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Abstract: Antioxidants play a significant role in human health, protecting against a variety of diseases.
Therefore, the development of products with antioxidant activity is becoming increasingly prominent
in the human lifestyle. New antioxidant drinks containing different percentages of pomegranate,
blackberries, red grapes, and aronia have been designed, developed, and manufactured by a local
industry. The comprehensive characterization of the drinks’ constituents has been deemed necessary
to evaluate their bioactivity. Thus, LC-qTOFMS has been selected, due to its sensitivity and structure
identification capability. Both data-dependent and -independent acquisition modes have been utilized.
The data have been treated according to a novel, newly designed workflow based on MS-DIAL and
MZmine for suspect, as well as target screening. The classical MS-DIAL workflow has been modified
to perform suspect and target screening in an automatic way. Furthermore, a novel methodology
based on a compiled bioactivity-driven suspect list was developed and expanded with combinatorial
enumeration to include metabolism products of the highlighted metabolites. Compounds belonging
to ontologies with possible antioxidant capacity have been identified, such as flavonoids, amino acids,
and fatty acids, which could be beneficial to human health, revealing the importance of the produced
drinks as well as the efficacy of the new in-house developed workflow.

Keywords: antioxidant drinks; novel workflows; HRMS; pomegranate; suspect screening methodology

1. Introduction

Pomegranate (Punica granatum L.), classified as a berry, is a member of the Pinaceae
family and has been cultivated in the Mediterranean region (Turkey, Egypt, Tunisia, and
Spain), as well as in India and Iran [1]. Pomegranate has been highly valued, due to its
nutritional and medicinal properties, as well as its biological and free radical scavenging
activities, which are attributed to the antioxidant phytochemicals derived from various
parts of the plant (peel, seed, leaf, and flower) [2–4]. Pomegranate juice is a rich source of
polyphenols, fructose, carbohydrates, glucose, and organic acids (i.e., ascorbic acid, citric
acid, fumaric acid, and malic acid), while it contains several amino acids, including proline,
methionine, and valine. Additionally, the presence of tannins and flavonoids, as the main
type of polyphenols, indicates the pomegranate’s pharmacological potential, due to their
antioxidant activity [1]. Ellagic acid, a metabolized form of ellagitannin is a powerful
antioxidant, and it has an extensive applicability in plastic surgery, preserving the viability
of skin flaps. Furthermore, anthocyanins (water-soluble pigments), flavan-3-ols, and fla-
vanols are some of the flavonoids found in pomegranate related to plausible health benefits.
Catechins, which can be found in both the juice and the peel of pomegranate, are vital to
the biosynthesis of anthocyanins and have antioxidant and anti-inflammatory properties.
It should be noted that all the flavonoids that appear in pomegranate have antioxidant
capacity and contribute to the indirect suppression of inflammatory indicators, such as
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tumor necrosis factor-alpha (TNFα) [1]. It has been demonstrated that pomegranate fruits
can be utilized for the treatment of human prostate cancer by inhibiting cell development
and inducing apoptosis.

Aronia melanocarpa, commonly referred as “aronia,” is a Rosaceae family plant that is
native to eastern North America and has lately also been grown in Europe [5]. Aronia
extracts have demonstrated antioxidant, antidiabetic, and anti-inflammatory activity [6].
Morus nigra, which belongs to the Moraceae family, is also known as black mulberry [7],
and is cultivated in India and China, as well in the Mediterranean region in Greece and
Turkey [8]. A number of biological activities, including antidiabetic, antioxidant, anti-
inflammatory, and antihyperlipidemic, have recently been linked to mulberry fruit [9]. Vitis
vinifera L. (red grapes), a member of Vitaceae family [10], has traditionally been located
from the South Caucasus toward the Mediterranean basin [11], whereas more recently
new countries (United States, Australia, China) have been involved in the cultivation of
the species [12]. Grapes are known to possess a wide array of biological activities such as
antioxidant, antimicrobial, anti-inflammatory, and anti-cancer properties [13].

Pomegranate’s beneficial effect on human health has resulted in an increasing growth
in its market share value. Therefore, the global pomegranate market is expected to be worth
248.4 million USD in 2022 and 338.6 million USD by 2028, with a CAGR of 5.3% during
the review period [14]. The pomegranate-based juices in this study were created with the
addition of secondary ingredients: blackberries, red grapes, and aronia. The selection of
these ingredients, which could provide added value to the final drink, was based on their
market availability, contribution to the antioxidant capacity of the juice, and effect on the
flavor and inner flavor of the juice. There is an increasing trend to introduce these kinds of
pomegranate-based drinks to the market.

Regarding the evaluation of the drinks’ value and the determination of their antiox-
idant capacity, two trends appear in the literature. The first approach is related to the
application of conventional techniques (i.e., DPPH, TEAC assay, Folin–Ciocalteu method)
and the second one is linked to the determination of the antioxidant content of juice in terms
of molecular species. The first approach is prone to various limitations, due to the nature of
the matrix, with the most common being the interference from the background. To begin
with, the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay is a spectrometric method for deter-
mining antioxidants in solid or liquid matrices [15] via measuring substances’ ability to act
as free radical scavengers or hydrogen donors. This method can be employed specifically
for the estimation of the overall antioxidant capacity and the free radical scavenging activity
of fruit and vegetable juices [16]. Furthermore, the Trolox Equivalent Antioxidant Capacity
Assay (TEAC) measures spectrophotometrically the reduction of the radical cation ABTS+
(2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) by antioxidant compounds [17], and
it is commonly used in scientific research for analyzing foods’ and beverages’ antioxidant
capacity [18]. Another frequently employed method for the determination of antioxidant
capacity is the spectrophotometric method using the Folin–Ciocalteu reagent [19].

