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Abstract: Electrospinning is a cost-effective and efficient method of producing polymeric nanofibre
films. The resulting nanofibres can be produced in a variety of structures, including monoaxial,
coaxial (core@shell), and Janus (side-by-side). The resulting fibres can also act as a matrix for
various light-harvesting components such as dye molecules, nanoparticles, and quantum dots. The
addition of these light-harvesting materials allows for various photo-driven processes to occur within
the films. This review discusses the process of electrospinning as well as the effect of spinning
parameters on resulting fibres. Building on this, we discuss energy transfer processes that have
been explored in nanofibre films, such as Förster resonance energy transfer (FRET), metal-enhanced
fluorescence (MEF), and upconversion. A charge transfer process, photoinduced electron transfer
(PET), is also discussed. This review highlights various candidate molecules that have been used for
photo-responsive processes in electrospun films.

Keywords: electrospinning; FRET; energy transfer; organic dyes; nanoparticles; monoaxial and
coaxial nanofibres; polymers

1. Introduction

Polymeric materials doped with photoactive materials have widespread applications
as sensing materials [1], photovoltaic devices [2], drug delivery vehicles [3], coatings, and
films [4,5] and can also be used in biomimicry [6,7]. In addition to the variability imparted
by the polymer composition, the function can be extended by incorporating additives
such as dye molecules, metal nanoparticles, and quantum dots because they have the
additional advantage of promoting energy transfer processes [8,9]. Yet, another advantage
of polymeric materials is seen in the variety of processing methods, including spin coating,
thermal spraying, and drop casting used for their preparation [10–12]. Of these methods,
a cost-effective, simple, and reproducible method worth examining is electrospinning.

Electrospinning is a highly customizable technique that is used to create polymeric
fibres in diameters typically ranging from 100–1000 nm [13]. Owing to the high surface area
of these electrospun films, they can be used for different applications such as textiles [14],
composites [15], filters [16], tissue engineering [17], and drug delivery [17]. Various poly-
mers can be employed, and therefore, a range of properties, including hydrophobicity,
porosity, conductivity, transparency, etc., can be tailored. The high surface area of the
nanofibres permits the extensive and controlled incorporation of other photoactive materi-
als. For example, the porous nature of some films can allow for the inclusion and delivery of
smaller nanoparticles [18], molecules [19], or even gasses [20] after a photo-driven process.
The incorporation of these nanomaterials in electrospun films is possible before or after the
electrospinning process through a variety of methods that will be discussed (vide infra).
As such, electrospun nanofibres are excellent materials for complex charge and energy
transfer processes.
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This review discusses the process of electrospinning nanofibres and the various energy
and charge transfer systems with nanofibre films that have been reported to date. For this
review, the participating additives in these processes will be limited to molecules, quantum
dots, and metal nanoparticles. The charge and energy transfer processes discussed include
Förster resonance energy transfer (FRET), photoinduced electron transfer (PET), metal-
enhanced fluorescence (MEF), and upconversion. The current applications of these films
are also discussed.

2. Electrospinning: How It Works

Electrospinning converts polymeric solutions into nanofibre films. The solution typ-
ically consists of an organic solvent or water to dissolve one or more polymers [21].
A general electrospinning setup can be found in Figure 1, consisting of a syringe and
syringe pump, tubing, metal spinneret, power supply, and a collector. More specifically,
a syringe that houses the polymeric solution is placed in a syringe pump. When the sy-
ringe pump is turned on, plastic tubing carries the solution towards a metal spinneret.
A high voltage supply is connected to both the spinneret and collector plate, and when
turned on, a large potential (electric field) is applied between the two. The application of
the electric field to the polymer solution that is being fed through the spinneret leads to
fibre formation [13].
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Figure 1. (A) Monoaxial electrospinning system where a polymeric solution is placed in a syringe
pump and through a specific feed rate, is fed through tubing towards the metal spinneret. An electric
field is produced by connecting the spinneret and collector plate to a power supply, which results in
fibre formation (vide infra). A graphic representation of a monoaxial fibre is shown coming out of
the collector plate. (B) A coaxial (core@shell) electrospinning system displays two syringe pumps
containing the core solution and the shell solution, respectively. The two solutions travel through the
plastic tubing into the coaxial needle. A strong electrostatic force is applied, and a Taylor cone forms
a jet, displacing the nanofibres onto the collector plate. A graphical representation of a coaxial fibre is
shown coming out of the collector plate, where the core is shown in yellow, and the shell is in blue.
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Without the presence of a power supply, when a solution is pumped through the spinneret,
it will form droplets owing to surface tension [22]. However, under a high voltage, surface
charges become uniform (typically positive). Charge repulsion overcomes the surface tension
of the droplet to form a Taylor cone and ultimately a jet, as shown in Figure 2. Between the
spinneret tip and collector plate, the jet experiences instability, resulting in a circular lasso or
whipping motion. The nanofibre jet’s diameter is affected by various parameters such as rate of
solvent, evaporation, and charge density, vide infra [23–27].
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Figure 2. Representation of the Taylor cone formed at the tip of a metal spinneret when voltage is
applied to a polymeric solution in the process of electrospinning.

The metal spinneret used while electrospinning can be customized for unique fibre
formation in terms of size (diameter) and structure (hierarchical). The spinneret is typically
a cylindrical metal needle ranging from 4–30 Gauge [28]. Different sizes (diameter) of
spinnerets can affect fibre diameter. For example, it has been previously observed that as
the inner diameter of the spinneret decreases, the diameter of the fibre also decreases [29].
Monoaxial electrospinning is typically viewed as the traditional method of electrospin-
ning, where a spinneret supports a single solution that can contain a single polymer or
blend. Coaxial electrospinning allows for two separate solutions to be fed through a single
spinneret, resulting in the formation of a core@shell structure, as shown in Figure 3 [30].
There are numerous advantages to coaxial electrospinning, such as the versatility in the
choice of polymers, the confinement of various additives, and improving the spinnability
of less soluble polymers [31,32]. As a result, coaxial electrospinning allows for greater
photoactive additive stability, complete additive encapsulation, and tighter control for the
release of agents while maintaining the functional activity of molecules [33,34]. Triaxial
electrospinning involves an inner (core), middle (intermediate), and outer (shell) solution
using three concentric needles attached to three different pumps to deliver the materials
and create a multicoated fibre [30]. Finally, some spinnerets have side-by-side nozzles,
resulting in Janus fibres (Figure 3).
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Figure 3. The different types of fibres that can be fabricated via electrospinning, including monoaxial,
coaxial, triaxial, and Janus fibres. Monoaxial nanofibres are formed from a single solution of one
polymer or a polymer blend, resulting in homogenous fibres. Coaxial nanofibres result from two
separate solutions being fed through a separate core and shell component of a spinneret needle.
Triaxial nanofibres result from three separate solutions being fed through a single spinneret. Janus
fibres are formed by feeding two separate solutions through side-by-side spinnerets.
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The orientation of the fibres that are displaced onto the collector can either be aligned
or unaligned with one another, depending on the type of collector being used [35]. As
previously discussed, unaligned fibres are randomly oriented on the collector plate, whereas
aligned fibres (parallel with one another) can be achieved using rotating collectors, as shown
in Figure 4. Aligned fibres can be collected using a rotating collector such as a rotating drum,
wire drum, or rotating disk, where the speed at which a collector rotates can be set [36–40].
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Figure 4. Three different types of rotating collectors can be used in electrospinning, including the
drum (left), wired drum (middle), and disk (right). These rotating collectors allow for the formation
of aligned fibrous films.

