Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice
Abstract
:1. Introduction
2. Results
2.1. Changes in Food Intake, Water Intake, Body Weight and Fecal Excretion of Mice
2.2. Effect of FCB-MDF on Glucose Metabolism in Mice
2.3. Effect of FCB-MDF on Lipid Metabolism in Mice
2.4. Effect of FCB-MDF on Oxidative Damage in Mice
2.5. Effect of FCB-MDF on Histopathology of Mice
2.6. Effect of FCB-MDF on Short-Chain Fatty Acids in Mice
2.7. Effect of FCB-MDF on Intestinal Microflora in Mice
2.7.1. Basic Distribution of Species in Each Treatment Group
2.7.2. Comparative Analysis of Mouse Fecal Microflora Based on Alpha Diversity
2.7.3. Comparative Analysis of Mouse Fecal Microflora Based on Beta Diversity
2.7.4. Distribution Results of Each Treatment Group of Species at the Level of Phyla and Genus
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Extraction and Modification of Insoluble Dietary Fiber from Fresh Corn Bracts
4.3. Animal Experiment Design
4.4. Determination of Biochemical Indicators in Sera and Plasma of Mice
4.5. Determination of Bile Acid Content in Livers, Gallbladders and Small Intestines of Mice
4.6. Histopathological Analysis
4.6.1. Histopathological Determination of Mouse Liver
4.6.2. Immunofluorescence Assay of Mouse Colon Tissue
4.7. Determination of Short-Chain Fatty Acids in Mouse Feces
4.8. Determination of Intestinal Microflora in Mice
4.9. Statistics Analysis
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
References
- Chuang, S.C.; Norat, T.; Murphy, N.; Olsen, A.; Tjonneland, A.; Overvad, K.; Boutron-Ruault, M.C.; Perquier, F.; Dartois, L.; Kaaks, R.; et al. Fiber intake and total and cause-specific mortality in the european prospective investigation into cancer and nutrition cohort. Am. J. Clin. Nutr. 2012, 96, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.Y.; Wang, W.X.; Ma, Z.Y.; Liu, Y.Q.; Mu, J.L.; Wang, J.; Stipkovits, L.; Wu, G.; Sun, J.F.; Hui, X.D. Enzymatic-modified dietary fibre fraction extracted from potato residue regulates the gut microbiotas and production of short-chain fatty acids of C57BL/6 mice. J. Funct. Food. 2021, 84, 104606. [Google Scholar] [CrossRef]
- Rezende, E.; Lima, G.C.; Naves, M. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories. Nutrition 2021, 89, 111217. [Google Scholar] [CrossRef]
- Zhao, Q.; Shi, J.; Chen, S.Y.; Hao, D.D.; Wan, S.; Niu, H.M.; Zhang, Y.Q. Salidroside affects gut microbiota structure in db/db mice by affecting insulin, blood glucose and body weight. Diabetes Metab. Syndr. Obes. 2022, 15, 2619–2631. [Google Scholar] [CrossRef]
- Lihong, Z.A.; Nancie, H.; Giovanni, R.; Michael, L. Whole grain oats improve insulin sensitivity and plasma cholesterol profile and modify gut microbiota composition in c57bl/6j mice1-3. J. Nutr. 2015, 145, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Hong, T.; Li, N.; Zang, B.; Wu, X.M. Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochem. Biophys. Res. Commun. 2018, 498, 146–151. [Google Scholar] [CrossRef]
- Sheng, S.Y.; Li, T.; Liu, R.H. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- He, X.P.; Shen, J.; Sun, J. Introduction to the development of China’s fresh corn industry overview. Agric. Eng. Technol. (Agric. Prod. Process. Ind.) 2010, 425, 26–29. [Google Scholar]
- Wang, Q.; Shi, Y.L.; Li, J.N.; Lv, T.B. Optimization of corn straw board processing. Trans. Chin. Soc. Agric. Mach. 2007, 38, 199–201. [Google Scholar]
- Zhang, Y.; Liu, Y.; Zhou, H.L. Bioactive components in corn bracts. Agric. Jilin 2015, 6, 59. [Google Scholar] [CrossRef]
- Geng, N.N.; Song, J.F.; Luo, S.W.; Li, Y.; Wu, G.; Liu, C.Q.; Wu, C.E. Ultrasound-assisted enzymatic extraction of soluble dietary fiber from fresh corn bract and its physio-chemical and structural properties. Qual. Assur. Saf. Crop. Foods 2022, 14, 119–130. [Google Scholar] [CrossRef]
