Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC—An Improved Approach to More Robust Thermodynamics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nuclear Magnetic Resonance Spectroscopy (NMR)
2.1.1. pKa Determination from NMR pH Titration Series
2.1.2. Eu(III) Complexation by NTA and EGTA
2.2. Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)
2.2.1. Eu(III) and Cm(III) Complexation by NTA
2.2.2. Eu(III) and Cm(III) Complexation by EDTA
2.2.3. Eu(III) and Cm(III) Complexation by EGTA
2.3. Isothermal Titration Calorimetry (ITC)
2.4. Comparison of the Eu(III) and Cm(III) Complexes of NTA, EDTA, and EGTA
3. Materials and Methods
3.1. Starting Material and Stock Solutions
3.2. Sample Preparation
3.2.1. NMR pH Titration Series for pKa Determination
3.2.2. Eu(III) Complexation by NTA and EGTA Studied by NMR
3.2.3. Eu(III) and Cm(III) Complexation by NTA, EDTA, and EGTA Studied via TRLFS
3.2.4. Eu(III) Complexation by NTA, EDTA, and EGTA Studied via ITC
3.3. NMR Spectroscopy
3.4. Luminescence Spectroscopy
3.5. Calorimetry
3.6. DFT Calculation
3.7. Data Processing Software
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rufus, A.L.; Velmurugan, S.; Sathyaseelan, V.S.; Narasimhan, S.V. Comparative study of nitrilo triacetic acid (NTA) and EDTA as formulation constituents for the chemical decontamination of primary coolant systems of nuclear power plants. Prog. Nucl. Energy 2004, 44, 13–31. [Google Scholar] [CrossRef]
- Means, J.L.; Alexander, C.A. The environmental biogeochemistry of chelating agents and recommendations for the disposal of chelated radioactive wastes. Nucl. Chem. Waste Manag. 1981, 2, 183–196. [Google Scholar] [CrossRef]
- Bolton, H.; Girvin, D.C.; Plymale, A.E.; Harvey, S.D.; Workman, D.J. Degradation of metal-nitrilotriacetate complexes by Chelatobacter heintzii. Environ. Sci. Technol. 1996, 30, 931–938. [Google Scholar] [CrossRef]
- O’Hanlon, J.A.; Chapman, R.D.; Taylor, F.; Denecke, M.A. Quantification of common aminopolycarboxylic acids in trench leachate from the low level waste repository. J. Radioanal. Nucl. Chem. 2019, 322, 1915–1929. [Google Scholar] [CrossRef] [Green Version]
- Keith-Roach, M.J. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review. Sci. Total Environ. 2008, 396, 1–11. [Google Scholar] [CrossRef]
- Keith-Roach, M.; Shahkarami, P. Organic Materials with the Potential for Complexation in SFR, the Final Repository for Short-Lived Radioactive Waste. Investigation of New Acceptance Criteria. Svensk Kärnbränslehantering AB, SKB R-21-03. 2021. Available online: https://www.skb.com/publication/2498021 (accessed on 2 August 2022).
- Toste, A.P.; Lechnerfish, T.J.; Hendren, D.J.; Scheele, R.D.; Richmond, W.G. Analysis of organics in highly radioactive nuclear wastes. J. Radioanal. Nucl. Chem. 1988, 123, 149–166. [Google Scholar] [CrossRef]
- He, J.; Lu, C.W.; Xue, H.X.; Liang, Y.; Bai, S.L.; Sun, Y.; Shen, L.L.; Mi, N.; Fan, Q.Y. Species and distribution of rare earth elements in the Baotou section of the Yellow River in China. Environ. Geochem. Health 2010, 32, 45–58. [Google Scholar] [CrossRef]
- Li, X.F.; Chen, Z.B.; Chen, Z.Q. Distribution and fractionation of rare earth elements in soil-water system and human blood and hair from a mining area in southwest Fujian Province, China. Environ. Earth Sci. 2014, 72, 3599–3608. [Google Scholar] [CrossRef]
- Heller, A.; Barkleit, A.; Bok, F.; Wober, J. Effect of four lanthanides onto the viability of two mammalian kidney cell lines. Ecotoxicol. Environ. Saf. 2019, 173, 469–481. [Google Scholar] [CrossRef]
- Hamilton, J.G.; Scott, K.G. Effect of calcium salt of versene upon metabolism of plutonium in the rat. Proc. Soc. Exp. Biol. Med. 1953, 83, 301–305. [Google Scholar] [CrossRef]
- Foreman, H. The use of chelating agents for accelerating excretion of radioelements. J. Am. Pharm. Assoc. 1953, 42, 629–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandon, S.K.; Mathur, A.K. Chelation of metal intoxication. III. Lowering of nickel content in poisoned rat organs. Acta Pharmacol. Toxicol. 1976, 38, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.C.; Dwivedi, P.P.; Behari, J.R.; Athar, M. Evaluation of LD50 of some polyaminocarboxylic acids used as chelating drugs in metal intoxication. Toxicol. Lett. 1986, 32, 37–40. [Google Scholar] [CrossRef]
- FDA. Calcium DTPA and Zinc DTPA Drug Products-Submitting a New Drug Application; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER): Silver Spring, MD, USA, 2004.
