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Abstract: The effective control over the vesicle formation pathways is vital for tuning its function.
Recently, a liquid–liquid phase-separated intermediate (LLPS) is observed before a vesicular structure
during the solvent exchange self-assembly of block copolymers. Though the understanding of
polymer structures and chemical compositions on the competition between LLPS and micellization
has made some progress, little is known about the role of cosolvent on it. In this study, the influence
of cosolvent on the vesicle formation pathways is investigated by using dissipative particle dynamics.
The results show that the range of water fraction within which the LLPS is favored will be highly
dependent on the affinity difference of cosolvent to water and to polymer repeat units. The change
of the cosolvent–water interaction and the water fraction impact the distribution of cosolvent in
the polymer domain, the miscibility between the components in the system as well as the chain
conformations, which finally induce different self-assembly behaviors. Our findings would be helpful
for understanding the LLPS and controlling the morphologies of diblock polymers in solutions for
further applications.

Keywords: cosolvent; solvent exchange self-assembly; liquid–liquid phase separation; vesicle formation
mechanism; amphiphilic diblock copolymer; dissipative particle dynamics (DPD) simulation

1. Introduction

The amphiphilic block copolymers form various structures in solution, such as spher-
ical micelles, cylindrical micelles, vesicles, and so on [1,2]. Among them, the vesicular
structures have attracted special and continuous attentions in the last few decades because
of their great potential applications of drug delivery [3–5], nanoreactors [6], mimics of
cells or organelles [7,8], and so on [9]. For achieving these functions, the rigorous control
over the morphology evolution of the vesicle is critical. With this in mind, scientists from
various backgrounds have make great efforts to investigate the self-assembly behaviors of
diverse systems and to explore the physicochemical principles behind them.

Despite many documents focused on the subject, it has been generally recognized
that there are only two fundamental ways for vesicle formation described as Mechanism I
(by bilayer-closing) [10] and Mechanism II (via semi-vesicle intermediate) [11,12]. In the
former pathway, the bilayer membrane structures, such as rod-like, disk-like, or sheet-
like intermediates are observed first and then the bilayer membranes bend and close to
form the vesicles. This mechanism is frequently reported in experimental and theoretical
studies [13–15]. In the second pathway, a spherical semi-vesicle intermediate with a small
hollow cavity is formed by the diffusion of hydrophilic blocks as well as solvent molecules
towards the center of the spherical micelle, and then the full vesicle grows up gradually.
This mechanism is initially proposed by using a field-based simulation method, and also
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observed by some experimental studies [16]. If is usually agreed that the second pathway is
preferential when the polymer concentration is much lower and the hydrophobic property
of the block copolymer is higher [12,17].

Recently, based on the observation of the phase separation of polymer-rich liquid
droplets by time-resolved in situ monitoring technique and the self-consistent mean field
(SCF) theory, another mechanism is proposed that the vesicle evolves from the growth and
internal phase separation of a polymer-rich liquid droplet precursor in the liquid–liquid
phase-separated state [18]. If is thought that in a liquid mixture with a specific composition
of cosolvent (good solvent for all blocks) and water, the polymer-rich liquid droplet (LL) is
more thermodynamically favorable than dissolution or self-assembly [19,20]. Though the
LL is also reproduced in simulations [21,22], as we know, it still lacks the direct observation
of how the phase separation within the LL develops into a full vesicular structure by
particle simulations. Moreover, most works are concerned about the influences of polymer
structures and chemical compositions on the formation and stability of the liquid–liquid
phase separation (LLPS) [19,23], but no research examines the role of the cosolvent during
this process.

For a long period of time, the observation of a self-assembly process of amphiphilic
block copolymers in simulations is often performed by using a single-component solvent
which is supposed as having the averaged property of the binary mixture [24–26]. However,
experimental evidence suggests that the choice of different cosolvents influences nanoparti-
cle sizes [27,28] as well as structures [29,30], the cosolvent/selective solvent ratio impacts
chain conformation [31,32], and the distribution of the cosolvent in the polymer domain is
distinguished from that in the bulk solution [33]; moreover, the cosolvent dispersed in the
core and the corona also may be much different [29,30,32]. All of the phenomena indicate
the important role of the cosolvent in the self-assembly process and should be considered
individually [21,34,35].

