
Citation: Bossa, G.V.; May, S.

Bragg–Williams Theory for Particles

with a Size-Modulating Internal

Degree of Freedom. Molecules 2023,

28, 5060. https://doi.org/10.3390/

molecules28135060

Academic Editor: Maofa Ge

Received: 31 May 2023

Revised: 22 June 2023

Accepted: 23 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Bragg–Williams Theory for Particles with a Size-Modulating
Internal Degree of Freedom
Guilherme Volpe Bossa 1,* and Sylvio May 2

1 Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5110566, Chile
2 Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA; sylvio.may@ndsu.edu
* Correspondence: guilherme.volpe@uach.cl

Abstract: The field of soft matter teems with molecules and aggregates of molecules that have internal
size-modulating degrees of freedom. Proteins, peptides, microgels, polymers, micelles, and even
some colloids can exist in multiple—often just two dominating—states with different effective sizes,
where size can refer to the volume or to the cross-sectional area for particles residing on surfaces. The
size-dependence of their accessible states renders the behavior of these particles pressure-sensitive.
The Bragg–Williams model is among the most simple mean-field methods to translate the presence of
inter-particle interactions into an approximate phase diagram. Here, we extend the Bragg–Williams
model to account for the presence of particles that are immersed in a solvent and exist in two distinct
states, one occupying a smaller and the other one a larger size. The basis of the extension is a
lattice–sublattice approximation that we use to host the two size-differing states. Our model includes
particle–solvent interactions that act as an effective surface tension between particles and solvent
and are ignorant of the state in which the particles reside. We analyze how the energetic preference
of the particles for one or the other state affects the phase diagrams. The possibility of a single
phase-two phases-single phase sequence of phase transitions as a function of increasing temperature
is demonstrated.

Keywords: phase transition; free energy; molecular reorientation; isotherm; common-tangent
construction

1. Introduction

The level of detail for modeling the phase behavior of particle systems ranges from
atomistic descriptions [1–4] to simple lattice representations that are treated on the level of
the mean-field theory [5–7]. Each limit offers advantages and challenges: the former is able
to account for all chemical details and interactions but may be too demanding in terms of
what is computationally feasible and may not always offer physical interpretations for what
is being observed. The latter affords a straightforward calculation of approximate phase dia-
grams that can be understood in every detail, yet is subject to simplifications—often drastic
ones—in molecular detail and in the accuracy of the phase diagram. The present work fo-
cuses on the latter case and asks how a model that is simplified as much as possible (a lattice
representation using mean-field theory) may account for the presence of an internal degree
of freedom that affects the effective spatial extension of the phase-separating particles.

Among the systems that have their properties affected by internal degrees of free-
dom are hydrogels [8,9], elongated and globular proteins [10–12], polymers [5,13,14],
and mechanosensitive channels that contribute to the regulation of transport through
cellular membranes [15–17]. Microgels, more specifically, are polymeric gel particles [18]
that possess the ability to adjust their volume in response to external factors, such as
pH, temperature, and ionic concentration [19–21]. Compared to regular-sized hydrogels,
the relative volume changes of microgels are larger and occur faster [20,22]. Another ex-
ample of a system where the effective size of molecules plays a role is that of Langmuir
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monolayers. A Langmuir monolayer is a single-molecule-thick layer formed by surface
active/amphiphilic molecules at the air–water interface [23–25]. Langmuir monolayers
have served as a model system for studying, for example, the interaction of lipids with
cholesterol [26,27], DNA adsorption onto thin films [28,29], and the interactions of bioac-
tive molecules [30,31] and antimicrobial peptides with bacterial membranes [32,33]. A
change in the effective size of a molecule in a Langmuir monolayer can be accomplished
by a simple molecular reorientation. This renders the adopted molecular orientations
pressure-sensitive [34]. The analysis of isotherms—the relationship how the monolayer
area varies upon changing the lateral pressure at constant temperature—provides indirect
information about the type of molecular assembly and phase behavior. However, isotherms
do not directly reveal information about molecular orientations and interactions between
molecules. Theory and simulation can help to create links, and, indeed, theoretical and
computational [3,35] approaches have been proposed to rationalize the role played by
inter-molecular interactions in systems where molecules are able to reorient. This is the
case, for example, for colloids trapped at a dielectric interface [6,36,37].

