Modification of a Marine Pine Kraft Lignin Sample by Enzymatic Treatment with a Pycnoporus cinnabarinus Laccase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biochemical Characterization of PciLac on Kraft Lignin
2.2. Tracking Lignin Chemical Modification by Infrared Analysis
2.3. Analysis of Lignin Changes by a DSC/MDSC Method
2.4. Lignin Analysis by HPSEC
2.5. Further Exploration of the Extractable Compounds through GC–MS Analysis
3. Material and Methods
3.1. Preparation of Lignin
3.2. Production of PciLac
3.3. Biochemical Properties of PciLac in Presence of Kraft Lignin
3.4. Lignin Treatment with Laccase
3.5. Lignin Characterization by FTIR
3.6. Characterization of the Enzymatically Modified Kraft Lignin by a DSC/MDSC Method
3.7. HP-SEC Analysis of Kraft Lignin
3.8. Analysis of Extractable Compounds by GC–MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Isikgor, F.H.; Remzi Becer, C. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef] [Green Version]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef]
- Rowell, R.M.; Pettersen, R.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites 2; Routledge Handbooks Online; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-5380-1. [Google Scholar]
- Börcsök, Z.; Pásztory, Z. The Role of Lignin in Wood Working Processes Using Elevated Temperatures: An Abbreviated Literature Survey. Eur. J. Wood Prod. 2021, 79, 511–526. [Google Scholar] [CrossRef]
- Tran, M.; Phan, P.; Lee, E. Review on Lignin Modifications toward Natural UV Protection Ingredient for Lignin-Based Sunscreens. Green. Chem. 2021. [Google Scholar] [CrossRef]
- Ariyanta, H.A.; Sari, F.P.; Sohail, A.; Restu, W.K.; Septiyanti, M.; Aryana, N.; Fatriasari, W.; Kumar, A. Current Roles of Lignin for the Agroindustry: Applications, Challenges, and Opportunities. Int. J. Biol. Macromol. 2023, 240, 124523. [Google Scholar] [CrossRef]
- Lisý, A.; Ház, A.; Nadányi, R.; Jablonský, M.; Šurina, I. About Hydrophobicity of Lignin: A Review of Selected Chemical Methods for Lignin Valorisation in Biopolymer Production. Energies 2022, 15, 6213. [Google Scholar] [CrossRef]
- Faulon, J.-L.; Hatcher, P.G. Is There Any Order in the Structure of Lignin? Energy Fuels 1994, 8, 402–407. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Shin, E.-J.; Eom, I.-Y.; Won, K.; Kim, Y.H.; Choi, D.; Choi, I.-G.; Choi, J.W. Structural Features of Lignin Macromolecules Extracted with Ionic Liquid from Poplar Wood. Bioresour. Technol. 2011, 102, 9020–9025. [Google Scholar] [CrossRef]
- Mansouri, N.-E.E.; Salvadó, J. Structural Characterization of Technical Lignins for the Production of Adhesives: Application to Lignosulfonate, Kraft, Soda-Anthraquinone, Organosolv and Ethanol Process Lignins. Ind. Crops Prod. 2006, 24, 8–16. [Google Scholar] [CrossRef]
- Chung, H.; Washburn, N.R. Chemistry of Lignin-Based Materials. Green. Mater. 2013, 1, 137–160. [Google Scholar] [CrossRef]
- Vishtal, A.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. BioResources 2011, 6, 3547–3568. [Google Scholar] [CrossRef]