- Caldwell, S.J.; Haydon, I.C.; Piperidou, N.; Huang, P.S.; Bick, M.J.; Sjöström, H.S.; Hilvert, D.; Baker, D.; Zeymer, C. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion. Proc. Natl. Acad. Sci. USA 2020, 117, 30362–30369. [Google Scholar] [CrossRef] [PubMed]
- Mattocks, J.A.; Tirsch, J.L.; Cotruvo, J.A. Determination of Affinities of Lanthanide-Binding Proteins Using Chelator-Buffered Titrations. In Rare-Earth Element Biochemistry: Characterization and Applications of Lanthanide-Binding Biomolecules; Cotruvo, J.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 23–61. [Google Scholar]
- Reissig, F.; Bauer, D.; Zarschler, K.; Novy, Z.; Bendova, K.; Ludik, M.-C.; Kopka, K.; Pietzsch, H.-J.; Petrik, M.; Mamat, C. Towards targeted alpha therapy with actinium-225: Chelators for mild condition radiolabeling and targeting PSMA—A proof of concept study. Cancers 2021, 13, 1974. [Google Scholar] [CrossRef] [PubMed]
- Reissig, F.; Zarschler, K.; Novy, Z.; Petrik, M.; Bendova, K.; Kurfurstova, D.; Bouchal, J.; Ludik, M.-C.; Brandt, F.; Kopka, K. Modulating the pharmacokinetic profile of actinium-225-labeled macropa-derived radioconjugates by dual targeting of PSMA and albumin. Theranostics 2022, 12, 7203. [Google Scholar] [CrossRef] [PubMed]
- Moeller, T.; Martin, D.F.; Thompson, L.C.; Ferrús, R.; Feistel, G.R.; Randall, W.J. The coordination chemistry of yttrium and the rare earth metal ions. Chem. Rev. 1965, 65, 1–50. [Google Scholar] [CrossRef]
- Schwarzenbach, G.; Gut, R. Die Komplexe der Seltenen Erdkationen und die Gadoliniumecke. Helv. Chim. Acta 1956, 39, 1589–1599. [Google Scholar] [CrossRef]
- Li, B.Q.; Byrne, R.H. Ionic strength dependence of rare earth—NTA stability constants at 25 °C. Aquat. Geochem. 1997, 3, 99–115. [Google Scholar] [CrossRef]
- Anderegg, G. Komplexone XXXVI. Reaktionsenthalpie und -entropie bei der Bildung der Metallkomplexe der höheren EDTA-Homologen. Fasciculus 7 1964, 47, 1801–1814. [Google Scholar]
- Barthelemy, P.P.; Choppin, G.R. Luminescence study of complexation of europium and dicarboxylic acids. Inorg. Chem. 1989, 28, 3354–3357. [Google Scholar] [CrossRef]
- Latva, M.; Kankare, J.; Haapakka, K. Solution structures of europium(III) complexes of ethylenediaminetetraacetic acid. J. Coord. Chem. 1996, 38, 85–99. [Google Scholar] [CrossRef]
- Motekaitis, R.J.; Martell, A.E. The iron(III) and iron(II) complexes of nitrilotriacetic acid. J. Coord. Chem. 1994, 31, 67–78. [Google Scholar] [CrossRef]
- Choppin, G.R.; Goedken, M.P.; Gritmon, T.F. The complexation of lanthanides by aminocarboxylate ligands—II. Thermodynamic parameters. J. Inorg. Nucl. Chem. 1977, 39, 2025–2030. [Google Scholar] [CrossRef]
- Schwarzenbach, G.; Senn, H.; Anderegg, G. Komplexone XXIX. Ein grosser Chelateffekt besonderer Art. Helv. Chim. Acta 1957, 40, 1886–1900. [Google Scholar] [CrossRef]