On the level of mean-field theory, we have previously presented [7] a lattice–sublattice
model that accounts for two molecular orientations of particles trapped at the air–water
interface. Although this model provides reasonable interpretations for experimentally
obtained surface pressure–area isotherms [38–41], it suffers from neglecting inter-molecular
interactions. Here, we present an extension of this model where inter-molecular interactions
are accounted for on the mean-field level [5,42]. More specifically, we consider a system
composed of particles that are immersed in a solvent and that exist in two distinct states,
one occupying a smaller and the other a larger size. Our model applies equally to two-
dimensional and three-dimensional systems. We assume that particle–solvent interactions
are present that act as an effective surface tension, independently of the state in which
a particle resides. We focus our analysis on phase diagrams, which allows us to readily
assess how the energetic preference of the particles for one or the other state affects the
distribution of states and composition of coexisting phases.

2. Theory

We consider a binary mixture of solvent molecules and a fixed number of N0 particles.
The particles can reside in two distinct states with different particle volumes: a smaller
volume ν0 and a larger volume ξν0, with ξ ≥ 1. Throughout this paper we use the index
“S” and “L” to denote quantities related to particles in the small-volume and in the large-
volume state, respectively. The numbers of particles in each state, NS and NL, add up to
the fixed total number N0 = NS + NL. Assuming the particles are residing on a lattice of M
equal sites, it is convenient to introduce the corresponding volume fractions φL = ξNL/M
and φS = NS/M. Hence, the scaled number of particles φ0 = N0/M = φL/ξ + φS is a fixed
constant [7]; while NS + ξNL lattice sites are occupied by the N0 particles, the remaining
M− NS − ξNL sites are filled with solvent molecules. Here, we assume an S particle and
a solvent molecule occupy one single lattice site each. More general cases with different
volumes for solvent molecules and S particles are straightforward to implement. Figure 1
shows a schematic representation of a two-dimensional system of a square lattice composed
of particles that can assume two distinct states: small (S, light red cubes) and large (L, dark
red cuboids, with ξ = 4). In the figure, we qualitatively illustrate a typical scenario of how
the system may evolve upon increasing φ0: from a single phase composed of S particles—
diagrams (a) and (b)—to two coexisting phases, colored in white and blue, and each with
distinct compositions and phase size—diagrams (c) and (d). By further increasing φ0, as in
diagram (e), the system exhibits a single phase composed mostly of L particles. Finally,
for even larger φ0, diagram (f) displays the lattice densely packed with S particles. The color
gradient in the arrows indicates the increase in φ0, with darker colors corresponding to
larger values of φ0. The study of how different choices of interaction parameters bring
about this and similar phase behaviors is one of the main goals of this work.
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d) e) f)

φ0
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Figure 1. Schematic representation of a system composed of molecules present in two states: small
(S, light red cubes) and large (L, dark red cuboids). From diagrams (a–f): illustration of how the
system may phase-separate upon increasing φ0. The phases, here colored in white and blue, can
assume different sizes and compositions depending on the values of φ0, λ, χ, and ξ. The gray arrows
below the diagrams indicate the increase in φ0, with darker gray for larger φ0. Results illustrate a
two-dimensional lattice for ξ = 4.