An alternative approach is the use of chromatography-based techniques for the deter-
mination of individual analytes that are connected to antioxidant activity. This approach
ascertains the selectivity and credibility of the obtained results. High-pressure liquid
chromatography with a photodiode array detector (HPLC-PDA) was used for the deter-
mination of phenolic acids in juices [2]. In order to further enhance the sensitivity and
specificity of the acquired results, the recent trend is towards mass spectrometry-based
methodologies, i.e., performing LC-MS/MS methods for the determination of organic
acids [20], and HPLC/PDA/MS2 for the quantification of punicalagin, ellagic acids, and an-
thocyanidins [21]. A more comprehensive approach for obtaining a more holistic picture of
the antioxidant landscape can be followed through the implementation of high-resolution
(HR) techniques, i.e., conducting an analysis of anthocyanins and phenolic compounds via
UHPLC-Orbitrap-MS [22,23], or an analysis of anthocyanins and other phenolic compounds
(phenolic acids, ellagitannins, and flavonoids) in pomegranate juices via HPLC−DAD−ESI-
qTOF-MS [24]. Additionally, an HRMS targeted and untargeted analysis in conjunction
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with chemometrics can be used alongside bioactive compound determination, as well
as a reliable tool for pomegranate adulteration [25]. A wide array of various mass spec-
trometric analyzers has been employed for the quantitative determination of the mass
spectrometry-based antioxidant capacity utilizing quadrupole based techniques (linear
ion trap [26], and triple quadrupole based on MRM transitions [27]), as well as HRMS
approaches, such as LC- qTOF-MS [28] and LC-orbitrap MS [29] for novel compound iden-
tification and structure annotation. Additionally, pomegranates’ metabolite profiling and
the implementation of chemometrics has been conducted via nuclear magnetic resonance
(NMR) spectroscopy [30].

The requirement for developing novel workflows capable of handling the massive
amount of data derived from HRMS has emerged. Vendor-specific and open access software
have been utilized to interpret the acquired data; however, the scientific community has
noted the significance of employing and evaluating open-source software due to the variety
of algorithms, the files’ compatibility between vendors, the codes’ transparency, the large
community of software developers, and the capacity for their modification according
to various licensing schemes. Nevertheless, there are still issues using non-targeted MS
data derived either from data independent acquisition (DIA-bbCID) or data dependent
acquisition (DDA-automs). DDA and DIA modes have been employed in conjunction, to
maximize the benefits of each mode and ensure the mining of the largest features’ number.
On the one hand, DDA is the most used strategy for compound elucidation, due to its
cleaner and more easily interpretable spectra [31]. On the other hand, since DIA detects
and fragments all ions in a sample, it empowers more thorough and repeatable analysis by
collecting data within a wide range of known and unknown ions, while the fragmentation
spectra are more complicated to interpret [32].

In this project innovative antioxidant pomegranate-based juices, that have been pro-
duced by the local vendor, were analyzed, which serves two supplementary purposes.
The first aim is the molecular characterization of the drinks per se in terms of their quan-
titative and qualitative constitution. The second aim is the development of an advanced
mass spectrometry novel workflow for the comprehensive characterization of the drinks
in terms of the identification of compounds that demonstrate antioxidant activity. This
has been accomplished via the compilation of an extensive suspect list of antioxidants
for the characterization of bioactivity and the assembling of a literature-based suspect
list for the usual comprehensive characterization of bioactivity. It is noteworthy that the
aforementioned bioactivity-based characterization is a novel approach aiming towards a
fast and efficient exploitation of the chemical domain. A new role for the combined suspect
lists as a searchable database has been highlighted as having the potential for automated
suspect screening and increasing the credibility of the identification results. Therefore, the
bioactive-based and literature-based characterization of foods and beverages may pave the
way for more comprehensive identification, while the utilization of open-source software
provides an alternative yet efficient tool for the scientific community.

2. Results
2.1. Suspect Screening of the Juice Employing Different Workflows—Qualitative Results

In total, 29 compounds were identified in all the investigated juices, employing the
suspect screening methodology to reach different identification confidence levels depending
on the available information. The levels of identification were based on the criteria set in
the scientific work of Schymanski et al. [33]. Specifically, 17 compounds were identified at
level 1, 10 compounds were identified at level 2a, one compound was identified at level 2b,
and one compound was identified at level 3.

The identified compounds belonged to several categories with potential beneficial
effects on human health. Specifically, eight organic acids (citric acid, malic acid, gallic acid,
gentistic acid, chlorogenic acid, pyroglutamic acid, fumaric acid, and quinic acid), four
fatty acids (linoleic acid, oleic acid, palmitic acid, and linolenic acid), three amino acids
(phenylalanine, leucine, and norvaline) and one organic acid ester (ethyl gallate) were iden-
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tified. Additionally, nine flavonoids and the metabolites thereof (ellagic acid, ellagic acid
glucoside, quercetin, rutin, apigenin, 2-Phenylethyl beta-Dglucopyranoside, kaempferol,
phlorizin, and verbacoside) and two sugars (fructose and glucosamine) were identified.

All the compounds identified are tabulated in Table 1, where the compound name,
the molecular formula, the experimental and the predicted retention time, the theoretical
and experimental m/z value of the precursor ion, and the ionization mode are provided.
Additionally, the five most intense MS/MS fragments (if they existed) of the sample
and their corresponding spectral data obtained either from the spectral library or the
reference standards are presented. The cosine similarity scores of the investigated spectra
for all samples, as acquired from MS-DIAL, are compared and the corresponding levels of
identification are also presented. The samples are coded as 80%, 90%, and 100% based on
the percentage of pomegranate, which is the basic ingredient.

2.2. Quantitative Analysis

The compounds, for which the analytical standards were available in the laboratory,
were quantified using calibration curves of reference standards. Specifically, the concentra-
tions of five organic acids (abscisic acid, chlorogenic acid, citric acid, gallic acid, and quinic
acid), two flavonoids (quercetin and galangin), one flavonoid glucoside (verbascoside),
and phenol glucoside (phlorizin) were determined. The compounds catechin, gentistic
acid, epicatechin, genistein, p-coumaric, and pinobanksin were identified through target
screening; however, their concentrations were below the limit of quantification (LOQ),
defined as 0.5 mg/kg. The abovementioned concentrations with their corresponding stan-
dard deviation (SD) for the three investigated samples are presented. Additionally, the
corresponding calibration equations in the form of y = (a ± Sa)x + (b ± Sb), as well as their
determination coefficients are tabulated in Table 2.
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Table 1. Compounds identified through suspect screening in the investigated juices.