- Chakar, F.S.; Ragauskas, A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crops Prod. 2004, 20, 131–141. [Google Scholar] [CrossRef]
- Balakshin, M.; Capanema, E.; Chen, C.-L.; Gracz, H. Elucidation of the Structures of Residual and Dissolved Pine Kraft Lignins Using an HMQC NMR Technique. J. Agric. Food Chem. 2003, 51, 6116–6127. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Flores, F.G.; Dobado, J.A. Lignin as Renewable Raw Material. ChemSusChem 2010, 3, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Iqbal, H.M.N.; Cardullo, N.; Muccilli, V.; Fern’andez-Lucas, J.; Schmidt, J.E.; Jesionowski, T.; Bilal, M. Structural Insights, Biocatalytic Characteristics, and Application Prospects of Lignin-Modifying Enzymes for Sustainable Biotechnology—A Review. Int. J. Biol. Macromol. 2023, 124968. [Google Scholar] [CrossRef]
- Munk, L.; Sitarz, A.K.; Kalyani, D.C.; Mikkelsen, J.D.; Meyer, A.S. Can Laccases Catalyze Bond Cleavage in Lignin? Biotechnol. Adv. 2015, 33, 13–24. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Nugroho Prasetyo, E.; Kudanga, T.; Østergaard, L.; Rencoret, J.; Gutiérrez, A.; del Río, J.C.; Ignacio Santos, J.; Nieto, L.; Jiménez-Barbero, J.; Martínez, A.T. Polymerization of Lignosulfonates by the Laccase-HBT (1-Hydroxybenzotriazole) System Improves Dispersibility. Bioresour. Technol. 2010, 101, 5054–5062. [Google Scholar] [CrossRef] [Green Version]
- Euring, M.; Kirsch, A.; Schneider, P.; Kharazipour, A. Lignin-Laccase-Mediator-Systems (LLMS) for the Production of Binderless Medium Density Fiberboards (MDF). J. Mater. Sci. Res. 2016, 5, 7. [Google Scholar] [CrossRef]
- Gouveia, S.; Fernández-Costas, C.; Sanromán, M.A.; Moldes, D. Enzymatic Polymerisation and Effect of Fractionation of Dissolved Lignin from Eucalyptus Globulus Kraft Liquor. Bioresour. Technol. 2012, 121, 131–138. [Google Scholar] [CrossRef]
- Dillies, J.; Vivien, C.; Chevalier, M.; Rulence, A.; Châtaigné, G.; Flahaut, C.; Senez, V.; Froidevaux, R. Enzymatic Depolymerization of Industrial Lignins by Laccase-Mediator Systems in 1,4-Dioxane/Water. Biotechnol. Appl. Biochem. 2020, 67, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Ravalason, H.; Bertaud, F.; Herpoël-Gimbert, I.; Meyer, V.; Ruel, K.; Joseleau, J.-P.; Grisel, S.; Olivé, C.; Sigoillot, J.-C.; Petit-Conil, M. Laccase/HBT and Laccase-CBM/HBT Treatment of Softwood Kraft Pulp: Impact on Pulp Bleachability and Physical Properties. Bioresour. Technol. 2012, 121, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Lomascolo, A.; Record, E.; Herpoël-Gimbert, I.; Delattre, M.; Robert, J.L.; Georis, J.; Dauvrin, T.; Sigoillot, J.-C.; Asther, M. Overproduction of Laccase by a Monokaryotic Strain of Pycnoporus Cinnabarinus Using Ethanol as Inducer. J. Appl. Microbiol. 2003, 94, 618–624. [Google Scholar] [CrossRef]
- Record, E.; Punt, P.J.; Chamkha, M.; Labat, M.; van Den Hondel, C.A.M.J.J.; Asther, M. Expression of the Pycnoporus Cinnabarinus Laccase Gene in Aspergillus Niger and Characterization of the Recombinant Enzyme. Eur. J. Biochem. 2002, 269, 602–609. [Google Scholar] [CrossRef]