In this study, dissipative particle dynamic (DPD) simulation is used to investigate
the vesicle formation process of the model amphiphilic diblock copolymer under solvent
exchange. We show that the distribution of cosolvent and water in the polymer domain
is strongly dependent on the affinity difference of cosolvent to water and to the polymer
segments, which further impact the chain conformation and induce different self-assembly
behaviors. Moreover, a cosolvent-dependent critical water fraction is found for the ob-
servation of the LLPS. Our findings would be helpful for the efficient engineering of
nanostructures.

2. Results and Discussion
2.1. Direct Self-Assembly of Diblock Copolymer in Water

For comparison with the self-assembly behaviors under solvent exchange, the self-
assembly of A2B12 starting from a homogeneous dispersion in pure water is also performed.
The typical snapshots as a function of time in two simulation trajectories are shown in
Figure 1. In the first trajectory, all chains are aggregated into a disk-like micelle and then
a vesicle is formed by bending and closing the bilayer membrane (Figure 1a). The insets
clearly show the integral disk-like and bowl-like intermediates. In the second trajectory, a
small disk-like structure is observed at the earlier time. To compare with the first trajectory
quantitatively, the size of the clusters is characterized by the number of aggregated chains in
it (nagg), and the clusters are identified by the contacts between the hydrophobic segments
with a distance less than 1.5 rcut. Here, the small disk-like structure has nagg of 511, and
it forms a vesicle quickly via the local collapse of the surface (Figure 1b). Clearly, both
trajectories follow the “bilayer-closing” mechanism (Mechanism I) [10]. If is reported
that vesicles also could form via a semi-vesicle pathway (Mechanism II) [12]. We did not
observe this process in our A2B12 system from self-assembly in water; it may be the relative
moderate hydrophobic property of aBW = 50 adopted in this study [17].
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Figure 1. Two trajectories of the direct self-assembly of A2B12 in water. Insets correspond to the
integral morphologies of aggregates. Insets depict the integral disk-like and bowl-like intermediates.
Hydrophilic and hydrophobic segments are in purple and green, respectively. For clarity, water is not
shown and only hydrophilic segments are shown in the insets.

2.2. Self-Assembly in Liquid Mixture Where Cosolvent and Water Is Attractive

In the case of aWG = 15, the difference between aWG and aAG (aBG) is −10, which means
the cosolvent and water is highly attractive. As it is seen in Figure 2a, when the self-assembly
starts from φinit

W = 30%, the randomly dispersed chains gather into many small clusters (the
nagg of the largest cluster is 161, the second 90, and others 16~34) after 2 × 106 time steps for
equilibrium. With the increase of φW, small clusters merge continuously and at φW = 36.25%,
two big irregular clusters are seen in the simulation box. The section view of the biggest
one (seen in the insertion) demonstrates that the hydrophilic and hydrophobic blocks are
not segregated. These disordered clusters indicate LLPS [18] and are also observed by other
simulations [21,22]. Then a large irregular cluster is formed at φW = 37.5%, and the section
slide shows several cavities exist in the interior and that the outer hydrophobic membrane has
been basically formed. Afterwards, the discrete cavities merge with each other at φW = 38.75%
and finally, a most matured vesicle is found at φW = 40%.

The morphologies at φW = 37.5%, 38.75%, and 40% are further characterized by
analyzing the profiles of number density of all components (water, cosolvent, block A,
and block B) along the long axis of the clusters, respectively (Figure 2b). At φW = 37.5%,
blocks A and B are almost randomly distributed in the cluster containing a large amount
of solvents because of the irregular shapes and dispersion of cavities. If also indicates
that the hydrophilic and hydrophobic blocks are not clearly segregated. At φW = 38.75%,
hydrophobic blocks move away from the center. At φW = 40%, the hydrophobic membrane
and the interior/exterior shells are clearly seen. Moreover, the solvent molecules are going
away from the hydrophobic membrane simultaneously. Therefore, the density profiles
shown in Figure 2b further prove the phase separation process (rearrangement) within the
polymer-rich liquid droplet. If is noteworthy that, besides the phase separation (or internal
rearragment) in the cluster, the size of the cluster shrinks gradually as indicated by the
decreased distance of blocks A and B from the center of the aggregates. The formation
of LLPS and the subsequent rearrangement is also observed by a long simulation of
4.0 × 106 time steps at a fixed φW = 40% (Figure S1).
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Figure 2. (a) Typical snapshots of the vesicle formation process during solvent exchange in the case of
aWG = 15 starting from φinit