2.1. Factors That Affect Fibre Formation

The fibres obtained from electrospinning can vary greatly depending on the solution
properties and processing parameters used. This includes the polymer’s molecular weight
(MW), concentration and viscosity of the polymer in solution, the distance between the
collector and spinneret, applied voltage, flow rate, solvent choice conductivity, flow rate,
and environmental factors. Additional factors affecting fibre formation in electrospinning,
which will not be discussed in greater detail in this review, include surface charge density
in the polymer jet, surface tension, permittivity, etc. [41].

2.1.1. Polymer Molecular Weight and Concentration

The molecular weight (MW) and concentration of a polymer influence solution vis-
cosity, surface tension, chain entanglements, and the morphology of resulting fibres [42].
If the molecular weight of a polymer is too low, viscoelastic forces decrease dramatically,
and surface tension plays a larger role in the morphology of the fibres, resulting in beaded
fibres [43]. An example of this is shown in Figure 5A, where two examples of polystyrene
films are compared. Similarly, if the polymer solution is considerably dilute, the intermolec-
ular distance is vast, resulting in weak intermolecular interactions, making it difficult to
form fibres.
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Generally, increasing the polymer MW and/or concentration up to a certain limit
improves the morphology of the resulting fibres. Both parameters play a role in forming
chain entanglements, which refers to the interlocking of polymer chains. Stable fibre
formation occurs at >2.5 entanglements per chain, which can be met by increasing the
concentration of the solution or MW of the polymer [44]. The concentration also affects
the fibre diameter; as the solution concentration increases, the diameter typically increases
as well [45].

When the polymer concentration and MW are too low or too high, fibre formation
or morphology is adversely affected. Polymers with a MW that is too high have been
observed to create flat and aggregated nanofibres with decreased homogeneity [46,47].
Similarly, the concentration of the solution must not be so high that its viscosity prevents
the ability of the polymer to be stretched by the electric field [41]. For example, a study
found that increasing the concentration of polylactic acid (PLA) increased the diameter
of the resulting fibres [48]. Another study found that as the concentration and MW of
polyethylene glycol (PEG) in solution increased, the resulting fibres had decreased beading
and more consistent diameters [43].

2.1.2. Viscosity

As alluded to above, solution viscosity plays a key role in fibre formation as it can both
promote or impede fibre formation [49]. Optimal solution viscosity produces continuous
fibre formation during the jet creation; however, if the viscosity is too high, the fibre jet may
not be pulled effectively [25]. For example, one study found that when electrospinning
poly(carbonate urethane) (PCU) with low, intermediate, and high viscosity the resulting
fibres were beaded, uniform, and large in diameter, respectively [49]. In addition, when
electrospinning coaxial nanofibres, the viscosity of the shell solution plays an important
role in ensuring the formation of a core@shell structure [50]. For example, the effects of
solution viscosity on the core@shell (polycaprolactone@polyethylene oxide, PCL@PEO)
structure diameter and pore size have been examined. The results showed that the higher
the viscosity, the larger the fibre diameter and pore size [51].

2.1.3. Applied Voltage and Tip-to-Collector Distance

The tip-to-collector distance needs to be taken into consideration alongside the voltage,
as the two play a role in fibre formation [52]. The distance between the tip and the collector
is where the elongation of the fibres occurs and where the solvent evaporates. Thus, if
this distance is too large, the fibres will not be able to reach the collector successfully. On
the other hand, if the tip-to-collector distance is too short, the solvent cannot evaporate
completely, resulting in the fibres lacking elongation [42]. Distance also affects the fibre
diameter; generally, the greater the distance, the lower the diameter of the fibres [42].
However, changing the tip-to-collector distance cannot be done without considering the
concentration and applied voltage as well. For example, one study found that at a higher
concentration of starch, a higher voltage alongside a greater tip-to-collector distance was
needed to produce consistent fibres. Considering the high viscosity of the polymeric
solution, longer distances allowed for sufficient elongation of fibres from the whipping
motion [52]. If a solution is prone to beading, a larger tip-to-collector distance typically
results in larger beads [53].

Whether through increasing the applied voltage or decreasing the distance, the surface
charge on the Taylor cone heavily influences the droplet shape that leads to the jet formation,
as observed in Figure 6. As a result of the electric field, four different types of jets will be
formed, namely (i) stable jet, (ii) fluctuating jet, (iii) stable jet with polymer drops, and (iv)
multiple jets [54]. A stable jet occurs when the jet flow rate is lower than the feed rate, with
enough solution emerging to form a stable jet. At higher applied voltages, the jet flow rate
is higher than the feed rate, leading to a fluctuating jet that forms beaded fibres. This occurs
because the jet flow rate of the polymeric solution is faster than the velocity at which the
solution can be replenished at the needle tip, leading to a fluctuating jet [55,56]. A stable
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jet with polymer drops, on the other hand, will occur when the polymer solution builds
up at the tip of the needle and drops after some time. In this case, the beads are more
globular due to a lower applied voltage. Finally, if the applied voltage is high, multiple
jets extrude at the same time from the tip of the needle, and fibres with elongated beads
are produced [55].
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Figure 6. Schematic of a polymer solution at the tip of a spinneret, experiencing different voltages.
As the applied voltage increases, a stable jet is formed that can allow for nanofibre formation
(shown emerging from the third spinneret). When the applied voltage passes a certain point, the jet
experiences more instability, and the formation of multiple jets will occur (shown emerging from the
fourth spinneret).