- Hagen, R.; Warren, J.P.; Hunter, D.H.; Roberts, J.D. Nuclear magnetic resonance spectroscopy. Nitrogen-15 and carbon-13 spectra of complexes of ethylenediaminetetraacetic acid (EDTA) with closed-shell metal ions. J. Am. Chem. Soc. 1973, 95, 5712–5716. [Google Scholar] [CrossRef]
- Kemple, M.D.; Ray, B.D.; Lipkowitz, K.B.; Prendergast, F.G.; Rao, B.D.N. The use of lanthanides for solution structure determination of biomolecules by NMR: Evaluation of the methodology with EDTA derivatives as model systems. J. Am. Chem. Soc. 1988, 110, 8275–8287. [Google Scholar] [CrossRef]
- Southwood-Jones, R.V.; Merbach, A.E. Nuclear magnetic resonance study of praseodymium, europium and ytterbium ethylenediaminetetraacetates. Inorg. Chim. Acta 1978, 30, 77–82. [Google Scholar] [CrossRef]
- Anderegg, G. Komplexone XXXII. Die 1:2-Komplexe der Kationen der Seltenen Erden mit Nitrilotriacetat (NTE). Helv. Chim. Acta 1960, 43, 825–830. [Google Scholar] [CrossRef]
- Horrocks Jr, W.D.; Sudnick, D.R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 1979, 101, 334–340. [Google Scholar] [CrossRef]
- Kimura, T.; Choppin, G.R.; Kato, Y.; Yoshida, Z. Determination of the hydration number of Cm(III) in various aqueous solutions. Radiochim. Acta 1996, 72, 61–64. [Google Scholar] [CrossRef]
- Drobot, B.; Steudtner, R.; Raff, J.; Geipel, G.; Brendler, V.; Tsushima, S. Combining luminescence spectroscopy, parallel factor analysis and quantum chemistry to reveal metal speciation–a case study of uranyl(VI) hydrolysis. Chem. Sci. 2015, 6, 964–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latva, M.; Kankare, J. The 7F0 -> 5D0 excitation spectra of europium(III) complexes of aminocarboxylic acids. J. Coord. Chem. 1998, 43, 121–142. [Google Scholar] [CrossRef]
- Thakur, P.; Conca, J.L.; Van De Burgt, L.J.; Choppin, G.R. Complexation and the laser luminescence studies of Eu(III), Am(III), and Cm(III) with EDTA, CDTA, and PDTA and their ternary complexation with dicarboxylates. J. Coord. Chem. 2009, 62, 3719–3737. [Google Scholar] [CrossRef]
- Schwarzenbach, G.; Gut, R.; Anderegg, G. Komplexone XXV. Die polarographische Untersuchung von Austauschgleichgewichten. Neue Daten der Bildungskonstanten von Metallkomplexen der Äthylendiamin-tetraessigsäure und der 1,2-Diaminocyclohexan-tetraessigsäure. Helv. Chim. Acta 1954, 37, 937–957. [Google Scholar] [CrossRef]
- Ragul, R.; Sivasankar, B.N. Syntheses, characterization and structural determination of nine coordinated N2H5[Ce(edta)(H2O)3]·4H2O and N2H5[Eu(edta)(H2O)3]·4H2O. J. Chem. Crystallogr. 2011, 41, 1273–1279. [Google Scholar] [CrossRef]
- Wheelwright, E.J.; Spedding, F.H.; Schwarzenbach, G. The stability of the rare earth complexes with ethylenediaminetetraacetic acid. J. Am. Chem. Soc. 1952, 75, 4196–4201. [Google Scholar] [CrossRef]
