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Abstract: Melatonin has profound antioxidant activity and numerous functions in humans as well as
in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological
rhythms of animals. Combining melatonin with scientific breeding management has considerable
potential for optimizing animal physiological functions, but this idea still faces significant challenges.
In this review, we summarized the beneficial effects of melatonin supplementation on physiology
and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress,
inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much
emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin
can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency
of animal husbandry.
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1. Introduction

Melatonin was discovered by Aaron Lerner in 1958 in the bovine pineal gland, and
was determined to have an important role in the regulation of the circadian rhythm [1].
Consequently, melatonin became the “gold standard” drug for modulating the circadian
rhythm [2] and was used to regulate sleep quality and body rhythms. Over the past
60 years, melatonin has been implicated in various tissues and cells in several animals [3–6],
including the testes [7,8], ovaries [9], placenta [10], granulosa cells [11], and oocytes [12].
Melatonin has many roles in these tissues and cells, including scavenging reactive oxygen
species (ROS) [13–15] and antioxidant [16,17], anti-apoptosis [18–20], anti-inflammatory [20–22],
and anti-aging [23–25] activities.

The economic viability of the cattle industry depends heavily on good reproductive per-
formance, which is affected by genetics, age, parity, body weight, nutrition [26], stress [27],
endometritis [28], embryo quality [29], and conception rate [30]. Furthermore, bull breed
and semen quality are also important factors affecting reproductive performance [31]. These
factors can have causal relationships or may directly affect reproductive performance.

Although studies of melatonin in cattle are rapidly accumulating, there has not been a
systematic review of its effects on cattle reproductive performance. Therefore, the main
objective of this review was to focus on various factors that can influence bovine reproduc-
tion and explore how melatonin can mediate these factors. This includes examining the
effects of melatonin on granulosa cells, oocytes, circadian rhythms, stress, inflammation,
testicular function, spermatogenesis, and semen cryopreservation (Figure 1). We aim to
provide insights to increase the use of exogenous melatonin in livestock reproduction.
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2. Application of Melatonin in Bovine Granulosa Cells

Follicle atresia is important in the decline in bovine reproductive performance, and the
development of ovarian follicles relies heavily on granulosa cells. Any alteration in the state
of these cells, including apoptosis, autophagy, cell cycle arrest, or an accumulation of ROS,
can trigger follicular atresia [32–34]. In addition, changes in steroid hormone synthesis also
affect granulosa cell states [35].

Melatonin is widely recognized for its ability to scavenge ROS and regulate cellular
physiology; in granulosa cells, it can reduce ROS and inhibit apoptosis through various
mechanisms [33,35]. During the early stage of follicular atresia, the inner granulosa cell
layer undergoes apoptosis, whereas the cumulus–oocyte and outer granulosa cells do not
undergo apoptosis [36]. Therefore, granulosa cell variation may be an important first step
in follicular atresia. Granulosa cells have critical roles in maintaining and supporting the
growth of follicles in vivo, with various physiological states determining follicle fate [37].
Alterations in key cellular functions, including those of mitochondria, have important con-
sequences, including ROS release, which triggers apoptosis and autophagy. Mitochondria
are one of the main sources of ROS. Whereas some O2 is used to produce ATP to maintain
mitochondrial function, some will generate ROS, and in excess concentrations, this will
cause extracellular Ca2+ to enter cells, causing mitochondrial swelling and even rupture.
Melatonin can sustain antioxidant enzymes and eliminate active oxygen by regulating ER
oxidoreductin1 (ERO1) to improve the activity of superoxide dismutase (SOD) and catalase
(CAT) [18,38]. Furthermore, melatonin can counteract β-zearalenol-mediated oxidative
stress and apoptosis in bovine ovarian granulosa cells, along with significant increases in
SOD and CAT proteins [33]. Inhibition of the melatonin receptors MT1 and MT2 can abate
the effects of melatonin and block changes in the cell cycle [32]. In addition to scavenging
ROS, melatonin has different effects depending on temperature and O2 concentration. At
37.5 ◦C and 5% O2, which approximates in vivo conditions, a low melatonin concentration
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promoted cell proliferation, but at 40 ◦C, a high melatonin concentration promoted cell
proliferation [39]. Therefore, melatonin interacts with temperature in a dose-dependent
manner, with the potential for melatonin to reduce stress caused by high temperatures.
However, the body’s physiological status and melatonin secretion vary, posing challenges
for safe and effective application of exogenous melatonin, emphasizing the need for reliable
data to make evidence-based decisions.