The applied voltage can affect the morphology of the fibres. One study found that as
the applied voltage increased, the surface of the fibres would be coarser (i.e., more bumps
on the surface). This was due to the increase in the jet flow rate and the decreased travelling
time of the jet, which prevents fibres from being sufficiently stretched [15]. The effect of
the applied voltage typically follows a pattern in which increasing the voltage decreases
the fibre diameter, as there is an increase in electrostatic forces acting on the jet resulting in
thinner fibres [57–59]. In another study, increasing the applied voltage on poly(vinylidene
difluoride) (PVDF) resulted in an increase in diameter with a broad distribution, but further
increasing the voltage decreased the diameter and resulted in more uniform fibres [54].
Examples in which the fibre diameter increased as the voltage increased usually occur due
to an increase in the solution concentration [60,61]. However, there are instances when as
the voltage increases, so does the fibre diameter, without a change in the concentration. In
one example, this was also accompanied by a broader size distribution [62].

2.1.4. Conductivity

Owing to the role of surface charges in fibre formation, solution conductivity plays
a large role in electrospinning. Higher conductivity can allow for the enhanced elongation
of a jet, resulting in thinner or thicker fibres. Thicker fibres can result from increased mass
flow due to noncovalent interactions between additives and the polymer [63]. Nonethe-
less, improving the solution conductivity can help increase the spinnability of certain
polymer solutions [30]. One study found that improving the conductivity also improved
the spinnability of the solution through the addition of a salt (ammonium salt, TEAB)
to a solution of polymers of intrinsic microporosity (PIMs) in 1,1,2,2-tetrachloroethane
(TeCA). In this case, the inclusion of TEAB did increase the mean fibre diameter [64].
However, cases in which increasing conductivity resulted in thinner fibres have been
found in a variety of polymers as well, including polystyrene (PS) [65], polyethylene oxide
(PEO) [66], and poly(L-Lactic acid) (PLA) [67].

2.1.5. Flow Rate

Closely related to the applied voltage, the flow rate also has an influence on the
formation and morphology of electrospun nanofibres as observed in Figure 7. Several
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studies have shown that increasing the flow rate increases the diameter and size distribution
of fibres, but if the flow rate is too high, it results in the formation of beads on a string with
large diameters or even nanoparticles with no fibres [68,69]. This is due to the flow rate
exceeding a critical value, where the delivery rate of the fluid to the tip of the spinneret
is higher than the rate at which the solution is being pulled by the electric field [68,69].
Conversely, a flow rate below a critical value would result in an unstable Taylor cone, as
the solution would recede into the needle and the cone would disappear. The Taylor cone
would eventually replenish as the available solution would be pulled, but this would result
in a large size distribution of the fibres [68].
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Figure 7. Taylor cone and jet stability with regards to increasing flow rate from top to bottom:
receding jet, stable Taylor cone, and solution build-up at the tip of the spinneret.

The flow rate also influences the porosity of the resulting fibres. It has been demon-
strated that increasing the flow rate decreases the porosity of polyvinyl alcohol (PVA),
Nylon-6, and polyvinyl pyrrolidone (PVP) fibres. This is most likely due to the increased fi-
bre diameter and density as more polymer is released from the spinneret at a faster rate [70].

2.1.6. Solvent

There are other factors that also need to be considered related to the formation of fibres.
This includes the solvent that is used, as each one will have a different surface tension and
boiling point, which will require the application of a different voltage. Solutions with high
surface tension may be difficult to electrospin, and as a result, beads on a string could form,
as demonstrated by Yang et al. and Chuangchote et al. [71,72]. In other studies, authors
electrospun PVP in various solvents, using a constant concentration to observe the effect
of the solvent on resulting fibres. The authors were able to conclude that water, dimethyl-
formamide (DMF), and dichloromethane (DCM) led to beaded fibres, while solvents with
lower surface tension (i.e., methanol and ethanol) produced non-beaded fibres [73,74].

2.1.7. Environmental Factors

While these can be difficult to control, environmental factors such as temperature and
humidity also need to be considered. Increasing the relative humidity (RH) can result in
decreased fibre diameter, including the formation of beads or no fibres, as demonstrated
by several studies (Figure 8) [75–78]. When RH decreases, the solvent rate of evaporation
increases, resulting in the solidification of the jet occurring earlier. However, when RH is
higher, the rate of evaporation is lower, and solidification happens later in the process, so
the jet is exposed to the applied voltage for a longer time, resulting in the stretching and
thinning of the jet, leading to fibres with smaller diameters. Beads could also form if the
relative humidity is too high owing to a lower solvent evaporation rate. This results in the
elastic forces eventually overcoming the plastic forces, creating beads [75].
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As the relative humidity increases, so does the possibility of creating fibres with beads on a string.

Temperature has an influence on the viscosity of the solution, which affects the
spinnability. It was demonstrated that the viscosity decreased when the temperature
increased, as it is governed by an Arrhenius-type activation energy (Equation (1)) [79,80].

η = Aexp (EaRT) (1)

where η is the viscosity, A is the pre-exponential factor, Ea is the activation energy of the
flowing solution, R is the gas constant, and T is the temperature of the solution [80]. Tem-
perature also influences the morphology of the fibres, as it was seen that fibre diameter de-
creases as the temperature increases due to a decrease in surface tension and viscosity [79].

2.2. Light-Harvesting Materials in Electrospun Nanofibres

Considering the parameters listed above that affect electrospun nanofibre morphol-
ogy, the addition of light-harvesting materials in electrospun films can also affect the
required electrospinning parameters [81]. Herein, the various methods of incorporating
light-harvesting materials in electrospun nanofibres and the experimental conditions used
in their preparation are elaborated. It should be noted that values such as applied volt-
age vary between instruments owing to inherent differences in the equipment and are
therefore excluded.

This review discusses energy and charge transfer processes within electrospun nanofi-
bres, which can exist between various nanomaterials such as nanoparticles, quantum dots,
and molecules. While the specific energy or charge transfer systems will be discussed in
more detail below, the difference between energy and charge transfer is elaborated here in
Figure 9. In this review, the transfer of an electron after a photo-driven process is described
when referring to charge transfer systems. In such processes, an electron is topically excited
by light and transferred through a variety of processes, vide infra [82].

In terms of energy transfer systems, this process refers to the transfer of energy after
excitation by light. This typically occurs between a donor and acceptor after a photo-driven
process. Typically, in these processes, an electron is excited, and instead of the electron
being transferred, it relaxes back down, and energy is transferred instead, vide infra [83].
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Figure 9. An example of a charge transfer process (A) and energy transfer process (B). (A) describes
a charge transfer process whereby an excited electron from a donor is transferred to an acceptor.
(B) describes an energy transfer process whereby an excited electron in a donor relaxes back down,
and the resultant energy is transferred to an acceptor. This results in a ground-state electron in the
acceptor being excited.