Compound Name Chemical
Formula

Exp. tR (min)
(Reference
Standard) a

Pred.
tR (min)

Application
Domain b

Exp.
m/z c

Theor.
m/z

ESI
Mode

MS/MS Explained
Fragments d

Reference
MS/MS Spectra e

Total Score Level of
Identification/Database

Reference i80% f 90% g 100% h

Citric acid C6H8O7 1.2 (1.2) a 1.1 Box 1 191.0213 191.0197 −ESI

57.0353 57.0354

0.76 0.75 0.76 187.0092 87.0089
111.0094 111.0088
191.0198 191.0199

Malic acid C4H6O5 1.2 (1.1) a 1.0 Box 1 133.0131 133.0143 −ESI
71.0144 71.0139

0.69 0.72 0.65 1115.0047 115.0022
133.0127 133.0138

Fructose C6H12O6 1.4 (1.3) a 1.7 Box 1 179.05754 179.0561 −ESI
89.0224 89.0246

0.66 0.64 0.69 1
179.0560 179.0558

Gallic acid C7H6O5 1.6 (1.5) a 2.9 Box 2 169.0151 169.0142 −ESI
69.0354 69.0346

0.66 0.66 0.76 197.0271 97.0295
125.0245 125.0244

Gentisic acid C7H6O4 2.2 (2.4) a 3.0 Box 1 153.0199 153.0193 −ESI
108.0191 108.0217

0.70 0.70 0.76 1
109.0289 109.0295

Chlorogenic acid C16H18O9 2.9 (2.9) a 3.5 Box 1 353.0896 353.0878 −ESI

161.0264 161.0233

0.74 0.76 0.76 1173.0479 173.0447
191.0557 191.0555
192.0564 192.0589

Fumaric acid C4H4O4 1.3 1.9 Box 1 115.0035 115.0037 −ESI
71.0136 71.0136

0.68 0.71 0.74 2a
MzCloud no 127472.9928 72.9925

115.0035 115.0040

Quinic acid C7H12O6 1.3 (1.3) a 1.2 Box 1 191.0564 191.0561 −ESI
85.0291 85.0299

0.62 0.64 0.69 1
191.0564 191.0558

Phenylalanine C9H11NO2 3.0 4.2 Box 2 164.0726 164.0717 −ESI
72.0091 72.0099

0.63 0.66 0.61 1147.0447 147.0448
164.0728 164.0712

Leucine C6H13NO2 2.8 1.8 Box 1 132.1020 132.1019 +ESI

58.0654 58.0634

0.69 0.68 0.69 1
69.0697 69.0686
86.0964 86.0956
87.0989 87.0987

132.1019 132.1013
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Table 1. Cont.

Compound Name Chemical
Formula

Exp. tR (min)
(Reference
Standard) a

Pred.
tR (min)

Application
Domain b

Exp.
m/z c

Theor.
m/z

ESI
Mode

MS/MS Explained
Fragments d

Reference
MS/MS Spectra e

Total Score Level of
Identification/Database

Reference i80% f 90% g 100% h

Norvaline C5H11NO2 4.5 1.2 Box 3 118.0646 118.0863 +ESI
65.03932 65.036

0.71 0.73 0.72
2a

MonA ID:
FiehnHILIC002191

117.0584 117.057
118.0658 118.062

Quercetin C15H10O7 7.3 (7.3) a 7.0 Box 1 301.0361 301.0354 −ESI
151.0042 151.0037

0.68 0.61 0.70 1169.0170 169.0135
179.0004 178.9996

Rutin C27H30O16 5.7 (5.7) a 6.2 Box 1 609.1472 609.1461 −ESI
300.028 300.0256

0.62 0.63 0.68 1
301.0312 301.0366

Apigenin C15H10O5 8.3 (7.9) a 7.6 Box 1 269.0460 269.0455 −ESI
117.0359 117.0341

0.61 0.66 0.61 1151.0077 151.0029
269.0463 269.0459

Kaempferol C15H10O6 7.6 7.2 Box 1 285.042 285.0405 −ESI

133.0305 133.0297

0.76 0.78 0.71
2a

GNPS ID:
VF-NPL-QEHF014174

151.0030 151.0039
175.0386 175.0388
285.0421 285.0400

Verbascoside C29H36O15 5.0 (4.8) a 8.4 Box 4 623.1993 623.1981 −ESI
161.0319 161.0244

0.62 0.69 0.68 1
162.0263 162.0278

Phloridzin C21H24O10 5.9 (5.8) a 8.2 Box 2 435.1291 435.1297 −ESI 167.0362 167.0340 0.66 0.67 0.75 1

Ethyl gallate C9H10O5 4.9 5.0 Box 1 197.0473 197.0455 −ESI

123.0061 123.0086

0.62 0.63 0.62 3
FoodB ID:FDB012004

140.0102 140.0118
168.0066 168.0074
169.0149 169.0146
197.0460 197.0460

Linoleic acid C18H32O2 13.5 (13.5) a 12.9 Box 1 279.2336 279.2330 −ESI
279.2327 279.2328

0.61 0.60 0.70 1280.2345 280.2333

Oleic acid C18H34O2 14.0 (14.0) a 13.3 Box 1 281.2486 281.2486 −ESI
281.2484 281.2468

0.69 069 0.74 1282.2526 282.2508

Palmitic acid C16H32O2 13.8 (13.8) a 13.0 Box 1 255.2334 255.2330 −ESI
255.2329 255.2327

0.84 0.83 0.86 1256.2366 256.2364
257.2349 257.2395

Linolenic acid C18H30O2 13.0 12.4 Box 1 277.2170 277.2173 −ESI 277.2198 277.2180 0.91 0.92 0.95
2a

MoNA ID:
MetaboBASE0976
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Table 1. Cont.