The Helmholtz free energy of the system, F = −TS + ULS + Uint, is composed of
an entropic contribution, −TS; energy terms related to switching particles between their
L-state and S-state, ULS; and interactions of particles with solvent molecules, Uint. The
absolute temperature is denoted by T and the configurational entropy by S. A lattice–
sublattice approximation proposed by Han and co-workers [43] allows us to estimate S as

−S
MkB

=
φL
ξ

ln φL +

(
1
ξ
− 1

)
(1− φL) ln(1− φL) + (1− φL − φS) ln(1− φL − φS) + φS ln φS (1)

where kB denotes the Boltzmann constant. The energy contribution ULS is a single-
particle energy that can be written as ULS/(kBT) = λNS, where λ quantifies the energy
penalty required for a single molecule to switch from the L-state to the S-state. Finally,
the particle–solvent interactions, per lattice site, are accounted for on the mean-field level
by the expression

Uint
MkBT

= χ(1− φL − φS)(φL + φS), (2)

where χ characterizes the interaction strength between a lattice site occupied by a solvent
molecule and a lattice site occupied by a particle. Our definition of the particle–solvent
interaction effectively amounts to introducing a tension between the particles and the
solvent. Positive tension favors not only the aggregation of particles but also the S-state
over the L-state of isolated particles that are surrounded by solvent. Note that both λ and
χ are dimensionless. For the sake of mathematical simplicity, Equation (2) is based on the
assumption that solvent molecules interact with particles in the S-state and L-state in the
same way, and S particles and L particles do not interact with each other. In a more general
approach, one would assign distinct interaction strengths to pairs of L particles and solvent,
S particles and solvent, and L particles and S particles. With the energy contributions
specified above, the (dimensionless) free energy per lattice site, f = F/(MkBT), reads
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f (φL, φS) = λφS +
φL
ξ

ln φL +

(
1
ξ
− 1

)
(1− φL) ln(1− φL)

+ (1− φL − φS) ln(1− φL − φS) + φS ln φS + χ(1− φL − φS)(φL + φS). (3)

To analyze how the interaction strengths λ and χ affect the number of particles residing
in their S-state and L-state, we must first obtain the equilibrium distributions. To this end,
we insert the relation φL = ξ(φ0 − φS) into Equation (3) and find the global minimum of
f (ξ(φ0 − φS), φS) as a function of φS. That is, we solve

∂ f (ξ (φ0 − φS), φS)

∂φS
= 0 (4)

for φS, and from all solutions we select that of the lowest energy to obtain the optimal
(equilibrium) distribution φS = φ

opt
S (φ0) for fixed φ0 and any set of parameters ξ, λ, χ.

Hence, the optimal value of the free energy, minimized for the number of L particles versus
S particles, reads

f (φ0) = f (ξ (φ0 − φ
opt
S (φ0)), φ

opt
S (φ0)). (5)

Known f (φ0) affords the calculation of phase separation via the familiar common-
tangent construction [44].

3. Results and Discussion

We start our discussion by presenting in Figure 2 a series of diagrams that illustrate
how the free energy and optimal distributions of states are calculated for a given set of λ, χ,
and ξ; in this particular case, we chose λ = 1.5, χ = 1.2, and ξ = 4. As mentioned above,
the optimal value φS = φ

opt
S is determined such that the free energy f (ξ(φ0 − φS), φS)

adopts a global minimum. Diagrams (a) and (b) of Figure 2 display f (ξ(φ0 − φS), φS) as a
function of φS for φ0 = 0.23 and φ0 = 0.24, respectively, with the global minimum being
marked by a blue bullet in each case.