- DiBlasi, N.A.; Tasi, A.G.; Trumm, M.; Schnurr, A.; Gaona, X.; Fellhauer, D.; Dardenne, K.; Rothe, J.; Reed, D.T.; Hixon, A.E.; et al. Pu(III) and Cm(III) in the presence of EDTA: Aqueous speciation, redox behavior, and the impact of Ca(II). RSC Adv. 2022, 12, 9478–9493. [Google Scholar] [CrossRef]
- Gutenthaler, S.M.; Tsushima, S.; Steudtner, R.; Gailer, M.; Hoffmann-Röder, A.; Drobot, B.; Daumann, L.J. Lanmodulin peptides—Unravelling the binding of the EF-Hand loop sequences stripped from the structural corset. Inorg. Chem. Front. 2022, 9, 4009–4021. [Google Scholar] [CrossRef]
- Kang, J.G.; Kang, H.J.; Jung, J.S.; Yun, S.S.; Kim, C.H. Crystal structures and luminescence properties of [Ln(NTA)2·H2O]3− complexes (Ln = Sm3+, Eu3+, Gd3+, Tb3+, Ho3+, and NTA = nitrilotriacetate). Bull. Korean Chem. Soc. 2004, 25, 852–858. [Google Scholar]
- Choppin, G.; Rizkalla, E.; Sullivan, J. Calorimetric studies of curium complexation. 2. Amino carboxylates. Inorg. Chem. 1987, 26, 2318–2320. [Google Scholar] [CrossRef]
- Starý, J. Separation of transplutonium elements. Talanta 1966, 13, 421–437. [Google Scholar] [CrossRef]
- Aime, S.; Barge, A.; Borel, A.; Botta, M.; Chemerisov, S.; Merbach, A.E.; Müller, U.; Pubanz, D. A multinuclear NMR study on the structure and dynamics of lanthanide(III) complexes of the poly(amino carboxylate) EGTA4− in aqueous solution. Inorg. Chem. 1997, 36, 5104–5112. [Google Scholar] [CrossRef]
- Xu, R.; Li, D.; Wang, J.; Kong, Y.X.; Wang, B.X.; Kong, Y.M.; Fan, T.T.; Liu, B. Syntheses, structural determination, and binding studies of nine-coordinate mononuclear complexes (EnH2)3[EuIII(Etha)]2 * 11H2O and (EnH2)[EuIII(Egta)(H2O)]2 * 6H2O. Russ. J. Coord. Chem. 2010, 36, 810–819. [Google Scholar] [CrossRef]
- Holz, R.C.; Klakamp, S.L.; Chang, C.A.; Horrocks Jr, W.D. Laser-induced europium(III) luminescence and NMR spectroscopic characterization of macrocyclic diaza crown ether complexes containing carboxylate ligating groups. Inorg. Chem. 1990, 29, 2651–2658. [Google Scholar] [CrossRef]
- Mackey, J.L.; Hiller, M.A.; Powell, J.E. Rare earth chelate stability constants of some aminopolycarboxylic acids. J. Phys. Chem. 1962, 66, 311–314. [Google Scholar] [CrossRef]
- Rizkalla, E.N.; Sullivan, J.C.; Choppin, G.R. Calorimetric studies of americium(III) complexation by amino carboxylates. Inorg. Chem. 1989, 28, 909–911. [Google Scholar] [CrossRef]
- Fuger, J. Ion exchange behaviour and dissociation constants of americium, curium, and californium complexes with ethylenediaminetetra-acetic acid. J. Inorg. Nucl. Chem. 1958, 5, 332–338. [Google Scholar] [CrossRef]
- Thakur, P.; Conca, J.L.; Choppin, G.R. Complexation studies of Cm(III), Am(III), and Eu(III) with linear and cyclic carboxylates and polyaminocarboxylates. J. Coord. Chem. 2011, 64, 3215–3237. [Google Scholar] [CrossRef]