Compound Name Chemical
Formula

Exp. tR (min)
(Reference
Standard) a

Pred.
tR (min)

Application
Domain b

Exp.
m/z c

Theor.
m/z

ESI
Mode

MS/MS Explained
Fragments d

Reference
MS/MS Spectra e

Total Score Level of
Identification/Database

Reference i80% f 90% g 100% h

Ellagic acid C14H6O8 4.6 4.7 Box 1 300.9993 300.9990 −ESI

201.0183 201.0200

0.77 0.74 0.80
2a

MoNA
ID:FiehnHILIC001170

229.0143 229.0144
283.9960 283.9950
299.9924 299.9900
300.9992 300.9994

Glucosamine * C6H13NO5 1.8 1.4 Box1 162.0764 162.0760 +ESI

60.0450 60.0443

0.94 0.97 0.93
2a

GNPS ID:
CCMSLIB00005464276

72.0450 72.0435
84.0450 84.0445
85.0290 85.0284

162.0760 162.0744

2-Phenylethyl
beta-D-

glucopyranoside *
C14H20O6 6.5 6.2 Box 1 302.1616 302.1600 +ESI

81.0337 81.0330

0.89 0.92 0.94
2a

GNPS ID:
CCMSLIB00000854907

85.0287 85.0270
97.0289 97.0280

105.0707 105.0710
127.0340 127.0400

Pyroglutamic acid C5H7NO3 2.4 2.1 Box1 130.0511 130.0507 +ESI

84.0455 84.0460

0.94 0.93 0.91 2a
MassBank ID: PR311148

85.0483 85.0450
129.0190 129.0220
130.0508 130.0510

4-
Hydroxyquinoline C9H7NO 4.5 6.1 Box 2 146.0606 146.0600 +ESI

77.0389 77.03700

0.93 0.97 0.99
2a

RIKEN PLaSMA ID:
RIKENPlaSMA000824

91.0541 91.0560
101.0395 101.0440
146.0598 146.0610

Dihydrozeatin C10H15N5O 5.8 4.31 Box 2 222.1351 222.1349 +ESI

69.0699 69.0710

0.91 0.88 0.92
2a

MoNA ID:
FiehnHILIC000308

136.0615 136.0620
148.0626 148.0620
204.1227 204.1250
222.1347 222.1349

Ellagic acid
glucoside C20H16O13 3.7 4.5 Box 1 463.0514 463.0518 −ESI 300.9976 2b diagnostic ion

Using Smilib

a retention time of the reference standard; b Development and Prediction of Retention Time Indices, available at http://rti.chem.uoa.gr (accessed on 02/03/2023); c experimental m/z
value with error ± 0.005 Da, [M + H]+ for +ESI and [M − H]− for −ESI (* with the exception of glucosamine, whose m/z value corresponds to [M-H2O + H]+, and 2-phenylethyl
beta-D-glucopyranoside whose m/z value corresponds to [M + NH4]+ ); d top-five most intense explained peaks (if they existed); e MS/ MS fragments of the spectra reference standard or
mass spectral library; f 80% pomegranate; g 90% pomegranate; h 100% pomegranate; i for identification level 2a the database entry is referenced.

http://rti.chem.uoa.gr
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Table 2. Quantification results.

Analyte

Concentration
(mg/kg) ± SD

(n = 3)

Concentration
(mg/kg) ± SD

(n = 3)

Concentration
(mg/kg) ± SD

(n = 3)
Equation of the External Calibration

Curve y = (a ± Sa)x + (b ± Sb)
Determination
Coefficient R2

80% a 90% b 100% c

Abscisic acid 0.28 ± 0.02 <LOQ <LOQ y = (29,407± 1108)x + (13,932 ± 5655) 0.994

Chlorogenic acid 4.07 ± 0.33 1.35 ± 0.08 0.52 ± 0.05 y = (299,437 ± 17,948)x
+ (236,799 ± 91,609) 0.98

Citric acid 203 ± 18.9 204 ± 21.2 199 ± 18.4 y = (114,212 ± 3871)x − (27,802 ± 19,759) 0.991

Galangin 1.41 ± 0.86 0.65 ± 0.05 <LOQ y = (179,124 ± 11,301)x − (9729 ± 57,678) 0.98

Gallic acid 5.72 ± 0.41 4.57 ± 0.41 5.11 ± 0.47 y = (46,623 ± 3535)x + (57,556 ± 18,043) 0.98

Phloridzin 1.01 ± 0.09 0.65 ± 0.05 0.65 ± 0.06 y = (304,319 ± 25,920)x
+ (287,534 ± 132,294) 0.97

Quinic acid 0.75 ± 0.09 0.38 ± 0.04 <LOQ y = (121,371 ± 1970)x + (431,844 ± 10,055) 0.993

Verbascoside 0.87 ± 0.12 0.51 ± 0.05 <LOQ y = (58,119 ± 1053)x − (14,120 ± 5376) 0.996

Quercetin 13.1 ± 0.45 11.6 ± 0.56 11 ± 0.48 y = (71,193 ± 4859)x + (51,014 ± 24,802) 0.992

a 80% pomegranate; b 90% pomegranate; c 100% pomegranate.

3. Discussion
3.1. Development of a Novel Workflow

The necessity for the development of a novel workflow that combines targeted and sus-
pect screening with the existing DDA and DIA fragmentation methodologies has emerged
recently. In the current data treatment software landscape, only MS-DIAL has the appro-
priate algorithms to perform both DDA and DIA (MS2Dec, CorrDec) analyses. On the
other hand, MS-DIAL is not designed to perform target screening, whereas MZmine [34] is
capable of performing target screening based on MS1 spectra and annotation based only
on DDA fragmentation. Therefore, novel workflows that combined these two pieces of
software were designed to overcome these issues.

