical Process: Sonochemical Synthesis of Imidazoles over Reusable CoFe2O4 NPs. Appl. Organomet. Chem. 2016, 30, 561–565. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Zahmatkesh, S. One-Pot Synthesis of Multisubstituted Imidazoles Catalyzed by Dendrimer-PWAn Nanoparticles under Solvent-Free Conditions and Ultrasonic Irradiation. Res. Chem. Intermed. 2017, 43, 163–185. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.A.; Abdollahi-Basir, M.H.; Elyasi, Z. Synthesis of Some Novel Imidazoles Catalyzed by Co3O4 Nanoparticles and Evaluation of Their Antibacterial Activities. Comb. Chem. High Throughput Screen. 2018, 21, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Varzi, Z.; Maleki, A. Design and Preparation of ZnS-ZnFe2O4: A Green and Efficient Hybrid Nanocatalyst for the Multicomponent Synthesis of 2,4,5-triaryl-1H-imidazoles. Appl. Organomet. Chem. 2019, 33, e5008. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Thi Le, N.-P.; Nguyen, T.T.; Tran, P.H. An Efficient Multicomponent Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by a Magnetic Nanoparticle Supported Lewis Acidic Deep Eutectic Solvent. RSC Adv. 2019, 9, 38148–38153. [Google Scholar] [CrossRef] [Green Version]
- Hajizadeh, Z.; Radinekiyan, F.; Eivazzadeh-keihan, R.; Maleki, A. Development of Novel and Green NiFe2O4/Geopolymer Nanocatalyst Based on Bentonite for Synthesis of Imidazole Heterocycles by Ultrasonic Irradiations. Sci. Rep. 2020, 10, 11671. [Google Scholar] [CrossRef]
- Kohan, E.; Gholamhosseini-Nazari, M.; Allahvirdinesbat, M.; Alemi, A.A. Green and Efficiently Synthesized Tetrasubstituted Imidazole: Introduced Bismuth Oxide Co-Doped Lu3+, Er3+ as a Novel Reusable Heterogeneous Nanocatalyst. Inorg. Nano-Met. Chem. 2021, 51, 1036–1046. [Google Scholar] [CrossRef]
- Arora, G.; Gupta, R.; Yadav, P.; Dixit, R.; Srivastava, A.; Sharma, R.K. Ultrasonically-Mediated One-Pot Synthesis of Substituted Imidazoles via Sulfamic Acid Functionalized Hollow Magnetically Retrievable Solid-Acid Catalyst. Curr. Res. Green Sustain. Chem. 2021, 4, 100050. [Google Scholar] [CrossRef]
- Kermanizadeh, S.; Naeimi, H. An Effective and Eco-Friendly Sonochemical Multicomponent Synthesis of Trisubstituted Imidazoles via Modified Silica-Coated Cobalt Ferrite Nanoparticles by Tungstic Acid. Appl. Organomet. Chem. 2023, 37, e7038. [Google Scholar] [CrossRef]
- Khosropour, A.R. Ultrasound-Promoted Greener Synthesis of 2,4,5-Trisubstituted Imidazoles Catalyzed by Zr(Acac)4 under Ambient Conditions. Ultrason. Sonochem. 2008, 15, 659–664. [Google Scholar] [CrossRef]
- Damavandi, S. Schiff Base Transition Metal Complex Catalyzed One-Pot Synthesis of 2-Aryl-1H-Phenanthro[9,10-d]Imidazoles. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2011, 41, 1274–1277. [Google Scholar] [CrossRef]
