Identifying, Quantifying, and Recovering a Sorbitol-Type Petrochemical Additive in Industrial Wastewater and Its Subsequent Application in a Polymeric Matrix as a Nucleating Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification, Quantification, Repeatability, Reproducibility, and Linearity Analysis of Multiple Millad NX 8000 Standards
2.1.1. Repeatability, Reproducibility, and Linearity of the Extraction of the Millad NX 8000 with a Column of Activated Carbon Plus Glass Fiber with DCM
2.1.2. Repeatability, Linearity, and Reproducibility of Millad NX 8000 via GC-MS
2.2. Reproducibility and Repeatability Analysis of the Extraction of Industrial Wastewater Samples
2.2.1. Reproducibility Analysis of the Industrial Wastewater Samples
2.2.2. Linearity and Distribution of Industrial Wastewater Sample Data
2.3. Millad NX 8000 Peak Wavelength Measurement
Linearity Test of the UV-Vis Spectrophotometric Method
2.4. Spectral Analysis
Application of Recovered Additive in Polypropylene Resins to Verify Their Efficiency
2.5. Thermal Properties
2.5.1. DSC Analysis
2.5.2. TGA Analysis
3. Materials and Methods
3.1. Sample Preparation
3.2. Addition of the Recovered Additive to the PP Matrix
3.2.1. Preparation of PP Sampling
3.2.2. Derivatization of the NX 8000 Millad
3.2.3. Instrumentation and Spectral Acquisition
3.2.4. Thermal Properties
3.2.5. Procedure for the Calibration Curve
Validation of Analytical Method via UV-Vis
- Linearity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Söderholm, P. The green economy transition: The challenges of technological change for sustainability. Sustain. Earth 2020, 3, 6. [Google Scholar] [CrossRef]
- Marquès, M.; Domingo, J.L.; Nadal, M.; Schuhmacher, M. Health risks for the population living near petrochemical industrial complexes. 2. Adverse health outcomes other than cancer. Sci. Total Environ. 2020, 730, 139122. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [Google Scholar] [CrossRef] [PubMed]
- Nyashina, G.; Kuznetsov, G.; Strizhak, P. Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals. Environ. Pollut. 2020, 258, 113682. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919. [Google Scholar] [CrossRef]
- Fernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [Google Scholar] [CrossRef]
- MRG PlasticsEurope (MRG). Business Data and Carts 2007; Plastics Europe Association of Plastic Manufacturers: Brussels, Belgium, 2008. [Google Scholar]
- Nagarajan, K.; Levon, K.; Myerson, A.S. Nucleating Agents in Polypropylene. J. Therm. Anal. Calorim. 2000, 59, 497–508. [Google Scholar] [CrossRef]
- Binsbergen, F.; Delange, B. Heterogeneous nucleation in the crystallization of polyolefins: Part 2. Kinetics of crystallization of nucleated polypropylene. Polymer 1970, 11, 309–332. [Google Scholar] [CrossRef]
- Kristiansen, M.; Tervoort, T.; Smith, P.; Goossens, H. Mechanical Properties of Sorbitol-Clarified Isotactic Polypropylene: Influence of Additive Concentration on Polymer Structure and Yield Behavior. Macromolecules 2005, 38, 10461–10465. [Google Scholar] [CrossRef]
- Nogales, A.; Mitchell, G.R.; Vaughan, A.S. Anisotropic Crystallization in Polypropylene Induced by Deformation of a Nucleating Agent Network. Macromolecules 2003, 36, 4898–4906. [Google Scholar] [CrossRef] [Green Version]
- Balzano, L.; Portale, G.; Peters, G.W.M.; Rastogi, S. Thermoreversible DMDBS Phase Separation in iPP: The Effects of Flow on the Morphology. Macromolecules 2008, 41, 5350–5355. [Google Scholar] [CrossRef]
- Zhou, J.; Xin, Z. Relationship between molecular structure and nucleation of benzylidene acetals in isotactic polypropylene. Polym. Compos. 2012, 33, 371–378. [Google Scholar] [CrossRef]
- Bauer, T.; Thomann, R.; Mülhaupt, R. Two-Component Gelators and Nucleating Agents for Polypropylene Based upon Supramolecular Assembly. Macromolecules 1998, 31, 7651–7658. [Google Scholar] [CrossRef]
- New Clarifying, Nucleating Agents Provide Barrier Properties and Better Organoleptics. Available online: http://www.plastemart.com/plastic-technical-articles/new-clarifying-nucleating-agents-provide-barrier-properties-and-better-organoleptics/1193 (accessed on 18 June 2023).