The DDA and DIA approaches, producing the fragmentation of the molecular species,
differ essentially to the precursor selection. Thus, in DDA, the precursor ion is selected,
followed by fragmentation, whereas in DIA, no precursor ion is selected, instead, all ions
are fragmented. Therefore, only DDA produces MS/MS spectra, while DIA generates
MS/MS-like fragmentation but in MS1 spectra. Therefore, for the rest of the manuscript the
term “fragmentation-derived spectra” will be used to describe the fragmentation pattern
derived from either DDA (MS/MS) or DIA (high collision energy).

3.1.1. Compilation of Suspect Lists

With the aim of deeply mining all the potential information relating to antioxidant
contribution, a novel idea was conceived called bioactivity-driven interrogation. Therefore,
focusing on a desirable property of the final product, substances of a specified activity were
highlighted, bypassing the fuzzy information concerning the whole metabolic landscape. A
new list that filtered the specific biological activity of the chemical space, i.e., emphasizing
the antioxidant capacity (the antioxidant active compounds) in the current case, has been
assembled. The compiled list has been entitled the “Bioactivity Driven Suspect List (BDSL)”.

Taking into consideration the metabolism of the most abundant antioxidant com-
pounds of the BDSL, another list was compiled using combinatorial enumeration in order
to predict products from potential metabolic pathways, such as glucolysation and methy-
lation. This assembled list, called the “Virtual Metabolite Suspect List (VMSL)”, was
generated using Smilib v2.0 [35,36], utilizing scaffolds, linkers, and building blocks accord-
ing to the software. The scaffolds were the already identified natural products (NPs) of the
BDSL, while the building blocks were one or two glucose units and/or a methyl group.
Additionally, to retain the parent compounds, hydrogen was also selected as a building
block. It should be noted that the metabolites of the compounds thereof could potentially
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have enhanced biological activity compared to their initial non-metabolized counterparts
(i.e., quercetin may have a similar, or even enhanced, antioxidant capacity to quercetin
glucosides, due to the latters’ different hydrophilicity). Alongside the aforementioned
suspect lists, a literature-based list (LBL) has also been compiled.

3.1.2. MZmine-Based Workflow (MS1 Driven)

MZmine has a targeted feature detection module, which can interrogate the MS1
experiment using the information from a suspect list and construct the respective extracted
ion chromatograms (EICs) as a feature list. These chromatographic peaks were prioritized
based on the area under curve. It should be noted that the antioxidants need to be present
in high quantities in order to exert their role. Thus, the most abundant antioxidants
(MAA) were selected and used as input to construct a searchable database. This list will be
utilized as a part of the MS-DIAL workflow. Therefore, these two lists also function in a
confirmatory way as the simultaneous presence of a metabolite enhances the confidence.
Thus, six common compounds were identified from both lists (VMSL and LBL): quercetin,
kaempferol, apigenin, gentisic acid, gallic acid, and chlorogenic acid.

3.1.3. MS-DIAL-Based Workflow (Fragmentation Driven)

MS-DIAL is deemed to be a valuable solution in order to exploit the DIA results, as
well as DDA spectra. The compounds are annotated offline by comparing the DDA or
DIA deconvoluted spectra to the corresponding ones from the samples. MS-DIAL searches
against already assembled local libraries (i.e., the general list ESI (+/−)-MS/MS assembled
from authentic standards, which is provided from the software’s download page). A novel
idea has been conceived about the replacement of the abovementioned library with a
narrowed version, encompassing only specific compounds of interest (i.e., a target/suspect
version). In contrast to the untargeted mode, for which MS-DIAL has originally been used,
this novel approach allows the software to function in the target/suspect mode. Therefore,
this flexibility allows the construction of custom-made libraries, providing the capacity to
narrow down the number of plausible candidates.

MSP files (editable with a simple text editor i.e., notepad, work pad etc.) consist of
entries that include the candidates’ names, the molecular formula, the exact mass, the
theoretical retention time, and the MS/MS fragments. Such files are publicly available
from various sources, such as the GNPS, MS-DIAL, etc., webpages. These MSP files were
adjusted to focus on the analytes of interest, thus serving as a database, which is essentially
a suspect list. This approach offers the additional advantage of a more complete view
for spectra comparison. Thus, the fragments included in this database correspond to
experimental spectra and not biased/curated fragments as happens commonly in the
compilation of suspect lists. These files are compatible with the MS-DIAL software, which
offers the potential for processing both DDA and DIA data. Two lists have been generated
(LBL and VMSL) and imported to MS-DIAL. The overall chemical space was searched
with the aid of these two suspect lists, aiming to find the bioactive content in terms of
antioxidants and to chemically characterize the final drinks in a comprehensive way.