Both charge transfer and energy transfer systems have a variety of applications, es-
pecially within electrospun nanofibres. For example, these applications include sensing,
photovoltaic devices, and luminescent solar concentrations, vide infra.

3. Energy Transfer Systems within Electrospun Nanofibres

Owing to the versatility of electrospun nanofibres and the variety of parameters
that can be altered to improve spinnability, the development of films from polymeric
solutions using electrospinning is advantageous. Perhaps most unique is the ability for
various energy and charge transfer processes to occur in these films, making them highly
photoresponsive. Energy transfer systems such as Förster resonance energy transfer (FRET),
metal-enhanced fluorescence (MEF), and upconversion and downconversion can occur
between molecules, nanoparticles, metals, and between like-species [83,84]. These processes
typically turn fluorescence on or off or enhance emission. In addition, they are often highly
sensitive to their environment, have a rapid response rate, and have a low detection
limit, leading to a variety of applications [85,86]. Critical to realizing these applications is
an effective matrix to house the energy-transferring and/or accepting species. Owing to
their large surface area, high tunability, and ease of fabrication, electrospun nanofibres are
an excellent structural matrix for light absorption and energy transfer.

As alluded to previously, a myriad of materials can be incorporated within (and upon)
electrospun nanofibres. For example, additives can be embedded in the fibres during the
electrospinning process [87]. This involves preparing the solution with both the polymer
and nanomaterial dissolved and spinning the prepared solutions into fibres. Another
method includes coaxial electrospinning, where the light-harvesting species can be in
either the core, the shell, or both. Finally, post-processing methods can be used where the
nanomaterials can be added to the surface of electrospun nanofibres by drop-casting [88],
spin coating [89], submerging the films in a solution [2], or via chemical post-modification,
as shown in Figure 10 [90].

3.1. Förster Resonance Energy Transfer (FRET) in Electrospun Nanofibres

Forster resonance energy transfer is a distance-dependent dipole-dipole interaction
between donor and acceptor. FRET occurs at distances between 1–10 nm and requires
spectral overlap between the donor emission and acceptor absorbance (Figure 11). Other
factors that play a role in FRET include the quantum yield of the donor and the relative
orientation of the donor and acceptor [91]. Examples of FRET donors and acceptors include
molecules, fluorophores, and quantum dots. FRET processes using molecules and quantum
dots in electrospun films are discussed herein.
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Figure 10. Various methods that can be used to incorporate additives into electrospun nanofibres.
(A,B) refer to the incorporation of additives in solution with polymers that are then electrospun as
either (A) monoaxial or (B) coaxial nanofibre films. (C) Drop casting can be used to apply a layer
of additives to electrospun films. (D) Spin-coating can be used to apply a thin layer of additive to
electrospun films. (E) Films can be dipped into a solution and additives can be absorbed onto the
fibres. (F) Various chemical post-processing methods can be employed such as dissolving the films in
solution and growing nanoparticles on the surface of the fibres.
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Figure 11. FRET requires spectral overlap between a donor emission and acceptor absorbance. The
donor and acceptor must also be in close proximity, as FRET occurs at a distance of 10 nm or less.

3.1.1. Molecules

Molecular-based FRET detection systems have been of great interest to researchers
owing to their high sensitivity, low cost, tunability, and breadth of options [92]. Surprisingly,
when FRET is paired with the ease of embedding molecules in electrospun nanofibres, only
a handful of literature examples have been reported on electrospinning FRET-exhibiting
molecules. Tonsomboon et al. electrospun a solution of turn-on FRET-based dyes in
polycaprolactone (PCL) and cellulose acetate (CA) for the detection of mercury (II) [93].
The detection of mercury typically requires extra solution processing, increasing the time
and cost. Embedding the sensing materials (donor and acceptor covalently bound to each
other) in electrospun nanofibre films is more cost-effective, responsive, and highly sensitive,
and the films can be easily extracted from contaminated samples. The authors designed
a dye, NF06, by coupling to common dyes with a large Stokes shift (a helicene coupled
with a rhodamine 6 G thiohydrazide). The nanofibre films were converted to test strips
that would be submerged into various aqueous samples. Upon the binding of Hg2+, the
molecule transforms from a ring-closed to a ring-open form, allowing for fluorescence, as
shown in Figure 12. To obtain the electrospun films, a 7.5 wt% polymer blend of cellulose
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acetate (CA) and polylactic acid (PLA) (1:1 wt/wt) in acetone and DCM (3:1 v/v) was used.
The solution was fed through an 18 G needle at a rate of 5 mL/h, under a voltage of 18 kV
and at a tip-to-collector distance of 10 cm. After electrospinning, the NF06 molecules were
deposited on films via drop-casting (Figure 10C) and/or dip-coating (Figure 10E). The
strips began exhibiting fluorescence at a mercury concentration of 10 ppb and plateaued at
10 ppm, exhibiting high sensitivity and saturation, respectively [93].
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Figure 12. A molecular-based FRET system where NF06 was electrospun in polymeric films for the
detection of mercury. When mercury is not present, the fluorophore is in a ring-close state preventing
fluorescence. Upon introduction of mercury, the fluorophore moves to a ring open state, allowing
intra-molecular FRET to occur after the donor is excited. Graphic adapted from [93].

FRET-based systems have also been reported for light-emitting applications in elec-
trospun nanofibres [87]. A study by Ner et al. incorporated a donor and acceptor pair
conjugated to salmon DNA (500 kDa) [87]. The use of DNA in optoelectronic devices is of
interest because of its thermal stability, highly organized structure, and transparency. By
using two dyes that have unique interactions with DNA, the donor and acceptor were kept
at specific distances from one another (Figure 13). The authors explored different ratios of
donor to acceptor, which showed that a molar ratio of 1:20 resulted in the film appearing
as pure white. To obtain the electrospun films, a 10% (wt/wt) solution of DNA-CTMA
(cetyltrimethylammonium chloride) in ethanol/chloroform (3:1 v/v) was prepared. The
solution was fed through at a rate of 0.8 mL/h, a tip-to-collector distance of 17 cm, and
a voltage of 20 kV [87].
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Figure 13. A FRET donor (Coumarin 102) and acceptor (4-[4-dimethylaminostyryl]-1-
docosylpyridinium bromide Spirolactam) incorporated in salmon DNA and electrospun into nanofi-
bre films. The donor localizes between the base pairs and the acceptor localizes to the minor groove
of the backbone. CTMA, a surfactant, was used but not shown in this graphic for clarity. Molecules
are not shown to scale [87].
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FRET-based systems can also be used for lasing applications in display and sensing
technologies. For such applications, embedding the FRET-exhibiting dyes in electrospun
nanofibres is an efficient method of producing lasing-compatible films. Sznitko et al.
incorporated rhodamine 6 G (donor) and cresyl violet (acceptor) into PMMA (Figure 14).
Various concentrations of both dyes dissolved in a 30% PMMA in chloroform and DMF (4:1
v/v) were reported. The solution was fed at a rate of 0.7 mL/h, a tip-to-collector distance of
25 cm, and a voltage of 18 kV. The authors also measured the FRET efficiency and found it to
be 57% at a 1:1 donor-to-acceptor concentration. Changing the concentrations by increasing
the acceptor would decrease the FRET efficiency to 49% [19]. Kaerkitcha et al. also explored
FRET between molecules in electrospun nanofibres where pyrene and porphyrin-based
dyes were incorporated in hyaluronic acid [94].