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Regional Activity Centre for Sustainable Consumption and Production. Toxic Additives in Plastic and the Circular Economy; Regional Activity Centre for Sustainable Consumption and Production: Barcelona, Spain, 2020. [Google Scholar]
- National Industrial Chemicals Notification and Assessment Scheme (NICNAS). File No: STD/1316 April 2009 NICNAS. April 2009. Available online: https://www.industrialchemicals.gov.au/sites/default/files/STD1316%20Public%20Report%20PDF.pdf (accessed on 18 June 2023).
- McDonald, J.G.; Cummins, C.L.; Barkley, R.M.; Thompson, B.M.; Lincoln, H.A. Identification and Quantitation of Sorbitol-Based Nuclear Clarifying Agents Extracted from Common Laboratory and Consumer Plasticware Made of Polypropylene. Anal. Chem. 2008, 80, 5532–5541. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Zhu, L.; We, X. Enthalpic Interaction of d-Sorbitol and d-Mannitol in Water and Aqueous Sodium Halide Solutions at 313.15 K. J. Chem. Eng. Data 2005, 50, 769–773. [Google Scholar] [CrossRef]
- Li, L.; Zhu, L.; Qiu, X.; Sun, D.; Di, Y. Concentration effect of sodium chloride on enthalpic interaction coefficients of D-mannitol and D-sorbitol in aqueous solution. J. Therm. Anal. Calorim. 2007, 89, 295–301. [Google Scholar] [CrossRef]
- Carneiro, A.; Rodríguez, O.; Macedo, E. Solubility of xylitol and sorbitol in ionic liquids—Experimental data and modeling. J. Chem. Thermodyn. 2012, 55, 184–192. [Google Scholar] [CrossRef]
- Nguon, O.; Charlton, Z.; Kumar, M.; Lefas, J.; Vancso, G. Interactions between sorbitol-type nucleator and additives for polypropylene. Polym. Eng. Sci. 2020, 60, 3046–3055. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, C.-S.; Zhou, Q.; Ye, H.-M. Dual Actions of a Commercial Sorbitol Derivative on Crystallization Behavior of Poly(1,4-butylene adipate). ACS Omega 2019, 4, 7005–7013. [Google Scholar] [CrossRef]
- Kristiansen, M.; Werner, M.; Tervoort, T.; Smith, P.; Blomenhofer, M.; Schmidt, H.W. The Binary System Isotactic Polypropylene/Bis(3,4-dimethylbenzylidene)sorbitol: Phase Behavior, Nucleation, and Optical Properties. Macromolecules 2003, 36, 5150–5156. [Google Scholar] [CrossRef]
- Sternbauer, L.; Dieplinger, J.; Buchberger, W.; Marosits, E. Determination of nucleating agents in plastic mate-rials by GC/MS after microwave-assisted extraction with in situ microwave-assisted derivatization. Talanta 2014, 128, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Rodríguez, M.C.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [Google Scholar] [CrossRef]
- Jusoh, N.; Rosly, M.B.; Othman, N.; Rahman, H.A.; Noah, N.F.M.; Sulaiman, R.N.R. Selective extraction and recovery of polyphenols from palm oil mill sterilization condensate using emulsion liquid membrane process. Environ. Sci. Pollut. Res. 2020, 27, 23246–23257. [Google Scholar] [CrossRef]