3. Application of Melatonin in Bovine Oocyte Cells

Oocyte quality is a crucial factor affecting the reproductive performance of female
animals and a key limiting factor in ruminant embryo transfer. Live birth rates were
significantly higher for the transfer of fresh versus cryopreserved embryos [40]. Oocyte
cryopreservation has been a longstanding challenge due to factors such as rates of sur-
vival, fertilization, and development [41]. Therefore, it is necessary to improve the quality
of oocytes cultured in vitro prior to cryopreservation, with melatonin having consider-
able promise.

Numerous studies have demonstrated that melatonin can improve the developmental
capacity of oocytes both in vitro and in vivo [42]. For instance, it enhances oocyte devel-
opmental competence and embryonic development in prepubertal and adult cattle by
mitigating ROS [43]. Melatonin reduces the ROS content of heat-shocked oocytes, increases
oocyte maturation rate and the proportion of embryos that develop into blastocysts, and
increases the transcriptional abundance of genes related to mitochondrial function [44].
Additionally, melatonin also protects bovine oocytes from other harmful substances, e.g.,
preventing paraquat-induced oocyte damage and preserving embryonic developmental
capacity [45]. There is abundant evidence for the ability of melatonin to promote bovine
oocyte development [46]. In this regard, melatonin promotes the synthesis of antioxidant
enzymes via specific membrane or nuclear receptors to remove ROS. Acetylserotonin
O-methyltransferase (ASMT) in cumulus–oocyte complexes (COCs) may be involved in
melatonin synthesis [47]. Melatonin reduces the oxidative stress of oocytes through the
MT1 membrane receptor, protecting the spindle body function to maintain oocyte devel-
opment. In Holstein cows, 20 mg of melatonin on days 190–262 of gestation increased
uterine blood flow, possibly due to its effect on steroid metabolism [48]. Melatonin also
altered estradiol metabolism to improve uteroplacental development in heifers [49]. In our
studies of estrus and artificial insemination in cattle, exogenous melatonin significantly
increased progesterone concentrations, enhanced SOD, CAT, and glutathione peroxidase
(GSH-Px) activity, and decreased MDA concentrations in cattle blood, with a significant
increase in pregnancy rate [50]. Melatonin could be a valuable tool for improving oocyte
and embryonic development in vitro and a means to enhance in vivo fertility.

4. Melatonin Regulates Circadian Rhythms in Cattle

Melatonin can regulate behavior and reproduction by controlling the expression of
genes involved in the circadian rhythm [51]. In addition, circadian rhythms can also
affect cow physiology [52]. For example, in one study, luteinizing hormone (LH) secretion
peaks before ovulation appeared 2–3 times more often at night than during daylight hours,
whereas melatonin secretion peaked at night [53]. Interestingly, in luteal cells, melatonin
increases the secretion of gonadotropin-releasing hormone (GnRH) and LH, thus enhancing
progesterone secretion in a dose-dependent manner. Whereas granulosa cells are critical for
estrogen secretion, luteal cells secrete more progesterone [54]. Perhaps melatonin directly
affects ovulation in animals. For example, the influence of melatonin on GnRH and LH
is blocked by luzindole, an inhibitor of the melatonin receptors MT1 and MT2. However,
further investigation is needed to confirm the effects of melatonin on ovulation.

Melatonin also affects cow performance, as inhibiting melatonin secretion with light
increases milk production in high-producing cows [55]. Long-day exposure reduces blood
melatonin concentrations and increases blood prolactin concentrations in cattle [56,57],
whereas exogenous melatonin suppresses prolactin [58]. Consequently, melatonin has
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profound effects on dairy cow performance, with the potential to modulate cow physiology
and performance with light control and exogenous melatonin. Photoperiod has been used
to improve animal productivity, including in chickens [59], sheep [60], and horses [61].