Molecules 2023, 28, 4857 13 of 29 
 

 

 

Figure 14. FRET donor (rhodamine 6 G) and acceptor (cresyl violet) incorporated into monoaxial 

nanofibres that exhibit FRET [19]. 

Two-step energy transfer systems can also be explored in electrospun nanofibres, as 

examined by Qin et al. using a Janus structure to electrospin polyvinylpyrrolidone/poly-

acrylonitrile (PVP/PAN) fibres. In this study, two molecules (anthracene and rhodamine-

B) were incorporated in PVP and one (coumarin-6) in PAN. The energy transfer system 

occurred from anthracene to coumarin-6 and then to rhodamine-B, as shown in Figure 15. 

By adjusting the concentrations of the various molecules, the authors were able to create 

white-light-emitting nanofibres. These films were electrospun using a 21 G needle tip, a 

flow rate of 0.003 mL/min, a tip-to-collector distance of 15 cm, and a voltage of 15 kV [95]. 

Another two-step energy transfer process was explored by Vohra et al. where the host 

polymer blend, perfluorotributylamine (PFTBA) and polyethylene oxide (PEO), acted as 

the donor, and zeolite L crystals functionalized with various fluorescent molecules acted 

as the acceptor [96]. 

 

Figure 15. Janus electrospun nanofibres that have a two-step FRET system incorporated. The fluor-

ophores incorporated within included anthracene and rhodamine-B in the PVP layer and coumarin-

6 in the PAN layer. Upon excitation, anthracene transferred energy to coumarin-6, which then trans-

fers to rhodamine-B [95]. 

Figure 14. FRET donor (rhodamine 6 G) and acceptor (cresyl violet) incorporated into monoaxial
nanofibres that exhibit FRET [19].

Two-step energy transfer systems can also be explored in electrospun nanofibres, as ex-
amined by Qin et al. using a Janus structure to electrospin polyvinylpyrrolidone/polyacryl-
onitrile (PVP/PAN) fibres. In this study, two molecules (anthracene and rhodamine-B)
were incorporated in PVP and one (coumarin-6) in PAN. The energy transfer system oc-
curred from anthracene to coumarin-6 and then to rhodamine-B, as shown in Figure 15.
By adjusting the concentrations of the various molecules, the authors were able to create
white-light-emitting nanofibres. These films were electrospun using a 21 G needle tip, a
flow rate of 0.003 mL/min, a tip-to-collector distance of 15 cm, and a voltage of 15 kV [95].
Another two-step energy transfer process was explored by Vohra et al. where the host
polymer blend, perfluorotributylamine (PFTBA) and polyethylene oxide (PEO), acted as
the donor, and zeolite L crystals functionalized with various fluorescent molecules acted as
the acceptor [96].
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fluorophores incorporated within included anthracene and rhodamine-B in the PVP layer and
coumarin-6 in the PAN layer. Upon excitation, anthracene transferred energy to coumarin-6, which
then transfers to rhodamine-B [95].
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The aforementioned examples of FRET within electrospun nanofibres are limited
to monoaxial films. However, FRET within coaxial nanofibres has also been explored.
Mahmood et al. demonstrated an energy transfer process from donors in the core to
acceptors in the shell of a core@shell nanofibre. Specifically, BODIPY was incorporated in
polyvinyl pyrrolidone (PVP) as the core, and rhodamine-B was incorporated in PVP as the
shell, Figure 16 [97]. In this study, using a core@shell structure allowed for the controlled
localization of the donor and acceptor as well as an increased surface area between them.
The films were electrospun at a flow rate of 1.0 mL/h, 23 kV, and a 17 cm tip-to-collector
distance. Upon excitation of the BODIPY, the emission of rhodamine was observed. The
FRET efficiency of the system was 54% [97].
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3.1.2. Quantum Dots

Quantum dots (QD) are semiconductor nanocrystals comprised of around 100–100,000
atoms, resulting in an overall size of 2–10 nm [98,99]. QD are typically composed of
groups II–VI and III–V elements, such as Cd, Hg, Se, Pb, Zn, etc. [99]. Quantum dots emit
fluorescence owing to electrons relaxing from the conduction band to the valence band. By
tuning the particle size of these materials, various emission wavelengths can be observed
as shown in Figure 17 [100,101]. Quantum dots exhibit high quantum yields and resistance
to photobleaching [102].
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The application of quantum dots as donors or acceptors in FRET-based systems
has been widely studied [103]. Similar to molecules, for FRET to occur between quan-
tum dot pairs, there must be appropriate spectral overlap and distance between the two
species [101,103]. However, quantum dots offer many advantages compared to molecules,
including a greater FRET distance (can go beyond 10 nm) and higher extinction coefficients
(106 M−1cm−1 for quantum dots compared to 10−5 M−1cm−1 for organic dyes) [103]. Ow-
ing to these advantages, quantum dots have been embedded within electrospun nanofibres
as FRET pairs.

In one example, Altintas et al. loaded green- and red-emitting quantum dots into
nanofibres and observed energy transfer between the pairs at varying concentrations [104].
The quantum dots were loaded into polycaprolactone (PCL) (0.096 g/mL) in a solvent
system consisting of THF and DMF (4:1 v/v). The solutions were then fed through an 18 G
spinneret, at a voltage of 15 kV, a feed rate of 1–1.5 mL/h, and a tip-to-collector distance
of 25 cm. To observe energy transfer, the authors used time-resolved photoluminescence
(PL) spectroscopy. Upon introduction of the acceptor red quantum dots, donor lifetime
decreased, indicating that FRET was occurring. The FRET efficiency changed depending
on the concentration of donor-to-acceptor as well as the distance between the two [104].