3.2. The Antioxidant Activity of the Investigated Juices

Pomegranate, aronia, red grapes, and black berries, which are rich in antioxidants,
were the ingredients in the juices generated. Pomegranate juice, which was the basic
ingredient, is a rich source of antioxidants belonging to a variety of classes, including antho-
cyanins, ellagitannins, vitamin C [37], and citric acid [38]. Additionally, the ellagitannins’
metabolized by-products, known as urolithins, have potent antioxidant properties [37].
Pomegranate juice demonstrated the strongest antioxidant activity in comparison to other
polyphenol-rich juices and drinks—such as apple, berry, concord grape, and orange juices,
red wines, and iced tea—being nearly 20% higher than the abovementioned juices [18].
Aronia, which is added to the final product in a small percentage, has the highest an-
tioxidant capacity among berries, as observed for aronia berries [39], in line with aronia
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juices, which ranked high, due to their polyphenol content [18]. The antioxidant capacity
of the aronia plant is due to the presence of anthocyanins and cyanidin glycosides forms
which mainly existed with glucoside moieties of 3-galactoside, 3-glucoside, 3-arabinoside,
and 3-xyloside [40]. The antioxidant capacity in humans is linked to its action against
the oxidation of red blood cells [41]. Grape juices, which participate in the final juice as
a secondary ingredient, are very well-known antioxidant drinks, containing resveratrol,
which is one of the most potent antioxidants and is found in grape skin and seeds. Further-
more, grapes contain high amounts of highly antioxidant substances, such as (+)-catechin,
(−)-epicatechin, and procyanidins [42]. Grape juice has exhibited potent health benefits
due to its antioxidant capacity, such as improved protection against blood LDL cholesterol
oxidation [43], protecting against oxidative DNA damage, and inhibiting the production of
oxidative damage products, such as 8-hydroxy-20 -deoxyguanosine (8-OHdG) [44]. Finally,
blackberries, which are also used as a secondary ingredient in the juice produced, have
a high antioxidant capacity, due to their high anthocyanin and ellagitannin content, as
well as the presence of other phenolic compounds [45]. Blackberries additionally exhibit
anti-inflammatory properties and thought to be a promising source of neuroprotective
active compounds for age-related diseases due to their protective activity against oxidative
damage [46,47].

3.3. Comparative Analysis of Antioxidant Juices

As the main aim of this endeavor was the development of a drink with enhanced an-
tioxidant activity, various combinations of raw materials in different percentages (i.e., 3.3%
and 6.6% from other juices) have been used. For clarification purposes, it should be noted
that the secondary ingredients used were the juices of aronia, blackberries and red grapes.
The contribution of the quantity for the selected antioxidants has been studied. Generally,
three patterns have been observed based either on the targeted results or the corresponding
peak areas (used for the substances for which reference standards were not available). An
increasing trend of the investigated antioxidants when the percentage of other juices was
higher (i.e., quercetin), showed either an opposite effect (i.e., ethyl gallate) or no effect
(i.e., fructose). Thus, in the case of ethyl gallate, the drinks containing a higher percentage
of the secondary ingredients contain lower amounts of this substance compared to the pure
pomegranate drink. On the other hand, the amount of quercetin in juices (containing 80 and
90% pomegranate) is higher. Finally, the same amount of fructose has been determined in
all three analyzed juices. This is depicted in Figure 1. No discrepancies in these patterns
were noticed, which validates the results of the analysis.
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The compounds quinic acid, kaempferol, quercetin, chlorogenic acid, rutin, and verba-
coside were found to be higher in the juice supplemented with 6.66 % of each secondary
raw material. Their elevated quantity is connected to the enhanced antioxidant activity.

3.4. Beneficial Role of the Identified Compound in Human Health

One prevalent criterion for the selection and the final percentage contribution of each
ingredient in the produced drink is their antioxidant capacity in terms of the existence
and content of bioactive substances. Hence, the presence of the antioxidants should
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be adequately high, as their activity is not excreted by the interaction of the substance
with a pharmacological target/receptor. The obtained results revealed the presence of
antioxidant compounds belonging to several categories (organic acids, fatty acids, amino
acids, flavonoids, metabolites, etc.). The beneficial effect of the most important compounds
identified is briefly discussed.

Ellagic acid is a well-known antioxidant that has been shown to be effective in pre-
venting neurodegeneration by repairing mitochondrial damage and scavenging free rad-
icals [48]. Quercetin is a powerful antioxidant known for its capacity to prevent tissue
damage [49]. Kaempferol has anticarcinogenic, antioxidant, and anti-inflammatory [50], as
well as antibacterial, antifungal, and antiprotozoal activities [51].

Fumaric acid has anti-inflammatory, neuroprotective, chemo preventive activities [52],
and acts against multiple sclerosis (MS) [53]. Chlorogenic acid has antioxidant antibacterial,
hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-
obesity, antiviral, antimicrobial, and antihypertension activity [54]. Citric acid is a secondary
antioxidant [55], yielding synergistically to enhance primary antioxidants’ activity [56],
while its chelating and acidulating properties are well-known [57].

4. Materials and Methods
4.1. Methodology for the Preparation of Pomegranate-Based Drinks

A thorough literature review was conducted for 16 potential raw materials that might
serve as additional ingredients in the pomegranate-based juice to enhance its nutritional
value. The raw materials investigated were Prunus cerasifera, Vaccinium vitis-idaea L., Prunus
cerasus, Aronia melanocarpa, Citrus, Ribes rubrum, Vitis vinifera L., Hippophae, Actinidia deliciosa,
Opuntia ficus-Indica, Ficus carica, Rubus occidentalis, and Morus alba, Morus nigra.

The Morus nigra (blackberries), Aronia melanocarpa (aronia), and Vitis vinifera L. (red
grapes) were chosen based on their market availability, antioxidant contribution, and effect
on the lingering flavor of the final product.

The juices from aronia, blackberries, and red grapes were acquired from local small
farmers in northern Greece and used without any further processing. The pomegranate
fruits were collected during the October–November period from the region of North Greece.

Then, two mixtures of juices were created, only differing in the proportion of their
ingredients. Specifically, the percentage of pomegranate, blackberries, aronia, and red
grapes were (90, 3.33, 3.33, 3.33, v/v) and (80, 6.66, 6.66, 6.66, v/v), respectively. Their
flavor (sweetness, sour taste, acidity), lingering flavor (sour taste, acidity), as well as color,
fragrance, and texture were assessed. The second mentioned juice had a higher overall
score in the majority of the investigated categories.