W = 30%. Insets correspond to the section views of aggregates; (b) Density
profiles of water, cosolvent, and copolymer blocks versus the distance from the mass center of the
corresponding morphologies in (a). Water, cosolvent, hydrophilic, and hydrophobic segments are in
blue, red, purple, and green, respectively. For clarity, the solvents are not shown in the snapshots.

Strikingly, when the self-assembly starts from the solvent composition φinit
W = 50%, the

vesicle formation undergoes a different way. As shown in Figure 3a, during 2.0 × 106 time
steps of equilibrium at φW = 50%, the randomly dispersed chains are quickly aggregated;
tiny irregular micelles, small cylindrical structures, and small vesicles are observed suc-
cessively, and finally, two vesicles are observed. Afterwards, with the further increase of
φW, two vesicles fuse into a large one. Careful analysis indicates that some small elongated
vesicles are present at the very earlier stage of the self-assembly process. For example,
Figure 3b shows the evolution of the largest aggregate (nagg = 267) during 1.53 × 105 to
1.57 × 105 time steps. If is seen that an elongated vesicle is formed by diffusion of the
hydrophilic blocks into the center of the small cylinder.

In order to describe the instantaneous shape of the aggregates, we calculate the three
eigenvalues λ1, λ2, and λ3 of the radius of the gyration tensor, which is defined as [34]:

A =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 (1)

and:

Sab =
1
n

n

∑
i=1

(ai − acm)(bi − bcm) (2)

where a and b denote x, y, or z components of the bead’s coordinates, ai and acm for the
ith-bead and center-of-mass of the aggregate, respectively, and n is the total number of
beads in the aggregate. In the following, we sort the three eigenvalues of the matrix of
Equation (3) as λ1 ≤ λ2 ≤ λ3. If is expected that Rg

2 = λ1 + λ2 + λ3. Then, the ratios of the
three eigenvalues are presented by r31 =λ3/λ1, r32 =λ3/λ2, and r21 =λ2/λ1, respectively.
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Here, r31 is the ratio of the long axis to the short axis, and the r21 is the ratio of the long axis
to the middle axis. The larger the value of the two, the closer the shape of the aggregate
is to the cylinder-like; r32 is the ratio of the middle axis to the short axis. Its value is close
to 1 and indicates that the cross-section of the aggregate is circular.
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Figure 3. (a) Typical snapshots of the vesicle formation process observed during solvent exchange in
the case of aWG = 15 starting from φinit

W = 50%. The inset corresponds to the section view of a vesicle;
(b) The semi-vesicle formation during the earlier stage of (a). For a better understanding, a section of
one elongated semi-vesicle is given; (c) The ratios between the three eigenvalues of the radius of the
gyration tensor as a function of time for the elongated semi-vesicle shown in (b); (d) Density profiles
of water, cosolvent, and copolymer blocks versus the distance from the mass center of the largest
vesicle formed at 3.4 × 105 time steps and φW = 50%. The colors of water, cosolvent, hydrophilic, and
hydrophobic segments are in blue, red, purple, and green, respectively. For clarity, the solvents are
not shown in the snapshots.

As shown in Figure 3c, at 1.5 × 105 time steps, r31 is much larger than r32 and r21,
and r21 is around 1.5. Therefore, the aggregate is flat cylinder-like with a long axis. With
the time increases, r31 and r32 decrease quickly and the three ratios become very close
after 1.62 × 105 time steps, indicating the subsequent structural transformation from the
elongated semi-vesicle into a spherical vesicle. This process is very similar to an in-between
pathway between Mechanism I (by bilayer-closing) and Mechanism II (via semi-vesicle
intermediate) reported in the literature [17]. The density profile of the largest aggregate at
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3.4 × 105 time steps is shown in Figure 3d. We can see that the vesicle is well organized
and the hydrophobic membane is dense with only a few of the cosolvent beads within it.