ϕ0 = 0.23a)

−0.005

0

0.005

0.015

0.02

f(ξ(ϕ0 − ϕS), ϕS)

c) ϕ0 = 0.2334

0

0.1

0.2

0.3

0.4

ϕopt
S

b) ϕ0 = 0.24

0 0.05 0.1 0.15 0.2 0.25
−0.01

0

0.01

0.02

ϕS

f(ξ(ϕ0 − ϕS), ϕS)

d)
ϕ0 = 0.2334

0 0.1 0.2 0.3 0.4 0.5
−0.1

0

0.1

0.2

ϕ0

f(ϕopt
S )

Figure 2. Diagrams (a,b): free energy f (ξ(φ0 − φS), φS) according to Equation (3), calculated as a
function of φS for φ0 = 0.23 and φ0 = 0.24; blue bullets mark the global minimum. Diagram (c): φ

opt
S

as a function of φ0. Diagram (d): f (φ0) as a function of φ0 with red bullets marking the points that
connect through a common tangent. In all four diagrams, ξ = 4, λ = 1.5, and χ = 1.2.

Upon increasing φ0 from 0.23 to 0.24, the position of the global minimum moves
from φS ≈ 0.2 to φS ≈ 0.02. Diagram (c) reveals that the distribution of states changes
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discontinuously at φ0 = 0.2334. At this value, the function f (ξ(φ0 − φS), φS) has two
minima with equal depth. Furthermore, as shown in diagram (d) of Figure 2, if we calculate
the free energy f (φ0) as a function of φ0, we observe that φ0 = 0.2334 is the value where
f (φ0) adopts a local “cusp-like” maximum, thus necessitating the existence of a common
tangent and, hence, two coexisting phases. Indeed, the red bullet diagram (d) in Figure 2
mark the points that exhibit a common tangent (dashed gray line); these correspond to the
compositions of the two coexisting phases; each phase with its own value of φ

opt
S .

The results shown in Figure 2 correspond to a specific choice of the interaction pa-
rameters λ and χ. In order to account for other choices, we present in Figure 3 results for
φ

opt
S and f (φ0) versus φ0 for λ values ranging from λ = −0.75 to λ = 3 and three different

choices of χ: χ = 0.2 in diagrams (a) and (b), χ = 1.2 in diagrams (c) and (d), and χ = 2.2 in
diagrams (e) and (f). Recall that φ

opt
S is the solution of Equation (4), thus being the value at

which f (ξ(φ0 − φS), φS) adopts a global minimum. The main diagrams magnify the region
0 ≤ φ0 ≤ 0.5, whereas the insets display the results in the range 0 ≤ φ0 ≤ 1; all results in
Figure 3 are obtained for ξ = 4, and the λ values are color-coded according to the legends
on the side-panels. In diagrams (a) and (b)—top row—we observe that, irrespective of the
values of λ, all distributions of φ

opt
S are continuous, and the free energies f (φ0) exhibit a

single minimum. For φ
opt
S , increasing λ produces results that evolve from straight lines

(purple and blueish curves) to distributions that tend to bend at φ0 ≈ 0.25 (red and brown
curves). For larger χ, as in panels (c) and (d), where χ = 1.2, the φ

opt
S -curves do not only

bend but, for some values of λ, start to display a discontinuity analogous to that observed
in Figure 2c. A similar behavior is also present in the bottom row of diagrams, but, as in
this case χ is even larger (χ = 2.2), the curves are discontinuous over a wider ranger of λ

values; in both rows of diagrams we gray-shaded the area where the initial growth of φ
opt
S

is followed by a discontinuous jump to smaller values, and color-matching dotted lines are
plotted as a visual guide for this change. For larger χ, the free energy f (φ0) displays two
minima, which become more pronounced upon increasing λ; for example, for χ = 2.2, the
larger the values of λ, the closer the minima to φ0 = 0 and to φ0 = 1/ξ = 0.25.

The limit of small φ0 offers a transparent discussion of the different roles that λ and
χ play for the particles to reside in the S-state or L-state; recall that λ is the energy cost
required to switch a single particle from its large (L) to its small (S) size [7] and that χ
accounts for the effective surface tension (a line tension in the two-dimensional case) that
acts on the particles when in contact with the solvent.