Melatonin is considered the “switch” that regulates circadian rhythms. One of the core
genes of the circadian rhythm is BMAL1, which is considered indispensable. BMAL1 is
in various cells and tissues, including the liver, testes, oocytes, and granulosa cells [62]. If
damaged, it will cause the body to have a series of physiological abnormalities, including
abnormal sleep, abnormal ovulation, and a shortened lifespan [63]. Melatonin restores sleep
disorders in Parkinson’s disease (PD) patients by promoting BMAL1 gene expression. [64].
Furthermore, melatonin not only enhances autophagy through BMAL1 but also improves
cerebral ischemia–reperfusion in diabetic mice [65]. It can also increase the expression of
clock proteins to affect endocrine status and improve obesity in mice [66]. Blocking the
BMAL1 gene with siRNA reduced the effects of melatonin on rooster circadian rhythms,
implying that melatonin primarily functions through BMAL1 [67], with BMAL1 at the apex
of the circadian clock feedback pathway in the avian retina [68]. Melatonin can regulate
the secretion of testosterone and progesterone in male and female animals, which may
be achieved through the core gene BMAL1. Despite no direct evidence to support this
conjecture, reducing the expression of BMAL1 reduced testosterone secretion [69], and
BMAL1 knockout mice had delayed genital development and puberty [70], perhaps due to
the effects of melatonin on testosterone and progesterone secretion. Although most effects
of circadian rhythms on cattle are centered on photoperiod, there is also evidence that
BMAL1 has an important role in cattle. Knockdown of BMAL1 decreased prostaglandin
F2α (PGF2α) in bovine uterine stromal cells (USCs) [71]. There is also evidence that BMAL1
functions as a core gene in bovine oocytes and preimplantation embryos to perform the
same function as maternal mRNA [72]. In addition, circadian rhythm genes are involved in
regulating neutrophil functions, helpful for assessing perinatal disease susceptibility in cat-
tle [73]. Clearly, photoperiod and circadian rhythms affect cattle reproduction, with further
studies needed to determine the specific roles of melatonin and mechanisms of action.

5. Effects of Melatonin on Inflammation in Cattle

Melatonin is a “regulator” of the immune system with both pro- and anti-inflammatory
effects [74]. However, melatonin’s role in inflammation is not innate, but it depends on
specific conditions. Melatonin generally has antioxidant and anti-inflammatory functions
in most cells to maintain homeostasis [75,76]. In contrast, in tumor and cancer cells, it has
potent pro-oxidative and pro-apoptotic therapeutic effects [77,78].

Exogenous melatonin can be given to treat various diseases by reducing inflammation
and oxidative stress [74]. For example, it attenuated metabolic inflammation in mice by
increasing exosomal α-ketoglutarate (αKG) [79]. It can also alleviate secondary brain
injury caused by cerebral hemorrhage in rats by inhibiting inflammation [21]. Additionally,
exogenous melatonin inhibited the release of inflammatory factors IL-6, IL-1β, and TNF-α in
human nucleus pulposus cells (NPC), thereby suppressing inflammation [22]. Although less
research has been conducted on the role of melatonin in bovine inflammation, it enhanced
endometrial receptivity by alleviating ammonia-induced inflammation and apoptosis
through the TLR4/NF-κB/IL-6 signaling pathway [80]. Rumen bypass membrane feeding
(RBMF) can inhibit stress response and inflammation in dairy cows [81]. Melatonin also
improved Staphylococcus aureus-induced mastitis by acting on the Microrna-16B/YAP1
pathway [82]. In addition, exogenous melatonin improved the efficiency of the bovine
viral diarrhea virus vaccine [83], and based on in vitro studies, it inhibited NF-κB activity
and reduced IL-1β and IL-6 mRNA levels [83]. Furthermore, melatonin also enhanced the
immune response of sheep inoculated with Dichelobacter nodosus and increased serum IgG
concentrations [84]. Therefore, melatonin has some anti-inflammatory and antiviral effects,
with the potential to prevent or treat cattle diseases.
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6. Effects of Melatonin on Testicular Function, Spermatogenesis, and Semen
Cryopreservation in Bulls

Cryopreservation is an important assisted reproductive technology for long-term
gamete preservation in ruminants such as cattle and sheep [85]. In addition to the impor-
tance of oocytes, high-quality semen also has an important role in accelerating genetic
improvement, and is important for sustaining endangered animals. Therefore, there is
much impetus to improve semen cryopreservation technology.

Semen contains a certain concentration of reactive oxygen species that are necessary
for sperm capacitation [85]. However, high concentrations of ROS can cause oxidative stress
to damage sperm physiological functions, including morphology and DNA integrity [86].
Melatonin reduces ROS-induced oxidative stress during sperm freezing and maximizes the
quality of frozen-thawed sperm due to its ROS scavenging ability [10,87,88].

Adding 1 mM melatonin to semen extender improved the quality of swamp buffalo
sperm [89]. Adding melatonin to semen extender mitigated reductions in the quality of
frozen-thawed sperm from heat-stressed rams [90]. In Murrah buffalo bulls, a melatonin
implant (18 mg/50 kg of body weight) lasted for 2 months and significantly reduced
morphologically abnormal sperm and increased sperm motility, both in terms of curve
and linear velocity. In addition, melatonin increased the concentration of total protein and
cholesterol in seminal plasma and improved the semen quality of Murrah buffalo bulls
during the non-breeding season under tropical conditions [91].