- Jordan, N.; Thoenen, T.; Starke, S.; Spahiu, K.; Brendler, V. A critical review of the solution chemistry, solubility, and thermodynamics of europium: Recent advances on the Eu3+ aqua ion and the Eu(III) aqueous complexes and solid phases with the sulphate, chloride, and phosphate inorganic ligands. Coord. Chem. Rev. 2022, 473, 214608. [Google Scholar] [CrossRef]
- Grenthe, I.; Gaona, X.; Plyasunov, A.V.; Rao, L.; Runde, W.H.; Grambow, B.; Konings, R.J.M.; Smith, A.L.; Moore, E.E. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium; Chemical Thermodynamics; OECD Publications: Boulogne-Billancour, France, 2020; Volume 14. [Google Scholar]
- De Stefano, C.; Foti, C.; Giuffrè, O.; Sammartano, S. Dependence on ionic strength of protonation enthalpies of polycarboxylate anions in NaCl aqueous solution. J. Chem. Eng. Data 2001, 46, 1417–1424. [Google Scholar] [CrossRef]
- Glasoe, P.K.; Long, F.A. Use of glass electrodes to measure acidities in deuterium oxide. J. Phys. Chem. 1960, 64, 188–190. [Google Scholar] [CrossRef]
- Mandal, P.; Kretzschmar, J.; Drobot, B. Not just a background: pH buffers do interact with lanthanide ions—A Europium (III) case study. J. Biol. Inorg. Chem. 2022, 27, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-adjusted pseudopotentials for the rare-earth elements. Theor. Chim. Acta 1989, 75, 173–194. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar]
- Barkleit, A.; Tsushima, S.; Savchuk, O.; Philipp, J.; Heim, K.; Acker, M.; Taut, S.; Fahmy, K. Eu3+-mediated polymerization of benzenetetracarboxylic acid studied by spectroscopy, temperature-dependent calorimetry, and density functional theory. Inorg. Chem. 2011, 50, 5451–5459. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.; Barkleit, A.; Foerstendorf, H.; Tsushima, S.; Heim, K.; Bernhard, G. Curium(III) citrate speciation in biological systems: A europium(III) assisted spectroscopic and quantum chemical study. Dalton Trans. 2012, 41, 13969–13983. [Google Scholar] [CrossRef] [Green Version]
- Pettit, L.D.; Sukhno, I.V.; Buzko, V.Y. Aqua Solution Software; Academic Software: York, UK, 2022; Available online: http://www.acadsoft.co.uk (accessed on 19 August 2022).
- Willcott, M.R. MestRe Nova. J. Am. Chem. Soc. 2009, 131, 13180. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
pKa | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
NTA | NTA0 → NTA− | NTA− → NTA2− | NTA2− → NTA3− | ||
I = 0.1 M NaCl | 1.50 ± 0.18 | 2.67 ± 0.22 | 9.58 ± 0.02 | — | p. w. |
I → 0 | 1.71 ± 0.18 | 3.09 ± 0.22 | 11.45 ± 0.02 | — | p. w. |
I = 0.1 M KCl | 1.5 | 2.52 | 9.59 | — | [26] |
I = 0.5 M KNO3 | 1.57 ± 0.06 | 2.64 ± 0.04 | 9.57 ± 0.06 | — | [27] |
EDTA | EDTA0 → EDTA− | EDTA− → EDTA2− | EDTA2− → EDTA3− | EDTA3− → EDTA4− | |
I = 0.1 M NaCl | 1.12 ± 0.06 | 2.50 ± 0.02 | 6.10 ± 0.01 | 9.65 ± 0.01 | p. w. |
I → 0 | 1.36 ± 0.06 | 2.96 ± 0.02 | 6.74 ± 0.01 | 10.45 ± 0.01 | p. w. |
I = 0.1 M KCl | 2.0 | 2.67 | 6.16 | 10.26 | [28] |
I = 0.5 M KNO3 | 1.89 ± 0.06 | 2.68 ± 0.04 | 6.26 ± 0.06 | 10.50 ± 0.02 | [27] |