Another study by Choi et al. assessed the spatial distribution of quantum dots within
nanofibres and its effect on FRET [105]. Quantum dots can act as FRET donor layers in
dye-sensitized solar cells (DSSCs). Electrospinning these nanomaterials into fibres allows
for the easy incorporation of these as a layer in the DSSC, preventing direct contact of
the quantum dots with other components and controlling the spatial distribution of each
quantum dot to prevent self-quenching, as shown in Figure 18. The CdSe quantum dots
were dissolved in chloroform and poly(methyl methacrylate) (PMMA) (0.1–0.2 g/mL). The
solution was electrospun at a flow rate of ~20 µL/m, a voltage of 13 kV, and 10 cm between
the spinneret and collector plate. The results showed that the spatial distance between
quantum dots can be controlled by altering the diameter of the nanofibre. The authors
observed that the narrower the fibre, the greater the distance between quantum dots. Upon
incorporation of the films into DSSCs, a 25% enhancement in the performance of the DSSC
was reported [105].
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Figure 18. A graphical representation of incorporating nanofibre embedded with quantum dots in
the anode of a dye-sensitized solar cell (DSSC). In this example, a poly(methyl methacrylate) (PMMA)
nanofibre film doped with CdSe quantum dots was deposited on a TiO2 mat. Adapted from [105].

In some cases, quantum dots have been used solely as the donor in nanofibres for
sensing applications. For example, CsPbBr3 perovskite quantum dots (CPBQD) were
embedded in PMMA for sensing in an aqueous medium [106]. CPBQD films acted as
a sensor for the detection of metal ions, proteins, and organic molecules [106]. In another
study, CdSe@ZnS quantum dots were immobilized on the surface of PCL@TMSPEDA
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nanofibres and used to create a FRET-based nanofibre film sensor [107]. Drug release in
electrospun films can also be monitored using FRET. In a study, the quenching of quantum
dots was decreased upon drug release, as there was decreased FRET between the quantum
dots and the drug [108].

3.2. Metal-Enhanced Fluorescence

Metal-enhanced fluorescence (MEF) is a process whereby a fluorophore in certain
proximity to a metal nanostructure can exhibit amplified fluorescence (Figure 19) [109].
This is often quite useful for sensing applications to improve detection or for photovoltaic
devices to improve performance. Metal nanostructures can interact with incident light in
many notable ways, some of which include light scattering, enhancing the local electro-
magnetic field, and non-radiatively transferring energy. When a fluorophore is in close
proximity (typically within 5–90 nm) with a metal nanostructure and there is spectral over-
lap between the metal and fluorophore, then this can result in enhanced fluorescence of the
fluorophore [109]. These interactions can occur within spin-coated films with fluorophores
on a metal-coated surface [110] and in bilayer vesicles in an aqueous medium [111]. Alter-
natively, electrospun nanofibres offer an excellent matrix for MEF studies owing to their
versatility in design including choice in polymer, hierarchical design, control over the
distance between nanostructures, and more. Owing to these benefits, the design and use of
electrospun films with MEF abilities has been explored.
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Figure 19. Metal-enhanced fluorescence occurs owing to surface plasmons generated from a metal
nanoparticle interacting with incident light. Surface plasmons refer to the collective oscillation of
surface electrons as shown on the left. The metal nanoparticle can cause enhanced emission of
a nearby fluorophore through a variety of pathways. One example is shown on the right, whereby
a molecule (M) is within the generated electromagnetic field of the nanoparticle.

MEF has been used in a variety of studies to enhance the performance of solar cells. For
example, in organic photovoltaic (OPV) devices, a thin light-harvesting layer is preferred
to prevent charge recombination. However, this lowers the light-harvesting ability of
the device; conversely, light trapping via MEF helps enhance OPV device performance.
Chen et al. explored this by fabricating electrospun nanofibres with AgNP@PVP and
incorporating this as a layer within OPV devices (Figure 20) [112]. A core@shell structure
was fabricated with the AgNP in the core and PVP in the shell. The solutions were
electrospun at a feed rate of 0.1 mL/h, a voltage of 14–15 kV, and a tip-to-collector distance
of 13 cm. The fibre mat was placed between the indium-tin-oxide (ITO) substrate and
PEDOT:PSS layer. Upon incorporation of the electrospun film, device performance was
4.19%, compared to 3.53% without the additional light-harvesting film. Nanofibre films
with MEF characteristics have also been used to develop other devices. For example, the
effect of AgNPs on the development of white-light-emitting diodes has been explored [113].
In another study, dual-function films were developed to improve OPV efficiencies. The
films consisted of luminescent solar concentrating (LSC) nanoparticles and AgNPs to
achieve a dual-functioning film [18].
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Figure 20. AgNPs embedded in polyvinyl pyrrolidone (PVP) nanofibres coated on ITO. This film was
used as an additional light-harvesting layer in an organic photovoltaic device. Adapted from [112].

Camposeo et al. explored the influence of AuNP on the emission of rhodamine when
electrospun in PVP. PVP was chosen owing to its optical transparency in the visible spec-
trum. Rhodamine exhibits excitation and emission at 540 and 565 nm, respectively, which
matches the optical features of the AuNPs (60 nm in size) that have an excitation spectrum
peaking at 538 nm. To prepare the solution for electrospinning, PVP and rhodamine were
dissolved in a solution of ethanol and AuNP in water. The weight ratio prepared was
1:10 rhodamine to PVP and 1:100 AuNP to PVP. The samples were electrospun at a flow
rate of 0.5 mL/h, a tip-to-collector distance of 15 cm, and a voltage of 11 kV. Similarly, in
another study by Burris and Cheng, the effect of AgNPs on the fluorescence on the polymer
polyethylene oxide/polydiacetylene (PEO/PDA) blend was explored. Various sizes of
AgNPs were incorporated in PEO/PDA electrospun nanofibres and a 4.6-fold enhancement
of fluorescence was observed [114].

Metal-enhanced fluorescence is often exploited to improve sensor activity. Yun et al.
designed a biosensor by electrospinning polycaprolactone (PCL) films decorated with
silica-coated AgNPs for antibody detection. A 20% solution of PCL in TFE was prepared
and electrospun using a flow rate of 0.6 mL/h, a voltage of 10 kV, and a tip-to-collector
distance of 20 cm. The films were immersed in a solution of AgNO3 and exposed to UV
light to promote the growth of AgNPs on the nanofibres. Following this, a silica layer was
coated on the film. The film was used to sense fluorescently labelled antibodies, which
exhibited enhanced fluorescence owing to the AgNPs [115]. In another study, Fan et al.
developed a MEF-based sensor using AgNPs/SiO2 in polyacrylonitrile (PAN) [113].

3.3. Upconversion

Light can be upconverted or downconverted for use in various applications; upcon-
version converts multiple lower-energy wavelengths of light into a higher-energy photon,
and downconversion converts a higher-energy photon into lower-energy wavelengths
of light, as shown in Figure 21 [84]. This can occur within molecules and inorganic ma-
terials (particularly rare-earth metals). This review will focus on upconversion within
electrospun nanofibres.