- Safari, J.; Khalili, S.D.; Banitaba, S.H.; Dehghani, H. Zinc (II) [Tetra(4-Methylphenyl)] Porphyrin: A Novel and Reusable Catalyst for Efficient Synthesis of 2,4,5-Trisubstituted Imidazoles Under Ultrasound Irradiation. J. Korean Chem. Soc. 2011, 55, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Zang, H.; Su, Q.; Mo, Y.; Cheng, B.-W.; Jun, S. Ionic Liquid [EMIM]OAc under Ultrasonic Irradiation towards the First Synthesis of Trisubstituted Imidazoles. Ultrason. Sonochem. 2010, 17, 749–751. [Google Scholar] [CrossRef]
- Saffari Jourshari, M.; Mamaghani, M.; Shirini, F.; Tabatabaeian, K.; Rassa, M.; Langari, H. An Expedient One-Pot Synthesis of Highly Substituted Imidazoles Using Supported Ionic Liquid-like Phase (SILLP) as a Green and Efficient Catalyst and Evaluation of Their Anti-Microbial Activity. Chin. Chem. Lett. 2013, 24, 993–996. [Google Scholar] [CrossRef]
- Shirole, G.D.; Shelke, S.N. Ionic Liquid: An Efficient and Facile Catalyst for the Synthesis of Trisubstituted Imidazole Derivatives via Multi-Component Pathway Using Green Techniques. Lett. Org. Chem. 2017, 13, 742–748. [Google Scholar] [CrossRef]
- Ahmed Arafa, W.A. An Eco-Compatible Pathway to the Synthesis of Mono and Bis-Multisubstituted Imidazoles over Novel Reusable Ionic Liquids: An Efficient and Green Sonochemical Process. RSC Adv. 2018, 8, 16392–16399. [Google Scholar] [CrossRef]
- Hilal, D.A.; Hanoon, H.D. Bronsted Acidic Ionic Liquid Catalyzed an Eco-Friendly and Efficient Procedure for Synthesis of 2,4,5-Trisubstituted Imidazole Derivatives under Ultrasound Irradiation and Optimal Conditions. Res. Chem. Intermed. 2020, 46, 1521–1538. [Google Scholar] [CrossRef]
- Ahmed, N.S.; Hanoon, H.D. A Green and Simple Method for the Synthesis of 2,4,5-Trisubstituted-1H-Imidazole Derivatives Using Acidic Ionic Liquid as an Effective and Recyclable Catalyst under Ultrasound. Res. Chem. Intermed. 2021, 47, 4083–4100. [Google Scholar] [CrossRef]
- Damavandi, S. New Approach to the Multicomponent One-Pot Synthesis of 2-Aryl-1H-Phenanthro[9,10-d]Imidazoles. Heterocycl. Commun. 2011, 17, 79–81. [Google Scholar] [CrossRef]
- Shitole, N.V.; Shelke, K.F.; Sonar, S.S.; Sadaphal, S.A.; Shingate, B.B.; Shingare, M.S. L-Proline as an Efficient Catalyst for the Synthesis of 2,4,5-Triaryl-1H-Imidazoles. Bull. Korean Chem. Soc. 2009, 30, 1963–1966. [Google Scholar]
- Damavandi, S.; Sandaroos, R. L-Proline-Catalyzed Three-Component Synthesis of Condensed Imidazoles. Arab. J. Chem. 2016, 9, S1138–S1143. [Google Scholar] [CrossRef] [Green Version]
- Heravi, M.R.P.; Vessally, E.; Behbehani, G.R.R. An Efficient Green MCR Protocol for the Synthesis of 2,4,5-Trisubstituted Imidazoles by SelectfluorTM under Ultrasound Irradiation. Comptes Rendus Chim. 2014, 17, 146–150. [Google Scholar] [CrossRef]
- Devkate, C.G.; Warad, K.D.; Bhalerao, M.B.; Gaikwad, D.D.; Siddique, M.I.M. One Pot Three Component Synthesis of 2,4,5-Triaryl-1H-Imidazole Using PEG-400 and Their Antibacterial Screening. Pharm. Sin. 2017, 8, 23–27. [Google Scholar]
- Khandebharad, A.U.; Sarda, S.R.; Gill, C.; Agrawal, B.R. An Efficient Synthesis of Substituted Imidazoles Catalyzed by 3-N-Morpholinopropanesulfonic Acid (MOPS) under Ultrasound Irradiation. Org. Prep. Proced. Int. 2020, 52, 524–529. [Google Scholar] [CrossRef]