The fruits were washed and, after selection, transferred to the appropriate apparatus
to remove the peels and kernels. Afterwards, the juice was transferred into barrels in
refrigerated conditions, and the next day, pasteurization and the hot filling procedure took
place. The manufacturing process of the final product was initialized with the defrosting
of the raw components (juices of pomegranate, red grape, blackberry, and aronia) until
they reached room temperature. Afterwards, the transfer of the juices to tanks and their
combination through stirring followed. Next, a pasteurization step in a tube heat exchanger
at 83 ◦C was performed. Next, hot filling took place at 73 ◦C and the bottles were sealed
using an automatic sealing machine. The juices’ temperature was decreased in a cooling
tunnel. The bottles were kept at a temperature of 20 ◦C and protected from the light. The
temperatures utilized for pasteurization and hot bottle filling during the manufacturing
process are critical for the quality of the juice. The quality of the produced juice was
ascertained using 83 ◦C for pasteurization and 73 ◦C for bottle filling as the optimum
temperatures. Pasteurization temperature testing between 80 ◦C and 85 ◦C and bottle
filling temperature testing between 73 ◦C and 75 ◦C was performed by the local industrial
producer and the described optimized protocol was employed.
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4.2. Reagents and Materials

All the standards and reagents used were of analytical grade (<95%), unless explic-
itly stated. Methanol (MeOH, LC–MS grade) was purchased from Merck (Darmstadt,
Germany), while formic acid 99% and acetic acid were acquired from Fluka (Buchs, Switzer-
land). Ammonium acetate and ammonium formate were obtained from Fisher Scientific
(Geel, Belgium). The ultrapure water (H2O) was provided by a Milli-Q device (Milli-
pore Direct-Q UV, Bedford, MA, USA). Regenerated cellulose syringe filters (RC filters,
pore size 0.2 µm, diameter 15 mm) were acquired from Macherey-Nagel (Düren, Ger-
many). Citric acid, chlorogenic acid, gallic acid, malic acid, quercetin, apigenin, phloridzin,
L-phenylananine, leucine, fatty acid methylesters, D (-) fructose, catechin, epicatechin,
pinobanksin, and p-coumaric acid were obtained from Sigma Aldrich (Stenheim, Germany.
Verbascoside was purchased from HWI pharma services (Rülzheim, Germany), while
quinic acid, genistein, gentistic acid, and galangin were acquired from Supelco (Stenheim,
Germany). Apigenin was purchased from Alfa Aesar (Karlsruhe, Germany).

Stock solutions of the reference standards (1000 mg L−1) were prepared in MeOH
(LC-MS grade) and stored at −20 ◦C in amber glass vials. A solution of 50 mg L−1 was
prepared by the appropriate dilution of the individual stock standard solutions. Following
that, dilutions with a mixture of MeOH: H2O (80:20, v/v) were performed in order to
prepare working solutions with concentrations of 0.5, 1, 2.5, 5, and 10 mg L−1.

4.3. Sample Pre-Treatment for HRMS Analysis

In an eppendorf tube, 200 mg of the drink was weighed followed by the addition
of 200 µL MeOH: H2O (80:20, v/v). The mixture was vortexed vigorously and filtered
through RC syringe filters. The extracts were transferred to 2 mL autosampler glass vials
and injected into the UPLC-QToF-MS system in both ionization modes.

4.4. Instrumentation
UPLC-QToF-MS Instrumentation

The chemical analysis of the pomegranate-based juice was carried out using ultra-
high-pressure liquid chromatography-quadruple time of flight mass spectrometry (UPLC-
QToF-MS) employed with an HPG-3400 pump (Dionex Ultimate 3000 RSLC, Thermo
Fisher Scientific, Dreieich, Germany) coupled to a time-of-flight mass analyzer (Hybrid
Quadrupole time of Flight Matic Bruker Daltonics, Bremen, Germany). The chromato-
graphic column utilized was an Acclaim RSLC 120 C18 column ((2.2 µm, 2.1 × 100 mm2)
Thermo Fisher Scientific, Dreieich, Germany), equipped with a pre-column (Van guard
Acquity UPLC BEH C18 (1.7 µm, 2.1 × 5 mm2, Waters, Ireland)) and its temperature (30 ◦C)
was maintained during the analysis. In the positive ionization mode, the mobile phases
consisted of (a) aq. 5 mM ammonium formate: MeOH (90:10, v/v) acidified with 0.01%
formic acid and (b) 5 mM ammonium formate in MeOH acidified with 0.01% formic acid.
In the negative ionization mode, the mobile phases were (a) aq. 10 mM ammonium acetate:
MeOH (90:10, v/v) and (b) 10 mM ammonium acetate in MeOH. The same gradient elution
program was used in both ionization modes. The gradient program is described in detail
in a previous work by our group [58]. The values selected for the MS parameters were a
capillary voltage of 3500 V, a nebulizer gas pressure of 2 bar (N2), a drying gas flow rate
of 8 L min−1, and a capillary temperature of 200 ◦C. The sodium formate calibrant, which
was prepared in H2O: isopropanol (50:50, v/v), was injected at the beginning of each run to
calibrate the Q-ToF system on a daily basis.

According to the analytical method, the temperature of the LC column as well as the
MS setting were optimized during a large series of experiments, as described in previous
published works from our laboratory [59–66]. The chromatographic method used for the
juice characterization is based on a generic protocol developed in our laboratory using more
than 2000 substances, ascertaining the largest degree of separation. Furthermore, the mass
spectrometric method has also been optimized in order to achieve the analytes’ highest
ionization efficiency. This method is standardized to this kind of analysis for one additional
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reason, i.e., to ensure its compatibility with RTI methodology (http://rti.chem.uoa.gr/,
accessed on 2 March 2023), which was also developed in our laboratory for suspect/
non-targeted analysis.

4.5. Mass Spectrometry Data Analysis
4.5.1. Identification Confidence

The feature annotation was performed according to the Schymanski et al. scheme,
considering the five levels of confidence in identifying a plausible candidate [33]. At level 5,
the only confirmed information is the exact mass of interest, while there is no information
concerning its molecular mass. At identification level 4, the candidate’s molecular formula
is confirmed [67], whereas at the next level (level 3), a tentative identification via the
evaluation of candidates’ MS/MS fragmentation is realized utilizing in silico fragmentation
tools (MetFrag [68] or CFM-ID [69]). Additionally, at this identification level, prioritization
methods, such as a retention time prediction [61] and ionization efficiency estimation [70],
can be used to enhance the identification confidence. In cases in which diagnostic ions
exist, the plausible candidate can reach identification level 2b. Potential candidates can
reach identification level 2a when the corresponding MS/MS spectra are available at
spectral libraries and their similarity score is higher than 0.7. At identification level 1, the
candidates’ reference standards and their MS/MS spectra are available, the retention time
being in accordance.