- Faix, O. Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Furniss, B.S.; Vogel, A.I. (Eds.) Vogel’s Textbook of Practical Organic Chemistry, 5th ed.; New Edtion, Review [Nachdruck]; Pearson/Prentice Hall: Harlow, UK, 2009; ISBN 978-0-582-46236-6. [Google Scholar]
- Zhu, D.; Liang, N.; Zhang, R.; Ahmad, F.; Zhang, W.; Yang, B.; Wu, J.; Geng, A.; Gabriel, M.; Sun, J. Insight into Depolymerization Mechanism of Bacterial Laccase for Lignin. ACS Sustain. Chem. Eng. 2020, 8, 12920–12933. [Google Scholar] [CrossRef]
- Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of Short-Time Vibratory Ball Milling on the Shape of FT-IR Spectra of Wood and Cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, T.; Wu, Z.; Zeng, G.; Huang, D.; Shen, Y.; He, X.; Lai, M.; He, Y. Study on Biodegradation Process of Lignin by FTIR and DSC. Environ. Sci. Pollut. Res. 2014, 21, 14004–14013. [Google Scholar] [CrossRef]
- Lin, S.Y.; Dence, C.W. (Eds.) Methods in Lignin Chemistry; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-3-642-74067-1. [Google Scholar]
- Baumberger, S.; Dole, P.; Catherine, L. Using Transgenic Poplars to Elucidate the Relationship between the Structure and the Thermal Properties of Lignins. J. Agric. Food Chem. 2002, 50, 2450–2453. [Google Scholar] [CrossRef]
- Agapov, A.L.; Sokolov, A.P. Does the Molecular Weight Dependence of Tg Correlate to Me? Macromolecules 2009, 42, 2877–2878. [Google Scholar] [CrossRef]
- Ibarra, D.; García-Fuentevilla, L.; Domínguez, G.; Martín-Sampedro, R.; Hernández, M.; Arias, M.E.; Santos, J.I.; Eugenio, M.E. NMR Study on Laccase Polymerization of Kraft Lignin Using Different Enzymes Source. Int. J. Mol. Sci. 2023, 24, 2359. [Google Scholar] [CrossRef] [PubMed]
- Fieser, L.F.; Campbell, W.P. Concerning Dehydroabietic Acid and the Structure of Pine Resin Acids. Available online: https://pubs.acs.org/doi/pdf/10.1021/ja01268a050 (accessed on 9 May 2023).
- Piumi, F.; Levasseur, A.; Navarro, D.; Zhou, S.; Mathieu, Y.; Ropartz, D.; Ludwig, R.; Faulds, C.B.; Record, E. A Novel Glucose Dehydrogenase from the White-Rot Fungus Pycnoporus Cinnabarinus: Production in Aspergillus Niger and Physicochemical Characterization of the Recombinant Enzyme. Appl. Microbiol. Biotechnol. 2014, 98, 10105–10118. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, G.; Gugole, E.; Montemiglio, L.C.; Turbé-Doan, A.; Chena, D.; Navarro, D.; Lomascolo, A.; Piumi, F.; Exertier, C.; Freda, I.; et al. Crystal Structure and Functional Characterization of an Oligosaccharide Dehydrogenase from Pycnoporus Cinnabarinus Provides Insights into Fungal Breakdown of Lignocellulose. Biotechnol. Biofuels 2021, 14, 161. [Google Scholar] [CrossRef] [PubMed]
pH | Insoluble Lignin (% w/w) | Soluble Lignin (% w/w) |
---|---|---|
4.5 | 93.6 | 6.4 |
7 | 55.1 | 44.9 |
8 | 39.8 | 60.2 |
9 | 27.8 | 72.2 |
10 | 1.8 | 98.2 |
Band Wavelength (cm−1) | Assigned Function |
---|---|
3600–3200 | OH groups and hydrogen bonds |
2934 | Methyl groups, methoxyl C-H stretching |
2873 | Methoxyl C-H stretching |
2840 | Methoxyl C-H stretching |
1708 | C=O stretching in unconjugated ketones, carbonyls, and ester groups; conjugated aldehydes and carboxylic acids |