Upon increasing φ0, starting from φ0 = 0, the lattice becomes populated with particles
either in the L-state or S-state. When χ is sufficiently large, the surface tension between
the particles and the solvent results in the S-state dominating. Growing φ0 gives rise to
an increasingly large number of particle–particle interactions that replace particle–solvent
interactions. For λ > 0, where the L-state is energetically preferred over the S-state, this
may lead to a transition to a dense phase dominated by the L-state. Let us analyze which
state, L or S, dominates in the limit of small φ0. To this end, it is useful to calculate the slope
of φ

opt
S as a function of φ0 for fixed λ and χ. A linear relation φ

opt
S ∼ φ0 is valid in the limit

of small φ0. Assuming φ
opt
S = sφ0 in Equation (3) and expanding around φ0 = 0, we arrive

at the following solution for the slope s:

s =
dφ

opt
S

dφ0

∣∣∣∣∣
φ0=0

=
1

1 + 1
ξ e−χ(ξ−1)+λ

. (6)
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Figure 3. Left and right diagrams display the values of φ
opt
S and f (φ0), respectively, versus φ0 for

different λ and fixed ξ = 4. Each row corresponds to a specific value of χ: χ = 0.2 (top), χ = 1.2
(middle), and χ = 2.2 (bottom). In all diagrams, the values of λ are color-coded according to the side
legend on the right. The φ

opt
S values are solutions of Equation (4), i.e., the value of φS that globally

minimizes the free energy f (ξ(φ0 − φS), φS). The shaded gray areas mark the region where the φ
opt
S

values change discontinuously, and the color-matching dotted lines indicate discontinuity of φ
opt
S .

Insets display the results over the entire range 0 ≤ φ0 ≤ 1.

Results from Equation (6) are plotted in Figure 4 for different values of λ, color-coded
according to the legend. To visualize the predictions of Equation (6), Figure 4 also displays
system illustrations for small slopes, where most of the particles are in the L-state (bottom
left inset), and another, for large s, where virtually all particles are in the S-state (top
right inset). We note that the larger χ, the more particles reside initially in the S-state.
Furthermore, if λ is also large, the values of φ

opt
S tend to be virtually zero right after the

discontinuous jump of φ
opt
S , as can be seen in orange, red, and brown curves in Figure 3e.

Thus, any particle further added to the lattice will readily assume the L-state. This trend,
however, does not continue when φ0 grows further: for large φ0, more particles in the
L-state are placed on the lattice until steric constraints force them to undergo a transition to
the smaller S-state.
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λ = −0.75
λ = −0.5
λ = −0.25
λ = 0
λ = 0.25
λ = 0.5
λ = 0.75
λ = 1
λ = 1.5
λ = 2
λ = 2.5
λ = 3

0 0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

χ

dφoptS

dφ0

∣∣∣∣∣
φ0=0

Figure 4. Slope from the free energy expansion around φ0 = 0 as a function of the interaction
parameter χ, calculated according to Equation (6). The values of λ are color-coded according to the
side legend. The black dotted lines mark the χ values used in the diagrams of Figure 3, i.e., χ = 0.2,
1.2, and 2.2. The insets display illustrations of two systems, one with particles mostly in the L-state
(bottom left) and another with all particles in the S-state (top right).

In Figure 5, we display phase diagrams for ξ = 4 and a different value of λ for each
panel: λ = 0 (a), λ = 1 (b), λ = 1.5 (c), and λ = 2 (d); as it is common [44–46], we
present our results in diagrams 1/χ versus φ0. Note that 1/χ is proportional to the absolute
temperature T because χ is an interaction energy scaled by the thermal energy unit kBT.
In addition to displaying selected tie lines connecting the coexisting phases, the heat map in
each panel shows the fraction φ

opt
S /φ0, with values colored according to the sidebar legend.