- Halimah, N.; Suryaningsih, S.; Mindara, J.Y.; Hidayat, S. Pengujian Kandungan Zat Pewarna Rhodamin B Pada Beberapa Jenis Makanan Dengan Mini Spektrofotometer Absorpsi Portabel. Pros. Semin. Nas. Fis. 2016, 5, 25–28. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Sun, W.; Qu, G.; Xu, X.; Yang, S.; Yuan, N. Determination of transparent nucleating agent content in polypropylene by infrared spectroscopy. Plásticos China 2022, 36, 115–118. [Google Scholar]
- Horváth, Z.; Gyarmati, B.; Menyhárd, A.; Doshev, P.; Gahleitner, M.; Varga, J.; Pukánszky, B. The role of solubility and critical temperatures for the efficiency of sorbitol clarifiers in polypropylene. RSC Adv. 2014, 4, 19737–19745. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.B.; Decius, J.C.; Cross, P.C.; Sundheim, B.R. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. J. Electrochem. Soc. 1955, 102, 235C. [Google Scholar] [CrossRef]
GC-MS with Activated Carbon Column + Fiberglass with DCM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Repeatability | ||||||||||
Theoretical | STDA | Analyst 1 | Analyst 1 | Analyst 1 | Analyst 1 | Average | Deviation | RSD | Error | %Recovery |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
500 | 2 | 457 | 468 | 463 | 472 | 465 | 6.48 | 1.393 | 7 | 93 |
1000 | 3 | 961 | 975 | 968 | 955 | 964.75 | 8.655 | 0.897 | 3.525 | 96.47 |
2000 | 5 | 1938 | 1957 | 1963 | 1931 | 1947.25 | 15.196 | 0.78 | 26.375 | 97.36 |
5000 | 7 | 4865 | 4677 | 4721 | 4638 | 4725.25 | 99.144 | 2.098 | 5.495 | 94.5 |
Reproducibility | ||||||||||
Theoretical | STDA | Analyst 1 | Analyst 2 | Analyst 3 | Analyst 4 | Average | Deviation | RSD | Error | %Recovery |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
500 | 2 | 469 | 472 | 450 | 447 | 459.5 | 12.819 | 2.789 | 8.1 | 91.9 |
1000 | 3 | 947 | 969 | 986 | 942 | 961 | 20.379 | 2.121 | 3.9 | 96.1 |
2000 | 5 | 1952 | 1964 | 1948 | 1944 | 1952 | 8.641 | 0.443 | 2.4 | 97.6 |
5000 | 7 | 4869 | 4782 | 4928 | 4933 | 4878 | 70.289 | 1.441 | 2.44 | 97.56 |
Repeatability for Standard by GC-MS | Reproducibility of the Standard by GC-MS | ||||||
Factor | N | Average | Group | Factor | N | Average | Group |
Analyst 1 (1) | 4 | 2055 | A | Analyst 3 | 4 | 2078 | A |
Analyst 1 (3) | 4 | 2029 | A | Analyst 4 | 4 | 2067 | A |
Analyst 1 (2) | 4 | 2019 | A | Analyst 1 | 4 | 2059 | A |
Analyst 1 (4) | 4 | 1999 | A | Analyst 2 | 4 | 2047 | A |
Repeatability of Patterns with Activated Carbon Column in GC-MS | Reproducibility of Patterns with activated Carbon Column in GC-MS | ||||||
Factor | N | Average | Group | Factor | N | Average | Group |
Analyst 1 (4) | 4 | 2055 | A | Analyst 3 | 4 | 2078 | A |