1650 | C=O stretching in conjugated p-substituted aryl ketone |
1598 | C=C aromatic skeletal, C=O stretching, G condensed > G etherified |
1514 | C=C aromatic skeletal |
1463 | C-H def. (deformation) in CH3 and CH2 |
1452 | C-H bending from methoxyl group |
1427 | Aromatic skeletal combined with C-H def. |
1367 | aliphatic C-H stretching in CH3 (not in O-Me), phenolic group |
1269 | G ring; C=O stretching |
1216 | C-C, C-O, C=O stretching |
1146 | Aromatic C-H def., G units |
1127 | aromatic C-H def., C=O stretching |
1081 | C-O def. in secondary alcohols and aliphatic ethers |
1031 | Aromatic C–H in plane def., plus C–O def. in primary alcohols, C=O stretching (unconjugated) |
854 | C-H of G units |
Sample | Time (h) | Laccase (U g−1) | HBT (%) | Tg (°C) |
---|---|---|---|---|
FC1-BB48 | 0 | 0 | 0 | 190.3 |
FC1-BB55-3 | 0 | 0 | 2 | 188.0 |
FC1-BB50 | 0.5 | 13 | 0 | 181.8 |
FC1-BB57 | 0.5 | 13 | 2 | 181.6 |
FC1-BB51 | 2 | 13 | 0 | 184.3 |
FC1-BB58 | 2 | 13 | 2 | 186.1 |
FC1-BB54 | 0.5 | 130 | 0 | 173.6 |
FC1-BB60 | 0.5 | 130 | 2 | 170.6 |
FC1-BB77-1 | 2 | 130 | 0 | 171.2 |
FC1-BB78-1 | 2 | 130 | 2 | 166.6 |
Samples/Corresponding Controls | Laccase (U g−1) | HBT (%) | V | AV | HV-OH | VA | VP-OH |
---|---|---|---|---|---|---|---|
FC1-BB51/BB49 | 13 | 0 | 90.0 | 65.5 | 4.7 | 70.8 | 15.2 |
FC1-BB77/BB49 | 130 | 0 | 31.0 | 25.2 | 9.7 | 53.7 | 15.4 |
FC1-BB58/BB56 | 13 | 2 | 70.0 | 55.8 | 8.1 | 42.8 | 14.5 |
FC1-BB78/BB56 | 130 | 2 | 20.1 | 17.2 | 5.6 | 45.7 | 12.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malric-Garajova, S.; Fortuna, F.; Pion, F.; Martin, E.; Thottathil, A.R.; Guillemain, A.; Doan, A.; Lomascolo, A.; Faulds, C.B.; Baumberger, S.; et al. Modification of a Marine Pine Kraft Lignin Sample by Enzymatic Treatment with a Pycnoporus cinnabarinus Laccase. Molecules 2023, 28, 4873. https://doi.org/10.3390/molecules28124873
Malric-Garajova S, Fortuna F, Pion F, Martin E, Thottathil AR, Guillemain A, Doan A, Lomascolo A, Faulds CB, Baumberger S, et al. Modification of a Marine Pine Kraft Lignin Sample by Enzymatic Treatment with a Pycnoporus cinnabarinus Laccase. Molecules. 2023; 28(12):4873. https://doi.org/10.3390/molecules28124873
Chicago/Turabian StyleMalric-Garajova, Sona, Florian Fortuna, Florian Pion, Elise Martin, Adithya Raveendran Thottathil, Audrey Guillemain, Annick Doan, Anne Lomascolo, Craig B. Faulds, Stéphanie Baumberger, and et al. 2023. "Modification of a Marine Pine Kraft Lignin Sample by Enzymatic Treatment with a Pycnoporus cinnabarinus Laccase" Molecules 28, no. 12: 4873. https://doi.org/10.3390/molecules28124873
APA StyleMalric-Garajova, S., Fortuna, F., Pion, F., Martin, E., Thottathil, A. R., Guillemain, A., Doan, A., Lomascolo, A., Faulds, C. B., Baumberger, S., Foulon, L., Chabbert, B., de Baynast, H., Dubessay, P., Audonnet, F., Bertrand, E., Sciara, G., Tapin-Lingua, S., Ducrot, P. -H., ... Record, E. (2023). Modification of a Marine Pine Kraft Lignin Sample by Enzymatic Treatment with a Pycnoporus cinnabarinus Laccase. Molecules, 28(12), 4873. https://doi.org/10.3390/molecules28124873