- Leitz, R.E.A.; Pusateri, D.J. Balanced Fibre Composition. U.S. Patent 4,877,627, 31 October 1989. [Google Scholar]
- Guo, X.J.; Chen, M.S.; Li, Y.T.; Dai, T.T.; Shuai, X.X.; Chen, J.; Liu, C.M. Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends Food Sci. Technol. 2020, 100, 223–234. [Google Scholar] [CrossRef]
- Deng, Z.Z.; Wu, N.; Wang, J.; Zhang, Q.B. Dietary fibers extracted from Saccharina japonica can improve metabolic syndrome and ameliorate gut microbiota dysbiosis induced by high fat diet. J. Funct. Food. 2021, 85, 104642. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, J.; Nesil, T.; Li, M.D.; Aylor, K.W.; Liu, Z.Q. Long-term high-fat diet induces hippocampal microvascular insulin resistance and cognitive dysfunction. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E89–E97. [Google Scholar] [CrossRef]
- Akhtar, D.H.; Iqbal, U.; Vazquez-Montesino, L.M.; Dennis, B.B.; Ahmed, A. Pathogenesis of insulin resistance and atherogenic dyslipidemia in nonalcoholic fatty liver disease. J. Clin. Transl. Hepatol. 2019, 7, 362–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Zhong, F.W.; Chen, Z.L.; Li, G.X.; Zhu, Q. Polygonatum sibiricum polysaccharides protect against obesity and non-alcoholic fatty liver disease in rats fed a high-fat diet. Food Sci. Human Wellness 2022, 11, 1045–1052. [Google Scholar] [CrossRef]
- Carr, R.M.; Oranu, A.; Khungar, V. Nonalcoholic fatty liver disease pathophysiology and management. Gastroenterol. Clin. N. Am. 2016, 45, 639. [Google Scholar] [CrossRef] [Green Version]
- Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev. 2018, 2018, 9547613. [Google Scholar] [CrossRef]
- Huang, H.R.; Chen, J.J.; Chen, Y.; Xie, J.H.; Xue, P.Y.; Ao, T.X.; Chang, X.X.; Hu, X.B.; Yu, Q. Metabonomics combined with 16s rrna sequencing to elucidate the hypoglycemic effect of dietary fiber from tea residues. Food Res. Int. 2022, 155, 111122. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Logan, A.C.; Jacka, F.N.; Prescott, S.L. Immune-microbiota interactions: Dysbiosis as a global health issue. Curr. Allergy Asthma Rep. 2016, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhao, Y.F.; Zhang, M.H.; Pang, X.Y.; Xu, J.; Kang, C.Y.; Li, M.; Zhang, C.H.; Zhang, Z.G.; Zhang, Y.F.; et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 2012, 7, e0042529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, J.H.; Mao, G.Z.; Wu, T.T.; Lin, D.B.; Hu, Y.Q.; Ye, X.Q.; Tian, D.; Chai, W.G.; Linhardt, R.J.; et al. Fucosylated chondroitin sulfate from isostichopus badionotus alleviates metabolic syndromes and gut microbiota dysbiosis induced by high-fat and high-fructose diet. Int. J. Biol. Macromol. 2019, 124, 377–388. [Google Scholar] [CrossRef]
- Zheng, J.P.; Cheng, G.; Li, Q.Y.; Jiao, S.M.; Feng, C.; Zhao, X.M.; Yin, H.; Du, Y.G.; Liu, H.T. Chitin oligosaccharide modulates gut microbiota and attenuates high-fat-diet-induced metabolic syndrome in mice. Mar. Drugs 2018, 16, 66. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Sheng, L.L.; Zhong, J.; Tao, X.; Zhu, W.Z.; Ma, J.L.; Yan, J.; Zhao, A.H.; Zheng, X.J.; Wu, G.S.; et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes 2021, 13, 1930874. [Google Scholar] [CrossRef]
- Petersen, C.; Bell, R.; Kiag, K.A.; Lee, S.H.; Soto, R.; Ghazaryan, A.; Buhrke, K.; Ekiz, H.A.; Ost, K.S.; Boudina, S.; et al. T cell-mediated regulation of the microbiota protects against obesity. Science 2019, 365, 340. [Google Scholar] [CrossRef]