- Behrouz, S.; Navid Soltani Rad, M.; Abdollahzadeh, M.; Amin Piltan, M. Ultrasound-Promoted Mild, and Efficient Protocol for Three-Component Synthesis of 2,4,5-Trisubstituted Imidazoles Using Urea and PPh3 as the Sources of Nitrogen and Organocatalyst. ChemistrySelect 2020, 5, 7467–7473. [Google Scholar] [CrossRef]
- Shelke, K.F.; Sapkal, S.B.; Shingare, M.S. Ultrasound-Assisted One-Pot Synthesis of 2,4,5-Triarylimidazole Derivatives Catalyzed by Ceric (IV) Ammonium Nitrate in Aqueous Media. Chin. Chem. Lett. 2009, 20, 283–287. [Google Scholar] [CrossRef]
- Shelke, K.F.; Sapkal, S.; Sonal, S.; Madje, B.R.; Shingate, B.B.; Shingare, M.S. An Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole Derivatives Catalyzed by Boric Acid in Aqueous Media Under Ultrasound-Irradiation. Bull. Korean Chem. Soc. 2009, 30, 1057–1060. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z.; Naseh, S.; Akbari, Z. Ultrasound Based Method for One-Pot Synthesis of Substituted Imidazoles Using SiO2-OSbCl2as Highly Effective and Reusable Catalyst. Iran. J. Catal. 2014, 4, 125–132. [Google Scholar]
- Dastmard, S.; Mamaghani, M.; Rassa, M. Ultrasound-assisted Efficient Synthesis of Polyfunctional 1,2,4-triazoles as Novel Antibacterial and Antioxidant Agents. J. Chin. Chem. Soc. 2020, 67, 1437–1445. [Google Scholar] [CrossRef]
- Nagargoje, D.; Mandhane, P.; Shingote, S.; Badadhe, P.; Gill, C. Ultrasound Assisted One Pot Synthesis of Imidazole Derivatives Using Diethyl Bromophosphate as an Oxidant. Ultrason. Sonochem. 2012, 19, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Nongrum, R.; Kharmawlong, G.K.; Rani, J.W.S.; Rahman, N.; Dutta, A.; Nongkhlaw, R. Organocatalytic Green Approach Towards the Fabrication of Fused Benzo N,N-Containing Heterocycles Facilitated by Ultrasonic Irradiation. J. Heterocycl. Chem. 2019, 56, 2873–2883. [Google Scholar] [CrossRef]
- Karami, A.Y.; Manafi, M.; Ghodrati, K.; Khajavi, R.; Hojjati, M. Nanoparticles Supported Graphene Oxide and Its Application as an Efficient and Recyclable Nano-Catalyst in the Synthesis of Imidazole Derivatives in Ultrasound Solvent-Free Condition. Int. Nano Lett. 2020, 10, 89–95. [Google Scholar] [CrossRef]
- Godugu, K.; Yadala, V.D.S.; Pinjari, M.K.M.; Gundala, T.R.; Sanapareddy, L.R.; Nallagondu, C.G.R. Natural Dolomitic Limestone-Catalyzed Synthesis of Benzimidazoles, Dihydropyrimidinones, and Highly Substituted Pyridines under Ultrasound Irradiation. Beilstein J. Org. Chem. 2020, 16, 1881–1900. [Google Scholar] [CrossRef]
- Meeniga, I.; Gokanapalli, A.; Peddiahgari, V.G.R. Synthesis of Environmentally Benign New Ionic Liquids for the Preparation of 2-Aryl/Heteroaryl Benzimidazoles/Benzoxazoles under Ultrasonication. Sustain. Chem. Pharm. 2022, 30, 100874. [Google Scholar] [CrossRef]
- Ullmann, F. Ueber Symmetrische Biphenylderivate. Justus Liebigs Ann. Chem. 1904, 332, 38–81. [Google Scholar] [CrossRef] [Green Version]
- Nematpour, M.; Fasihi Dastjerdi, H.; Mahboubi Rabbani, S.M.I.; Tabatabai, S.A. Copper-Catalyzed Intramolecular N-Arylation of Dihalobenzene and Amine-Trichloroacetonitrile Adduct under Ultrasound-Irradiation. ChemistrySelect 2019, 4, 10299–10301. [Google Scholar] [CrossRef]