As we argue in our discussion of Figure 2, changes in φ
opt
S have a direct effect on how the

free energies f (φ0) vary as a function of φ0. Specifically, discontinuous changes of φ
opt
S

always imply the presence of a common tangent and thus a phase transition. This is indeed
the case in the presented phase diagrams. The critical point, that is, the smallest value of χ
at which for a given λ a phase transition can occur can be calculated [46–48] from solving
the three equations

∂ f (ξ (φ0 − φS), φS)

∂φS
= 0,

∂2 f (ξ (φ0 − φS), φS)

∂φ2
0

= 0,
∂3 f (ξ (φ0 − φS), φS)

∂φ3
0

= 0. (7)

As our parameter space has five dimensions (χ, φ0, φS, λ, ξ), we can use Equation (7)
to calculate three critical parameters (χ, φ0, φS) in terms of the other two fixed variables (λ,
ξ). The critical χ = χ(λ, ξ), here denoted by χ∗, is marked by bullets in Figure 5, colored
according to the same scheme as in the previous figures. The dashed line—reproduced
in all diagrams of Figure 5—is the line on which all the critical points lie as λ is varied.
Upon increasing λ, the critical χ∗ and the corresponding φ0 are both reduced. Similarly to
what was observed in Figure 2, this occurs because the larger the energy cost λ, the less
favorable is the L→ S switch. Furthermore, we also observe an evolution of the spinodal
line towards a more uniformly convex and symmetric profile. Interestingly, the presence
of a concave region of the spinodal line for small λ suggests the possibility of a single
phase-two phases-single phase sequence of phase transitions. In diagram (a) of Figure 5,
for example, decreasing the temperature (which corresponds to increasing χ) at fixed
φ0 = 0.5 passes from a single phase to a two-phase region and, subsequently, back to a
single phase.



Molecules 2023, 28, 5060 8 of 12
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Figure 5. Phase diagrams, 1/χ versus φ0, for ξ = 4 and different values of λ: λ = 0, 1, 1.5, and 2 in
panels (a–d), respectively. The critical value of χ is marked by colored bullets: blue (λ = 0), green
(λ = 1), yellow (λ = 1.5), and green (λ = 2). The dashed line shown in all diagrams is the line
on which all critical χ values lie. The “heat maps” in the background display the value of φ

opt
S /φ0

color-coded according to the side legend.

In order to investigate the effects of further increasing λ, in diagrams (a) and (b) of
Figure 6 we show results obtained for λ = 10 and two different choices of ξ: ξ = 4 in (a)
and ξ = 1 in (b). The latter corresponds to the S-state and L-state having the same size,
which leads to the same phase diagram as the regular Bragg–Williams free energy. Hence,
in diagram (b), the critical point is χ∗ = 2, φ0 = 0.5 and φ

opt
S = 0.5, whereas for diagram (a),

the location of the critical point is close to χ∗ = 0.5, φ0 = 0.125 and φ
opt
S ≈ 0. More generally,

in the limit of large λ, where the L-state is enforced, the critical point is located at χ = 2/ξ
and φ0 = 1/(2ξ). To bridge between these limiting cases, in panel (c) of Figure 6 we display
how the critical point χ∗ and corresponding φ0 vary as a function of φ0 for different choices
of λ (symbols are color-coded according to the side legend).

The three sets of dashed lines, on which the corresponding symbols lie, were calculated
for ξ = 2, 3, and 4, from bottom to top. For each ξ, the gray bullets mark the results obtained
in the limit of λ → −∞ (bottom right) and λ → ∞ (left bullets, as indicated by arrows).
In the limit of λ→ −∞, the S-state is enforced. Hence, as in this case the system consists
exclusively of particles in the S-state, all lines converge to the Bragg–Williams result
irrespective of the value of ξ. In the opposite limit, i.e., λ → ∞, all particles adopt the
L-state. Consequently, the system behaves as composed solely of particles in the L-state,
with particle volume ν = ξν0, and we obtain the familiar Bragg–Williams result, but for a
lattice with ξ times larger lattice sites. As λ = 10 is close to the limit λ→ ∞, the mechanism
above provides a rationale for the findings in diagrams (a) and (b).
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Figure 6. Phase diagrams for λ = 10 with ξ = 4 (a) and ξ = 1 (b). The dashed line in (a) is the line
along which the critical values of χ lie; the heat maps in (a) and (b) display the value of φ