Analyst 1 (2) | 4 | 2029 | A | Analyst 4 | 4 | 2067 | A |
Analyst 1 (1) | 4 | 2019 | A | Analyst 1 | 4 | 2059 | A |
Analyst 1 (3) | 4 | 1999 | A | Analyst 2 | 4 | 2047 | A |
Calibration Curve of the Millad NX 8000 in GC-MS with DCM | |||||||||
---|---|---|---|---|---|---|---|---|---|
Repeatability | |||||||||
Theoretical | STDA | Analyst 1 | Analyst 1 | Analyst 1 | Analyst 1 | Average | Deviation | RSD | Error |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
500 | 2 | 485 | 492 | 495 | 488 | 490 | 4.4 | 0.9 | 2 |
1000 | 3 | 972 | 986 | 991 | 991 | 985 | 9.0 | 0.9 | 1.5 |
2000 | 5 | 1978 | 1991 | 1986 | 1988 | 1986 | 5.6 | 0.3 | 0.7 |
5000 | 7 | 4978 | 4969 | 4989 | 4992 | 4982 | 10.6 | 0.2 | 0.4 |
Reproducibility | |||||||||
Theoretical | STDA | Analyst 1 | Analyst 2 | Analyst 3 | Analyst 4 | Average | Deviation | RSD | Error |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
500 | 2 | 487 | 496 | 476 | 477 | 484 | 9.416 | 1.945 | 3.2 |
1000 | 3 | 968 | 955 | 986 | 982 | 972.75 | 14.127 | 1.452 | 2.725 |
2000 | 5 | 1990 | 1958 | 1973 | 1957 | 1969.5 | 15.503 | 0.787 | 1.525 |
5000 | 7 | 4997 | 4957 | 4961 | 4997 | 4978 | 22 | 0.441 | 0.44 |
Analysis of Final Samples with Activated Carbon Column + Fiberglass with DCM | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reproducibility | |||||||||||
Day | Sample | Analyst 1 | Analyst 2 | Analyst 3 | Analyst 4 | Average | Deviation | RSD | Error | Recovered | %Recovery |
1 | 1 | 4254 | 4385 | 4568 | 4449 | 4414 | 130.871 | 2.964 | 65.435 | 4257 | 96.443 |
2 | 2 | 3875 | 3789 | 3526 | 3911 | 3775.25 | 173.87 | 4.605 | 86.935 | 3524 | 93.344 |
3 | 3 | 1542 | 1436 | 1342 | 1402 | 1430.5 | 838.788 | 5.863 | 41.939 | 1324 | 92.555 |
4 | 4 | 965 | 878 | 978 | 911 | 933 | 46.754 | 5.011 | 23.377 | 901 | 96.57 |
5 | 5 | 2145 | 2218 | 2086 | 2115 | 2141 | 56.703 | 2.648 | 28.351 | 2000 | 93.414 |
6 | 6 | 1578 | 1531 | 1496 | 1511 | 1529 | 35.674 | 2.333 | 17.837 | 1452 | 94.964 |
7 | 7 | 1978 | 2175 | 2088 | 1952 | 2048.25 | 103.028 | 5.03 | 51.514 | 1955 | 95.447 |
8 | 8 | 875 | 792 | 854 | 863 | 846 | 370.135 | 4.375 | 18.506 | 811 | 95.863 |
9 | 9 | 1478 | 1542 | 1575 | 1437 | 1508 | 621.449 | 4.121 | 31.072 | 1425 | 94.496 |
10 | 10 | 3478 | 3574 | 3485 | 3314 | 3462.75 | 108.367 | 3.129 | 54.183 | 3375 | 97.465 |
11 | 11 | 2756 | 2811 | 2901 | 2754 | 2805.5 | 68.927 | 24.568 | 34.463 | 2578 | 91.89 |
12 | 12 | 1900 | 1921 | 1945 | 1805 | 1892.75 | 613.208 | 32.397 | 30.66 | 1785 | 94.307 |
13 | 13 | 758 | 777 | 765 | 738 | 759.5 | 16.34 | 2.151 | 8.17 | 743 | 97.827 |
14 | 14 | 935 | 943 | 924 | 911 | 928.25 | 13.889 | 1.496 | 6.944 | 899 | 96.848 |
15 | 15 | 1758 | 1792 | 1732 | 1675 | 1739.25 | 49.378 | 2.839 | 24.689 | 1608 | 92.453 |