- Entezari, M.H.; Asghari, A. Ultrasound Improves the Synthesis of 5-Hydroxymethyl-2-Mercapto-1-Benzylimidazole as a Base Compound of Some Pharmaceutical Products. Eur. J. Med. Chem. 2008, 43, 2835–2839. [Google Scholar] [CrossRef]
- Kargar, H.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Naghipour, M. Oxidation of 2-Imidazolines to 2-Imidazoles with Sodium Periodate Catalyzed by Polystyrene-Bound Manganese(III) Porphyrin. Polyhedron 2011, 30, 1463–1468. [Google Scholar] [CrossRef]
- Kargar, H.; Afkhami, S.; Alikhani, F. Green Oxidation of 2-Imidazolines with Tert-Butyl Hydroperoxide Catalyzed by Supported Manganese(III) Porphyrin in Water. J. Coord. Chem. 2012, 65, 3502–3510. [Google Scholar] [CrossRef]
- Kargar, H.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Rezaei, S. Multi-Wall Carbon Nanotube Supported Manganese(III) Porphyrin: An Efficient and Reusable Catalyst for Oxidation of 2-Imidazolines with Sodium Periodate. Transit. Met. Chem. 2013, 38, 1–5. [Google Scholar] [CrossRef]
- Sadjadi, S.; Eskandari, M. Ultrasonic Assisted Synthesis of Imidazo[1,2-a]Azine Catalyzed by ZnO Nanorods. Ultrason. Sonochem. 2013, 20, 640–643. [Google Scholar] [CrossRef]
- Khalili, B.; Rimaz, M. Ultrasound-Promoted Synthesis of (4 or 5)-Aryl-2-Aryloyl-(1H)-Imidazoles in Water. Curr. Chem. Lett. 2014, 3, 49–56. [Google Scholar] [CrossRef]
- Phakhodee, W.; Duangkamol, C.; Wiriya, N.; Pattarawarapan, M. Ultrasound-Assisted Synthesis of Substituted 2-Aminobenzimidazoles, 2-Aminobenzoxazoles, and Related Heterocycles. Tetrahedron Lett. 2016, 57, 5290–5293. [Google Scholar] [CrossRef]
- Sreenivasulu, T.; Reddy, G.M.; Sravya, G.; Padmaja, A.; Zyryanov, G.V. Synthesis, Characterization and Antimicrobial Activity of Pyridine Linked Hydrazinyl Oxazoles/Imidazoles. AIP Conf. Proc. 2019, 2063, 040055. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.-L.; Fan, Y.-H.; Zheng, X.-N.; Gao, J.-F.; Zhuang, L.-G.; Yu, Y.-L.; Xi, J.-H.; Zhang, D.-W. Synthesis of Imidazole-Based Molecules under Ultrasonic Irradiation Approaches. Molecules 2023, 28, 4845. https://doi.org/10.3390/molecules28124845
Yu X-L, Fan Y-H, Zheng X-N, Gao J-F, Zhuang L-G, Yu Y-L, Xi J-H, Zhang D-W. Synthesis of Imidazole-Based Molecules under Ultrasonic Irradiation Approaches. Molecules. 2023; 28(12):4845. https://doi.org/10.3390/molecules28124845
Chicago/Turabian StyleYu, Xian-Long, Yu-Han Fan, Xu-Nan Zheng, Jing-Fei Gao, Li-Geng Zhuang, Yang-Ling Yu, Jing-Hui Xi, and Da-Wei Zhang. 2023. "Synthesis of Imidazole-Based Molecules under Ultrasonic Irradiation Approaches" Molecules 28, no. 12: 4845. https://doi.org/10.3390/molecules28124845
APA StyleYu, X. -L., Fan, Y. -H., Zheng, X. -N., Gao, J. -F., Zhuang, L. -G., Yu, Y. -L., Xi, J. -H., & Zhang, D. -W. (2023). Synthesis of Imidazole-Based Molecules under Ultrasonic Irradiation Approaches. Molecules, 28(12), 4845. https://doi.org/10.3390/molecules28124845