EGTA | EGTA0 → EGTA− | EGTA− → EGTA2− | EGTA2− → EGTA3− | EGTA3− → EGTA4− | |
I = 0.1 M NaCl | 1.45 ± 0.04 | 2.28 ± 0.08 | 9.25 ± 0.01 | 9.25 ± 0.01 | p. w. |
I → 0 | 1.69 ± 0.04 | 2.74 ± 0.08 | 9.89 ± 0.01 | 10.05 ± 0.01 | p. w. |
I = 0.1 M KCl | 2.0 | 2.65 | 8.85 | 9.46 | [28] |
Eu(NTA)0aq | Eu(NTA)23− | Eu(EDTA)− | Eu(EGTA)− | |
---|---|---|---|---|
ΔH (kJ mol−1) | 25.5 ± 1.9 | −(36.6 ± 3.6) | 39.2 ± 1.1 | 66.7 ± 6.4 |
ΔS (J mol−1 K−1) | 113 ± 4 | −(91 ± 12) | 161 ± 4 | 255 ± 21 |
ΔG298 (kJ mol−1) | −8.1 | −9.5 | −9.1 | −9.2 |
Species | log β a (TRLFS) | log β0 b (TRLFS) | log β a (ITC) | log β0 b (ITC) | log β (Literature) |
---|---|---|---|---|---|
Eu3+ + NTA3− → [Eu(NTA)]0aq | 11.5 ± 0.2 | 13.4 ± 0.1 | 11.4 ± 0.1 | 13.3 ± 0.1 | 11.1 ± 0.1 [27] 13.23 b [22] |
Cm3+ + NTA3− → [Cm(NTA)]0aq | 11.10 ± 0.02 c | 12.90 ± 0.02 c | — | — | 11.00 a [45] 11.30 ± 0.01 d [44] |
[Eu(NTA)]0aq + NTA3− → [Eu(NTA)2]3− | 20.5 ± 0.1 | 22.4 ± 0.1 | 20.2 ± 0.2 | 22.1 ± 0.2 | 20.42 a [45] |
[Cm(NTA)]0aq + NTA3− → [Cm(NTA)2]3− | 19.50 ± 0.03 c | 21.40 ± 0.03 c | — | — | 20.13 a [45] |
Eu3+ + EDTA3− → [Eu(EDTA)]0aq | 17.0 ± 0.1 | 19.5 ± 0.1 | 17.0 ± 0.1 | 19.6 ± 0.1 | 16.2 ± 0.1 [27] 16.69 ± 0.08 h [40] 17.35 ± 0.06 e [38] 17.52 ± 0.03 f [37] |
Cm3+ + EDTA3− → [Cm(EDTA)]0aq | 17.50 ± 0.03 c | 20.00 ± 0.03 c | — | — | 16.9 ± 0.1 [50] 17.10 a [45] 17.86 ± 0.04 f [37] 18.45 g [51] |
Eu3+ + EGTA3− → [Eu(EGTA)]0aq | 17.9 ± 0.2 | 20.5 ± 0.2 | 18.0 ± 0.2 | 20.5 ± 0.2 | 17.1 ± 0.1 e [49] 17.65 ± 0.08 f [52] 17.8 e [49] |
Cm3+ + EGTA3− → [Cm(EGTA)]0aq | 18.60 ± 0.01 c | 21.20 ± 0.01 c | — | — | 17.94 ± 0.09 f [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, S.; Sieber, C.; Drobot, B.; Tsushima, S.; Barkleit, A.; Schmeide, K.; Stumpf, T.; Kretzschmar, J. Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC—An Improved Approach to More Robust Thermodynamics. Molecules 2023, 28, 4881. https://doi.org/10.3390/molecules28124881
Friedrich S, Sieber C, Drobot B, Tsushima S, Barkleit A, Schmeide K, Stumpf T, Kretzschmar J. Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC—An Improved Approach to More Robust Thermodynamics. Molecules. 2023; 28(12):4881. https://doi.org/10.3390/molecules28124881
Chicago/Turabian StyleFriedrich, Sebastian, Claudia Sieber, Björn Drobot, Satoru Tsushima, Astrid Barkleit, Katja Schmeide, Thorsten Stumpf, and Jerome Kretzschmar. 2023. "Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC—An Improved Approach to More Robust Thermodynamics" Molecules 28, no. 12: 4881. https://doi.org/10.3390/molecules28124881
APA StyleFriedrich, S., Sieber, C., Drobot, B., Tsushima, S., Barkleit, A., Schmeide, K., Stumpf, T., & Kretzschmar, J. (2023). Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITC—An Improved Approach to More Robust Thermodynamics. Molecules, 28(12), 4881. https://doi.org/10.3390/molecules28124881