16 | 16 | 785 | 793 | 777 | 713 | 767 | 365.877 | 4.77 | 18.294 | 718 | 93.611 |
17 | 17 | 475 | 497 | 481 | 445 | 474.5 | 217.485 | 4.583 | 10.874 | 457 | 96.311 |
18 | 18 | 511 | 542 | 552 | 499 | 526 | 25.073 | 4.766 | 12.536 | 508 | 96.577 |
19 | 19 | 348 | 327 | 337 | 311 | 330.75 | 15.713 | 4.75 | 7.856 | 324 | 97.959 |
20 | 20 | 311 | 308 | 316 | 335 | 317.5 | 12.124 | 3.818 | 6.062 | 299 | 94.173 |
21 | 21 | 268 | 285 | 293 | 299 | 286.25 | 13.45 | 4.698 | 6.725 | 264 | 92.227 |
22 | 22 | 467 | 477 | 465 | 445 | 463.5 | 134.039 | 2.891 | 6.702 | 435 | 93.851 |
23 | 23 | 526 | 551 | 524 | 511 | 528 | 167.132 | 3.165 | 8.356 | 508 | 96.212 |
24 | 24 | 611 | 634 | 611 | 578 | 608.5 | 230.434 | 3.786 | 11.522 | 586 | 96.302 |
25 | 25 | 642 | 689 | 701 | 721 | 688.25 | 335.397 | 4.873 | 16.769 | 654 | 95.023 |
26 | 26 | 719 | 754 | 716 | 688 | 719.25 | 270.477 | 3.760 | 13.524 | 675 | 93.847 |
27 | 27 | 366 | 352 | 342 | 327 | 346.75 | 164.392 | 4.74 | 8.219 | 337 | 97.188 |
28 | 28 | 485 | 511 | 499 | 542 | 509.25 | 242.813 | 4.768 | 12.14 | 491 | 96.416 |
29 | 29 | 290 | 281 | 291 | 278 | 285 | 64.807 | 2.273 | 3.24 | 275 | 96.491 |
30 | 30 | 421 | 415 | 402 | 384 | 405.5 | 163.808 | 4.039 | 8.19 | 383 | 94.451 |
Concentration (ppm) | Absorbance |
---|---|
20 | 0.015 |
30 | 0.041 |
40 | 0.068 |
50 | 0.098 |
Clarifier | Tt (°C) | Tm (°C) |
---|---|---|
Millad NX 8000 pure | 198.9 | 245.7 |
Millad NX 8000 recovery | 199.3 | 245.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Fernández, J.; Puello-Polo, E.; Marquez, E. Identifying, Quantifying, and Recovering a Sorbitol-Type Petrochemical Additive in Industrial Wastewater and Its Subsequent Application in a Polymeric Matrix as a Nucleating Agent. Molecules 2023, 28, 4948. https://doi.org/10.3390/molecules28134948
Hernández-Fernández J, Puello-Polo E, Marquez E. Identifying, Quantifying, and Recovering a Sorbitol-Type Petrochemical Additive in Industrial Wastewater and Its Subsequent Application in a Polymeric Matrix as a Nucleating Agent. Molecules. 2023; 28(13):4948. https://doi.org/10.3390/molecules28134948
Chicago/Turabian StyleHernández-Fernández, Joaquín, Esneyder Puello-Polo, and Edgar Marquez. 2023. "Identifying, Quantifying, and Recovering a Sorbitol-Type Petrochemical Additive in Industrial Wastewater and Its Subsequent Application in a Polymeric Matrix as a Nucleating Agent" Molecules 28, no. 13: 4948. https://doi.org/10.3390/molecules28134948
APA StyleHernández-Fernández, J., Puello-Polo, E., & Marquez, E. (2023). Identifying, Quantifying, and Recovering a Sorbitol-Type Petrochemical Additive in Industrial Wastewater and Its Subsequent Application in a Polymeric Matrix as a Nucleating Agent. Molecules, 28(13), 4948. https://doi.org/10.3390/molecules28134948