Su et al. [92] systematically studied effects of melatonin on semen cryopreservation,
oocyte maturation, and embryonic development. During these processes, the optimal con-
centration of melatonin was not consistent. During semen freezing, 10−3 M was optimal,
whereas 10−7 M significantly increased the oocyte maturation rate and also increased the
total number of blastocysts in in vitro fertilization (IVF). In our previous work, various con-
centrations of melatonin had different effects on sperm motility and antioxidant indicators.
Both low (0.125 mg/mL) and high (0.5 mg/mL) melatonin concentrations reduced ROS
content. In addition, a medium concentration (0.25 mg/mL) of melatonin reduced MDA
content. Although all three concentrations of melatonin improved antioxidant indicators,
the medium concentration had the best advantage [87]. In conclusion, adding an appro-
priate concentration of melatonin to semen extender and sperm preparation for in vitro
fertilization can improve the quality of frozen-thawed sperm, embryonic development, and
success of in vitro fertilization.

In addition to exogenous melatonin in extender improving semen quality, mela-
tonin is a key factor in spermatogenesis, which regulates testicular function through the
hypothalamic–pituitary–gonadal axis [93,94]. The hypothalamic–pituitary–gonadal (HPG)
axis is key to regulating reproductive hormones. Puberty was delayed in pups in pregnant
female rats given melatonin, attributed to decreased LH and prolactin [95,96]. In addition,
melatonin inhibits GnRH-induced LH release, thereby inhibiting testosterone production,
whereas luzidole, an inhibitor of melatonin receptor MT1, essentially counteracts the ef-
fects of melatonin [96–98]. During testicular growth and development, melatonin has
a critical role in several testicular cell types and hormone secretion. Melatonin protects
the testes from local inflammation and reactive oxygen species [93,99,100]. Male repro-
ductive function depends on the HPG axis, and melatonin can affect hormone synthesis,
e.g., by modulating the growth and development of several testicular cells through its
receptor [101]. Melatonin released by the pineal gland can also be absorbed by the testes
through blood circulation, thereby modulating testicular activity [93]. In addition, mela-
tonin can act through its unique receptors to regulate testosterone secretion, apoptosis, and
autophagy [7,102,103]. Melatonin treatment of bovine Sertoli cells in vitro increased the
expression of genes related to spermatogenesis, including Cyclin D1, Cyclin E, Pdgfa, Dhh,
Occludin, and Claudin [104]. After healthy men took melatonin for 6-month, there were
changes in some aspects of their semen, perhaps due to melatonin-induced inhibition of
aromatase [105]. In a testicular ischemia–reperfusion model, melatonin significantly re-
duced morphologically abnormal sperm [106]. In vitro, melatonin increased the percentage
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of motile sperm and increased mitochondrial activity, implying that melatonin affected
spermatogenesis and development through the blood–testis barrier [107]. These findings
confirmed that melatonin regulated spermatogenesis via the development of testicular cells.

7. Positive Effects of Melatonin in Livestock Cells

Many positive effects of melatonin have been described above. However, optimal con-
centrations of melatonin seem to differ according to tissues or cells of various species. Due
to relatively long estrous cycles (~21 days) and pregnancy (~285 days), it can be technically
challenging to study the effects of melatonin in cattle. To the best of our knowledge, we
were the first to report that melatonin improved fertility in cows [50]. Moreover, melatonin
regulates the circadian rhythm and has a vital role in the milk production and metabolism
of lactating cows [108]. The HPA axis can also promote gonadal atrophy of dairy cows in
winter by increasing the secretion of melatonin [109]. There are limited studies on mela-
tonin in domestic livestock, with a variety of doses and outcomes (Table 1). Melatonin can
directly remove free radicals and ROS, and improve the antioxidant capacity by regulating
cosmodal peroxidase and glutathione reduction [110].

Melatonin can also mitigate body damage nitrogen peroxide compound enzymes and
nitrogen-based poison [111]. Melatonin can interact with heavy metals [112], combining
with iron and copper. In hemoglobin, melatonin can restore iron (Feiv-O) to Iron (III) [113].
Melatonin can also be combined with CU (II) and CU (I) to reduce the lipid peroxidation of
copper mediated in the liver [114]. Furthermore, melatonin can also assist mitochondria
to clear free radicals and ROS [115]. Mitochondria are the site of ATP and ROS produc-
tion [116]. The core theory of aging is mitochondrial damage, and melatonin can target
mitochondria to generate ATP, remove ROS, and delay aging [117].