opt
S /φ0,

color-coded according to the side legend in (b). Diagram (c): location of critical points, where each
set of dashed lines and symbols correspond to ξ = 2, 3, 4, from bottom to top lines; values of λ are
color-coded as specified in the side panel, and the gray bullets mark the limits λ→ ±∞. For λ→ −∞,
all critical points merge into one location at χ∗ = 2 and φ0 = 0.5, irrespective of ξ.
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We finally note that the function f (φ0) can be used to calculate [7] the pressure P of
the system through

v0P = φ0
d f (φ0)

dφ0
− f (φ0). (8)

In Figure 7, we present isotherms for the scaled pressure ν0P as a function of
ν/ν0 = 1/φ0 for three different choices of χ: χ = 0.2 (a), χ = 1.2 (b), and χ = 2.2 (c).
Different values of λ are color-coded according to the side legend, and all results were
obtained for ξ = 4. Because χ > 0 corresponds to effectively attractive interactions between
the particles, increasing χ always reduces P at fixed λ. Despite this, increasing λ at fixed χ
does not always increase P, despite the growing preference for the L-state. The pressure
tends to increase with λ for χ < χ∗ and for χ > χ∗ if ν < ν0. However, for χ > χ∗ and
ν > ν0, increasing λ lowers the pressure of a phase-separated system because a larger
degree of aggregation is induced that involves a smaller number of particles and, thus,
a lower pressure.

χ = 0.2a)

0 2 4 6 8 10
0.1

1

v/v0

v0P

χ = 1.2b)

0.02

0 2 4 6 8 10
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Figure 7. Scaled pressure ν0P versus ν/ν0 = 1/φ0 for χ = 0.2 (a), χ = 1.2 (b), and χ = 2.2 (c).
Different colors correspond to different values of λ, as indicated in the side legend. The dotted line
marks the point ν/ν0 = ξ. Results calculated for ξ = 4.

4. Conclusions and Outlook

Molecules with internal degrees of freedom are ubiquitous in nature. Colloids, pro-
teins, and microgels, are just a few examples of molecules that can adjust their size in
response to external stimuli. In the present work, we developed a simple extension of
the Bragg–Williams model to describe solvent-immersed particles that can exist in two
states, one of a larger (L) and another of a smaller size (S). Our model is based on a
lattice–sublattice approximation [7,43] and accounts for particle–solvent interactions on the
mean-field level. More specifically, we considered two energy parameters: λ, the cost of a
particle to switch from the L-state to the S-state, and χ, an effective particle–solvent interac-
tion that acts analogously to a surface tension and is independent of the state in which the
particles reside. We focused our analysis on how these parameters affect thermodynamic
properties: the distribution of particle states as expressed by φ

opt
S and the occurrence of

phase separation. Phase diagrams show how the energetic preference of the particles for
one or the other state affects phase transitions and compositions of coexisting phases. We
also calculated critical points and considered the effect of varying ξ, the size ratio between
the particles in their L-state and S-state. In the limit of very large positive or negative λ
values, our model recovers familiar results of the Bragg–Williams model. We designed our
model to apply to systems composed of particles that can reside in two states of different
size. However, its generalization to particles with more than two size-dependent states
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is straightforward. Other possible extensions account for interactions between particles
in different states as well as distinct interactions between solvent molecules and particles
in different states. Finally, our model has the capacity to serve as a tool to rationalize
different contributions to experimentally observed “shoulders” in surface pressure–area
isotherms [30,39,40] and phase transitions of monolayers [49,50].
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