There are several mechanisms for the upconversion of light. One of these mechanisms
is excited state absorption (ESA), which is the basic conversion pathway that involves the
excitation of an electron from the ground state into the second excited state using a two-step
excitation mechanism (Figure 22A) [116]. Another mechanism of upconversion is energy-
transfer upconversion (ETU), which is outlined in Figure 22B. In this process, a similar
two-photon absorption mechanism occurs but with two neighbouring ionic species [116].
First, a photon is absorbed by each ion to populate the E1 excited states. Next, one of
these electrons relaxes down to the ground state using non-radiative energy transfer, while
the other electron is promoted to the E2 excited state, resulting in light upconversion.
Cooperative sensitization upconversion (CSU) involves two-photon absorptions and three
adjacent atoms. The two outer atoms absorb a photon and simultaneously transfer their
excitation energy to an acceptor atom, resulting in an excitation energy that is twice as large
(Figure 22C) [117]. This energy-transfer process is commonly seen in lanthanide species
such as Er3+, Tm3+, and Tb3+ [117]. Finally, photon avalanche (PA) upconversion occurs
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when an electron is excited in ion 1 to an energy state E1, and then electron transfer to ion
2 occurs. Consequently, this electron is promoted to a second excited state E2 within ion
2, after absorption of another photon (Figure 22C) [118]. PA differs in that the E1 values
for ion 1 and ion 2 in PA are not degenerate. Sufficient overlap of the participating energy
levels in ions 1 and 2 is necessary for this process to occur.
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Figure 22. Upconversion processes. (A) Excited state emission (ESA), (B) Energy-transfer upcon-
version (ETU), (C) Cooperative sensitization upconversion (CSU), and (D) Photon avalanche (PA)
upconversion. The red dashed lines represent electron excitation, the green dashed lines represent
energy transfer, and the blue solid line represents electron relaxation and emission.

Lanthanides are commonly used in upconversion applications due to their available
4f orbitals allowing for multiple electronic transitions [119]. Lanthanides have tunable
absorption properties in the IR region and have shown promise when used in photovoltaic
and photocatalytic applications [120]. Figure 23 shows an example of 4f-4f upconversion
in a single ion (Er3+) using a laser source of wavelength 980 nm. The excited electrons
undergo various levels of vibrational relaxation before emitting at higher energies than the
original excitation wavelength [120].
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In 2012, Bao et al. demonstrated upconversion photoluminescence in poly(methyl
methacrylate) (PMMA) nanofibres containing lanthanide-doped nanoparticles [121]. The
lanthanide-doped nanoparticles efficiently convert low-energy near-infrared (NIR) photons
to high-energy visible photons. Specifically, they used ytterbium oxide and erbium oxide
as their upconverting materials. The PMMA/ytterbium oxide/erbium oxide solution was
electrospun using a ~20 G needle, a voltage of 20 kV, and 20 cm from tip-to-collector.
The nanoparticles aggregated along the nanofibres, which was consistent with previous
findings. Despite this, the upconversion emission was consistent in the nanofibres as
found in powder form (emission at 523, 539, and 656 nm). The nanoparticles were capped
with oleic acid and were found to be aligned along fibre axes, and the electrospun films
were flexible and uniform, with minimal beads when visualized using SEM imaging. The
collection drum was located 20 cm from the tip of the spinneret, and a voltage of 20 kV was
used for electrospinning [121].

In another study, NaYF4:YB3+, Er3+ nanoparticles were incorporated into polymeric
silica and electrospun. NaYF4:YB3+, Er3+ are reported as efficient NIR-to-visible upconvert-
ing materials, and silica has modifiable surface pores with Si-OH active bonds located on
pore walls [122]. The use of multiple-lanthanide nanoparticles allows for electron transfer
between atoms to produce the resulting upconverted light. The tip-to-collector distance
was set at 20 cm with 10 kV of voltage supplied, and the nanofibres emitted at 522 nm,
542 nm, 655 nm, and 663 nm upon excitation with a 980 nm laser [122].

The use of upconverting nanomaterials can also be used to alter the transparency
of materials owing to the ability of these materials to absorb outside of the visible spec-
trum [123]. In one study, upconverting nanoparticles (UCNPs) were used to develop
transparent nanofibre films [124]. In this study, poly-methyl methacrylate (PMMA) was
used owing to its transparent properties alongside photoluminescent nylon 6 (PA6). The
upconverting materials were Y2O3, Yb2O3, and Er2O3. Upon excitation at 980 nm, the
UCNP showed strong upconversion emission around 550 nm [124]. Other examples of the
use of upconverting nanoparticles in electrospun nanofibres include the incorporation of
Y2Ti2O7:Tm/Yb UCNPs in PVP [125] and Bi2Ti2O7:Tm3+/Yb3+ in PVP [126].

4. Charge Transfer Systems in Electrospun Nanofibres: Photoinduced Electron
Transfer (PET)

Photoinduced electron transfer (PET) is a charge transfer process after photoexcitation
whereby an electron is transferred from a donor to acceptor (Figure 24). This can occur with
the donor and acceptor being directly bound or by being linked via a spacer group [127].
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The PET process can be used for the development of fluorescent probes that react to their
environment and result in an “on” or “off” fluorescent state [128].
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Figure 24. Examples of the photoinduced electron transfer (PET) process. (A) An electron is trans-
ferred from the LUMO of the acceptor to the LUMO of the donor. (B) An electron is transferred from
the HOMO of the donor to the HOMO of the acceptor.

Various fluorophores that exhibit the PET process have been explored, and some have
been electrospun in nanofibres as either donors or acceptors. Examples of molecules that
exhibit PET include naphthalamides, quinolines, and carbazoles, as shown in Figure 25.
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Figure 25. Common fluorophores used in photoinduced electron transfer processes. (A) Napthalim-
ide, (B) Quinoline, (C) Carbazole.

4.1. Acceptors: Naphthalimide and Quinoline

Naphthalimides are effective for fluorescent detection, as their optical properties can
be readily altered, and they are sensitive to the polarity of their surrounding environment.
Naphthalimides have been used for applications as therapeutic agents and as chemical
probes [129,130]. The typical core structure of the naphthalimides is shown in Table 1, but
a variety of substituents can be added to the aromatic naphthalene or the N-imide resulting
in a change in fluorescent properties. Basic naphthalamides and non-complex derivatives of
1,8-napthalimide typically absorb around 360 nm and emit around 440 nm [131]. However,
this can shift depending on the derivative and the solvent, as shown in Table 1.