Melatonin can improve human sleep quality [118], regulate cardiovascular [119],
central system [120], nervous system [121], and immune system function [122], and prevent
the occurrence of some diseases to a certain extent, including Parkinson’s disease [123],
Alzheimer’s disease [124], depression [125], and ischemic brain injury [126]. These human
studies demonstrate the safety and effectiveness of melatonin, which lays the foundation
for its use in animal husbandry, where there is much potential.

Table 1. Positive effects of melatonin on cattle, sheep, and pigs.

Species Positive Effects of Melatonin Concentration References

Cattle Melatonin promoted diameter of bovine follicles and
growth of secondary oocytes 10−7 M [127]

Melatonin in cattle feed changed the β diversity of
vaginal microorganisms 20 mg [128]

Melatonin promoted proliferation of bovine theca cells
and inhibited steroid production 1 µM [129]

Melatonin promoted bovine oocyte development
and maturation 10−7 M [12]

Melatonin inhibited oxidative stress and apoptosis of
bovine granulosa cells 100 µM [33]

Melatonin increased conception rates in cattle 0.24 mg/kg [50]
Melatonin decreased ROS production in bovine sperm

and increased sperm viability, plasma membrane integrity,
mitochondrial integrity, and acrosome integrity

10−3 M [92]

Melatonin promoted development and function of bovine
Sertoli cells 320 pg/mL [104]
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Table 1. Cont.

Species Positive Effects of Melatonin Concentration References

Pig Melatonin regulated lipid metabolism in porcine oocytes 10−9 M [130]
Melatonin reduced ROS production in porcine oocytes

and promoted mitochondrial function and
embryonic development

500 nmol/L [131]

Melatonin improved the quality of porcine embryos 1 nM [132]
Melatonin improved semen viability and acrosome

integrity in pigs 1 µM [133]

Melatonin regulated ATP metabolism and antioxidant
enzyme activity of boar sperm 1 µM [134]

Sheep Melatonin inhibited LPS-induced inflammation of sheep
epididymal epithelial cells 10−7 M [135]

Melatonin was involved in activation of primordial
follicles in sheep ovaries 100 pg/mL [136]

Melatonin promoted development of transgenic sheep
embryos and improved transgenic efficiency 10−7 M [137]

Melatonin reduced ROS accumulation in sheep testicular
interstitial cells and promoted testosterone synthesis 10 ng/mL [138]

Dietary supplementation of melatonin increased activities
of glucose amylase, isomaltase, and maltase in small

intestine of sheep
5 mg/d [139]

Melatonin reduced ROS and improved sperm quality 10−7 M [140]
Melatonin enhanced DNA integrity and fertilization

ability of sheep sperm 1 mM [141]

8. Conclusions and Prospects

The physiological states of domestic animals will affect their reproductive function.
Melatonin has important roles in the growth, development, and metabolism of various
cells, but is rarely studied in livestock. This review emphasizes how melatonin works and
its potential for use in animal, but much remains unknown.

In female livestock, melatonin can promote ovulation, enhance ovarian cell develop-
ment and embryonic development, enhance placenta development, and increase pregnancy
rate. In male livestock, melatonin can enhance testicular function, improve sperm morphol-
ogy and motility, improve protein content in sperm, and enhance mitochondrial activity
(Figure 2).
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Improving the efficiency of livestock reproduction is critical for improving the sustain-
ability of cattle reproduction. However, there are various factors affecting the breeding
of domestic livestock. The physiological state of livestock and its interaction with the
environment are complicated. As expected, melatonin has become a human health product,
and its safety has been recognized. However, it is limited to basic research on domestic
animals, which is even more rare for improving reproduction efficiency and has certain
limitations. Melatonin as an endogenous hormone is important in the field of animal
science and progress should be made in large livestock animals. We expect that in the
future, scientific researchers can use melatonin to change domestic animal physiology
(e.g., endocrinology, metabolism, and estrus cycle) and pathology. The combination of
melatonin and scientific breeding management may have the best effect, thereby improving
the reproductive performance of domestic animals.

Author Contributions: Conceptualization, Z.L. Literature collection and review, K.Z. and Y.Z.;
Writing—original draft. Z.L., Revision and editing of original draft. J.W., Discussion and proofreading,
J.Z.; Supervision and project administration, W.L. All authors have read and agreed to the published
version of the manuscript.
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[31861143014], [CARS-37]. And The APC was funded by the Key R&D special subproject of the
Ministry of Science and Technology in the 14th Five-Year Plan: Genetic basis and molecular regulatory
Network Analysis of reproductive Traits in dairy cows; the National Natural Science Foundation
of China International Cooperative Research and Exchange Program; and the China Agriculture
Research System of MOF and MARA (CARS-37).
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