When the self-assembly starts from φinit
W = 70%, a typical dense disk-like intermediate

with nagg = 476 is found at 2.4× 105 time steps, as shown in Figure 4. After the local collapse
of the disk surface at 2.6 × 105 time steps (seen in the inset of Figure 4), a small vesicle
is seen. This process undergoes very quickly at φW = 70%. To verify the self-assembly
behavior, five independent simulations are carried out. Small and dense vesicles are formed
first by the local collapse of the disk surface in all five simulations, and the average nagg of
the first observed vesicles is 407 ± 52.
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respectively. For clarity, solvents are not shown and only hydrophilic segments are shown in the inset.

2.3. Self-Assembly in Liquid Mixture Where Cosolvent and Water Is Repulsive

In the case of aWG = 30, the difference between aWG and aAG (aBG) is 5, which means
the cosolvent and water is repulsive but marginally misicible. The self-assembly of A2B12
starting from φinit

W = 30% is shown in Figure 5. After equilibrium for 2.0 × 106 time steps,
only very tiny aggegates are seen, which means the polymer chains are more soluble when
the cosolvent and water is weakly repulsive. Therefore, a slow exchange frequency of
teq = 6 × 105 time steps is adopted at each solvent switch step for cluster coalescence.

As shown in Figure 5, most chains are free in the solvent mixture at φW = 30%. With the
increase of φW, some small cottony aggregates with nagg = 20~32 are formed at φW = 35%.
The snapshot and density profile of the largest cluster (nagg = 32) indicate that those small
cottony aggregates are LLPS intermediates (Figure S2). These aggregates fuse continuously
and at φW = 55%, most polymer chains are involved into a big irregular cluster. The section
slide of the cluster indicates that the polymer chains are loosely agglomerated and the
hydrophilic and hydrophobic blocks are not segregated. Afterwards, phase separation in
the cluster takes place gradually, the closed aqueous cavities form and join together, and
finally, a most matured vesicle is seen at φW = 70%. Therefore, the self-assembly progress
starting from φinit

W = 30% in the case of aWG = 30 is similar to that in the case of aWG = 15,
but the evolution from LLPS to vescile occurs later and the LLPS could be observed starting
from a broader φinit

W range. Moreover, lots of cosolvents adsorbed on the vesicle membrane,
and the membrane is wide and loose, as demonstrated by the density profile analysis.

The self-assembly of A2B12 starting from φinit
W = 60% is shown in Figure S3; with the

time increases, cottony structures composed of loosely gathered micro-domains are seen
during the equilibrium process. They develop into a large quasi-spherical aggregate at
2.0 × 106 time steps without obvious segregated hydrophobic and hydrophilic domains.
With the cosolvent gradually exchanged to water, internal phase separation continues and
finally, a most matured vesicle is seen at φW = 70%. Afterwards, the vesicle membrane
becomes dense, and the vesicle and the internal cavity shrink gradually. Therefore, the
vesicle formation also obeys the phase separation mechanism.
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Figure 5. Typical snapshots of the vesicle formation process observed during solvent exchange in
the case of aWG = 30 starting from φinit

W = 30% and the density profile of the structure observed at
φW = 70%. Insets correspond to the section views of aggregates. The colors of water, cosolvent,
hydrophilic, and hydrophobic segments are in blue, red, purple, and green, respectively. For clarity,
the solvents are not shown in the snapshots.

When φinit
W is 70%, though some small aggregates with local collapses on the surface

are found at a very early stage, they could not develop into spherical vesicles because of
the small sizes (with nagg = 200~250). When time increases, a sheet-like intermediate with
nagg = 483 is seen at 4.2 × 105 time steps after mergence of the small aggregates, which
then bends and closes into a vesicle at 4.6 × 105 time steps (Figure 6). Compared with the
vesicle observed in Figure 4, the formed structure is highly swelling and the apparent size
is much larger. Finally, two vesicles are observed after 2 × 106 equilibrium time steps. They
fuse into a big one with the further increase of φW. Therefore, when φinit

W = 70%, the vesicle
formation obeys a typical Mechanism I pathway. We also ran five simulations starting from
φinit

W = 70%, the average nagg of the first observed vesicles is 426 ± 54, which is a bit less
than the value in the case of aWG = 15. However, the apparent sizes of these vesicles are
much larger. Moreover, all trajectories show the typical bilayer bending process.
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For clarity, the solvents are not shown in the snapshots and only hydrophilic segments are shown for
vesicular structures.