- Yuan, G.F.; Tan, M.J.; Chen, X. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food Funct. 2021, 12, 7897–7908. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, L.C.; Zhu, M.M.; Yang, B.; Yang, Y.J.; Jia, X.B.; Feng, L. Moutan cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int. J. Biol. Macromol. 2022, 206, 849–860. [Google Scholar] [CrossRef]
- Wei, X.Y.; Tao, J.H.; Xiao, S.W.; Jiang, S.; Shang, E.X.; Zhu, Z.H.; Qian, D.W.; Duan, J.A. Xiexin tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci. Rep. 2018, 8, 3685. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Wu, C.Y.; Yu, J.T.; Luo, J.M.; Peng, X.C. Angelica sinensis polysaccharide improves rheumatoid arthritis by modifying the expression of intestinal cldn5, slit3 and rgs18 through gut microbiota. Int. J. Biol. Macromol. 2022, 209, 153–161. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Lu, Y.; Xiao, Y.; Yuan, L.P.; Hu, D.R.; Hao, Y.; Han, R.X.; Peng, J.R.; Qian, Z.Y. Effects of docetaxel injection and docetaxel micelles on the intestinal barrier and intestinal microbiota. Adv. Sci. 2021, 8, 2101952. [Google Scholar] [CrossRef] [PubMed]
- Chmiela, M.; Karwowska, Z.; Gonciarz, W.; Allushi, B.; Staczek, P. Host pathogen interactions in helicobacter pylori related gastric cancer. World J. Gastroenterol. 2017, 23, 1521–1540. [Google Scholar] [CrossRef]
- Walter, J.; Maldonado-Gómez, M.X.; Martínez, I. To engraft or not to engraft: An ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 2018, 49, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Vinolo, M.; Rodrigues, H.G.; Hatanaka, E.; Sato, F.T.; Sampaio, S.C.; Curi, R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 2011, 22, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Venegas, D.P.; De la Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 1486. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, A.; Cai, C.L.; Kumar, D.; Cai, F.; Fordjour, L.; Ahmad, A.; Valencia, G.; Aranda, J.V.; Beharry, D. Cytokines and toll-like receptor signaling pathways in the terminal ileum of hypoxic/hyperoxic neonatal rats: Benefits of probiotics supplementation. Am. J. Transl. Res. 2012, 4, 187–197. [Google Scholar]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef]
- Polsinelli, V.B.; Marteau, L.; Shah, S.J. The role of splanchnic congestion and the intestinal microenvironment in the pathogenesis of advanced heart failure. Curr. Opin. Support. Palliat. Care 2019, 13, 24–30. [Google Scholar] [CrossRef]
- Mccleary, B.V.; Devries, J.W.; Rader, J.I.; Cohen, G.; Prosky, L.; Mugford, D.C.; Champ, M.; Okuma, K. Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. J. AOAC Int. 2010, 93, 221–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.M.; Scholte, J.; Borewicz, K.; van den Bogert, B.; Smidt, H.; Scheurink, A.; Gruppen, H.; Schols, H.A. Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Mol. Nutr. Food Res. 2016, 60, 2256–2266. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, N.; Li, Y.; Zhang, Y.; Wang, H.; Song, J.; Yu, L.; Wu, C. Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice. Molecules 2023, 28, 4949. https://doi.org/10.3390/molecules28134949
Geng N, Li Y, Zhang Y, Wang H, Song J, Yu L, Wu C. Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice. Molecules. 2023; 28(13):4949. https://doi.org/10.3390/molecules28134949
Chicago/Turabian StyleGeng, Ningning, Ying Li, Yan Zhang, Hongjuan Wang, Jiangfeng Song, Lijun Yu, and Caie Wu. 2023. "Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice" Molecules 28, no. 13: 4949. https://doi.org/10.3390/molecules28134949
APA StyleGeng, N., Li, Y., Zhang, Y., Wang, H., Song, J., Yu, L., & Wu, C. (2023). Effects of Modified Dietary Fiber from Fresh Corn Bracts on Obesity and Intestinal Microbiota in High-Fat-Diet Mice. Molecules, 28(13), 4949. https://doi.org/10.3390/molecules28134949