Table 1. Absorption and emission data of several napthalimide-based molecules in varying solvents.

Structure Name Absorbance
Maxima

Emission
Maxima Solvent Reference
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Structure Name Absorbance
Maxima

Emission
Maxima Solvent Reference

416 521 acetonitrile [132]

420 528 methanol [132]
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Naphthalimide fluorescence intensity is highly responsive to changes in pH [135].
This occurs due to a photoinduced electron transfer (PET) effect within the napthalamine
structure. PET occurs from a receptor to the naphthalamide, and this process is extremely
sensitive to analytes or pH changes, allowing for fluorescence enhancement or quenching.

Liu et al. incorporated naphthalamides into electrospun polymers to detect the pH
level in water. In this study, the backbone of the polymer was poly(methylacrylate) (PMA)
with a 1,8-naphthalamide and a zwitterionic side chain to ensure fluorescence and enhance
hydrophilicity, respectively. The polymer was blended with PVA for electrospinning and
was exposed to pH values ranging from 4–10. Under acidic conditions, the piperazine group
in this derivative is protonated, and photoinduced electron transfer between the donor
and naphthalamide acceptor is inhibited, which results in strong fluorescence. Conversely,
under alkaline conditions, photoinduced charge transfer between the piperazine group
and naphthalamide fluorophore can occur, which quenches fluorescence.

Quinoline and its derivatives are excellent fluorescent sensors owing to their high
selectivity and low detection limit (at the nM or pM scale). Outside of PET, quinoline
derivatives also demonstrate intermolecular charger transfer (ICT) and FRET. Typically,
for PET “fluorescence on” applications, quinoline is connected to a group that contains
high-energy non-bonding electrons (e.g., nitrogen). This group will transfer an electron to
quinoline quenching fluorescence [136]. However, if that group is coordinated by a cation,
the electron transfer process is prevented, resulting in fluorescence of quinoline [136].

In a study done by Liu et al., 8-hydroxyquinoline (8-HQ) was electrospun into nanofi-
bres for the detection of formaldehyde. Formaldehyde is a carcinogen and environmental
pollutant that is heavily used in manufacturing. With that in mind, the detection of
formaldehyde in food production is critical to avoid consumer contact. Prior to this study,
detection methods relied on fluorescent probes dissolved in solvents; however, solid-state
probes are non-invasive and provide a real-time signal. Therefore, this study incorporated
8-HQ in PVA and electrospun the solution at a voltage of 14 kV, 0.7 mL/h and a receiving
distance of 14 cm [137]. In this case, PET naturally occurs in 8-HQ quenching fluorescence,
but with the introduction of formaldehyde, electron donation from nitrogen to the quinone
no longer occurs, allowing for fluorescence, as shown in Figure 26. The emission maximum
of 8-HQ occurs at 467 nm, and a 5.5-fold fluorescence enhancement was observed upon
the introduction of formaldehyde. Liu et al. also explored the PET process using DFT
calculations, which showed that in the absence of formaldehyde, the energy level of the
fluorophore (−5.997 eV) is lower than that of the aniline (−5.957 eV), which drives the PET
process. In the presence of formaldehyde, the energy of the imine (−6.024 eV) is lower than
that of the fluorophore, preventing PET and allowing for fluorescence [137].
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Figure 26. PET-induced fluorescence of 8-HQ. In the absence of formaldehyde, the fluorophore is
weakly fluorescent. Upon interaction with formaldehyde, the fluorophore exhibits a five-fold increase
in fluorescence intensity thanks to the PET process between the two. This fluorophore was embedded
in electrospun nanofibres films as a sensor [137].

4.2. Donors: Carbazole

Carbazole has been widely studied within oligomers, dendrimers, and polymers for
applications as photoluminescent and optoelectronic materials [138]. Carbazole is inex-
pensive, its nitrogen moiety permits additional functionalization, and it can be readily
polymerized [139]. Carbazole and its non-complex derivatives typically have three ab-
sorption peaks between 260–350 nm and emit between 300–400 nm, depending on the
solvent used.

A study done by Wu et al. explored the use of photoinduced electron transfer via
a carbazole derivative for the detection of explosives. Sensing applications, such as this
one, rely on high-surface materials to allow for the analyte to be easily incorporated
into the material and be in contact with the fluorophore. As such, Wu et al. explored
the incorporation of carbazole derivatives in electrospun nanofibres for the detection of
2,4-dinitrotoluene (DNT) and trinitrotoluene (TNT). Upon interaction with explosives, a
photoinduced electron transfer event occurs where the carbazole derivative donates an
electron to the nitro explosive, quenching fluorescence of the carbazole (Figure 27) [140]. In
this study, 9-(Pyren-1-yl)-9H-carbazole was synthesized and incorporated into both PEO
and PS solutions before electrospinning. The PEO solution included 200 mg of PEO and
1 mg of PyCz in 2mL of chloroform. The solution was electrospun at a voltage of 19 kV,
1.0 mL/h flow rate, 0.99 mm needle, and a receiving distance of 15 cm. The PS solution
was prepared with 200 mg PS and 5 mg PyCz in DMF. The solution was electrospun at
a voltage of 15 kV, 1.0 mL/h flow rate, 0.6 mm needle, and a receiving distance of 15 cm.
Both films were responsive to the presence of explosives and demonstrated a change in
fluorescence [140].
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were used for the detection of explosives (DNT and TNT). In this example, PET occurs between the
sensing material and the explosive, quenching the fluorophore when an explosive is nearby [140].
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5. Conclusions

Electrospinning is a process whereby polymeric nanofibre films are developed from
solutions. These nanofibres can come in a variety of structures such as monoaxial, coaxial
(core@shell), and Janus (side-by-side). More interestingly, light-harvesting materials such
as metal nanoparticles, fluorophores, and quantum dots can be incorporated in these
nanofibres, effectively enhancing their function. These light-harvesting materials permit
various photo-driven processes to occur in the nanofibre films, including Förster resonance
energy transfer (FRET), metal-enhanced fluorescence (MEF), and photoinduced electron
transfer (PET). By embedding light harvesting materials in the nanofibres, functionalized
films are created for a wide variety of applications including sensors, OLEDs, photovoltaic
devices, drug delivery systems, etc. The opportunity for future work in this field is vast.
Increased focus on exploiting the controlled confinement of light-harvesting materials in
these 1D structures (for example at interfaces in core@shell fibres) and their tailored pseudo-
mobility could revolutionize the function of these nanofibres towards light-driven reactivity
and catalysis. Other light-driven systems can also be explored such as light-driven polymer
degradation and controlled agent release for bio-compatible drug delivery.
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to the published version of the manuscript.
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