4.5.2. Data Processing and Identification Workflows
Workflows for the Compilation of Suspect Lists

1. Bioactivity driven suspect list.

A suspect list compiled of 734 antioxidant substances was retrieved using Orange
statistical language (version 3.33.0) through the text mining module using PubChem data.
The molecular formula and the exact mass, alongside the compound name, were deposited
in a csv file, which in turn was uploaded to MZmine 2.53. The raw data were calibrated
and converted to mzxml files using Data Analysis software (Bruker Daltonics, Bremen, Ger-
many) to be compatible with MZmine. The most abundant substances, i.e., those with the
highest chromatographic peak areas, were selected for the evaluation of the drink’s antioxi-
dant capacity. The mass spectral databases used for the assembling of the suspect list were:
MoNa [71], MassBank-Europe [72], METLIN, Human Metabolome Database (HMDB) [73],
and Global Natural Products Social Molecular Networking (GNPS) [74]. The features were
annotated through the comparison of their MS/MS spectra with the corresponding ones
from the spectral libraries or the reference standards in the cases where they were available
in the laboratory. Due to the lack of entries concerning the metabolites derived from the
enumeration process, as well as their MS/MS spectra from the aforementioned libraries,
their fragmentation was estimated based solely on the characteristic diagnostic ions (i.e., for
ellagic glucoside, the fragment of the aglucone part and the corresponding fragment of the
sugar moiety). These pieces of information were also added to the VMSL list.

2. Comprehensive literature-based suspect list.

An exhaustive literature-based, text-mining-defined suspect list was created using the
Orange statistical language. This list encompassed the compounds retrieved from PubChem
that were specified for pomegranate, blackberries, red grapes, and aronia. Subsequently, a
literature-based suspect list [2,20–25,30,75–77] was assembled in the traditional way and
merged with the one obtained from the text mining procedure. This list was used for the
suspect/target screening protocol and as a supporting tool to enhance the confidence of the
acquired results from the BDSL. Furthermore, these two workflows acted synergistically to
provide a holistic picture of the plant’s chemical composition. The workflows employed
for the compilation of the suspect lists are illustrated in Figure 2.

http://rti.chem.uoa.gr/
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Methodology of the Development of Workflow MS1 Driven

The raw data were calibrated, converted to mzxml files, and uploaded to MZmine
2.53. The list of 734 antioxidants in csv form was imported and the items with the highest
peak area derived from the feature list were used as scaffolds for the compilation of VMSL.

Methodology of the Development of Workflow MS2 Driven

The calibrated raw data were converted to abf files (ABF converter) [78], and then
uploaded to the open-source MS-DIAL software (version 4.92) [79]. Both acquisition modes,
DDA and DIA, were examined. DDA was selected for the most abundant compounds,
whereas DIA was utilized for the compounds found in lower quantities. The different
acquisition modes were processed separately.

Based on the compounds mentioned in the literature (LBL), an in-house database was
created and imported into MS-DIAL (MSP file format). Additionally, the VMSL (MSP file
format) was also imported to MS-DIAL. These two MSP files were processed separately
to evaluate the antioxidant content, as well as the compounds discovered through the
comprehensive characterization of the drinks. The online “Retention time prediction tool”
(available at http://rti.chem.uoa.gr/, last accessed 2 March 2023) was utilized to predict
the theoretical retention time of each compound by uploading the canonical SMILES. For
compounds with reference standards not available in the laboratory, the corresponding
spectra were retrieved from public spectral libraries. A procedure blank was also prepared.
The chromatographic peak areas of the procedure blank must be five-fold lower than the
ones in the sample, in order to not be excluded as false positives.

The entire workflow is depicted in Figure 3.

4.5.3. Target Screening Methodology

For the determination of the compound’s concentration, TASQ 1.4 (Bruker Dalton-
ics, Bremen, Germany) was used. Quantification of the analytes was performed for the
compounds with available reference standards which belong in the category of bioactive
compounds, using standard based calibration curves according to a validated method
developed in our laboratory [25]. Satisfactory linearity was achieved for all the analytes
(R2 values ranging from 0.97 to 0.996).

http://rti.chem.uoa.gr/
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5. Conclusions

Pomegranate-based juices with antioxidant capacity have been designed, produced,
and characterized employing novel suspect and target screening methodologies through
open-source software using UPLC-QToF-MS. A total of 29 compounds, including fatty
acids, amino acids, organic acids, and flavonoids and their metabolites were identified
in the drinks via the developed methodologies in both ionization modes. The significant
amount of quercetin, as well as the high concentration of citric acid, sparked a lot of interest,
due to their plausible positive impact on human health.

In this context, novel suspect and target screening methodologies for the elucidation
of drinks’ compounds have been developed to ascertain a faster and less effortful data
treatment process, ensuring results with enhanced credibility. Bioactivity-/combinatorial-
and literature-based lists have been assembled as a searchable database in combination
with the mass spectrometry analysis using open-source software (MZmine, MS-DIAL).
Furthermore, the manuscript poses the idea of compiling lists based on different activities
besides antioxidant activity, as described in the context of this work. Therefore, screening
plant material for other targeted bioactivities, such as anticancer, antibiotic, antidiabetic
activities, etc. is an appealing approach proposed in the framework of this research. It
is noteworthy that the assembled lists are literature-based and, therefore, not dependent
on the availability of reference standard compounds in the respective laboratories, giving
the opportunity to explore the existence of related activity compounds. Extrapolating this
idea, a similar activity-based approach can be applied to different matrices and different
activities, e.g., the toxic activity of biological samples to identify the sources of maladies.
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