2.4. The Physiochemical Principles behind the Different Self-Assembly Behaviors

To understand the phys-chemical basis behind the behaviors in the different solvent
mixtures, the fractions of solvent beads (both cosolvent and water) which contact with
polymers (distance to polymer beads r ≤ 1.0) and the percentages of the cosolvent beads in
the contacted solvent beads are shown in Figure 7a,b. Both values are higher in the case
of aWG = 30, which indicates that the cosolvent is preferentially adsorbed in the polymer
phase when the cosolvent and water are weakly repulsive. The high cosolvent content in
the clusters would weaken the repulsion interactions of aAB and aBW. Therefore, when aWG
is higher, there are more free chains in the system, the LLPS could be observed starting
from a broader φinit

W range, and the formed clusters swell highly. Moreover, in the case of
aWG = 15, the percentage of cosolvent in the contacted solvents is higher than the average
φG (= 1 − φW) if φW < 80%, which means that the cosolvent is also slightly enriched in the
polymer phase even in a strongly attractive liquid mixture.

The number of water beads which contact with block A (nA
W) is further calculated.

Interestly, in the case of aWG = 15, nA
W shows the lowest value at about φW = 40% (Figure 7c),

and the values at φW = 40% and 50% are obviously less than that at φW = 30%. If means the
addition of water, a second good solvent to hydrophobic blocks, induces the depletion of
both solvents. Therefore, the hydrophilic blocks collapse in the liquid mixture composed of
two good solvents, which is called the cononsolvency phenomenon [36–38]. As shown in
Figure 7d, the average bond length of hydrophilic blocks shrinks in the case of aWG = 15
while it is stretched in the case of aWG = 30 when φW < 60%. The hydrophobic blocks
agglomerate quickly in the former to avoid exposing to water. The collapsed hydrophilic
chains also indicate that the high affinity between cosolvent and water would promote the
immiscibility of the copolymer chains in the solvent mixture, thus, the apparent hydropho-
bic property of the copolymers seems improved and it explains why the small elongated
semi-vesicles are observed before vesicle formation at φW = 50%.
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Figure 7. (a) The percentage of solvents which contact with polymer; (b) The percentage of cosolvent
in the contacted solvents; (c) The number of water beads which contact with block A, and (d) The
average bond length of block A as a function of φW in the case of aWG = 15 and aWG = 30.

3. Methods and Parameters
3.1. DPD Simulations

DPD is a mesoscale method for the simulations of coarse-grained systems over long
length and time scales. In DPD, a bead having mass m represents a block or a cluster of
atoms or molecules moving together in a coherent fashion. In this study, the amphiphilic di-
block copolymers are simplified into linear coarse-grained chains composed of hydrophilic
A beads and hydrophobic B beads. A model diblock copolymer A2B12 with a short hy-
drophilic segment is constructed as it is reported that LLPS is preferred over micellization
at a weak hydrophilicity of the block copolymer, e.g., 25% or less [18,20]. Two types of
solvent beads, beads W which present a selective solvent for A beads (e.g., water) and
beads G which means a good solvent for both A and B beads, are considered in the systems.
The forces acting on a bead i can be described by:

fi = ∑
j 6=i

(FC
ij + FD

ij + FR
ij ) + fS

i (3)

where FC
ij is a soft conservative repulsive force, FD

ij is a dissipative force for viscous drag, and

FR
ij is a stochastic impulse force [39]. All three forces which act over each bead are within a

cutoff radius rcut, beyond which the forces vanish [40]. Specifically, the conservative force
FC

ij is expressed as:

FC
ij =

{
aij(1− rij/rcut)

(
rij < rcut

)
0 (rij > rcut

) (4)

where aij denotes repulsive parameters between two beads in FC
ij and is given in Table 1.
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Table 1. Interaction parameters aij in FC
ij used in the present work.

W G A B

W 25
G 15, 30 25
A 25 25 25
B 50 25 50 25

We set aii = ajj = 25 for any two beads of the same kind. As found by Groot and Warren,
∆aij = aij − aii is proportional to the Flory–Huggins parameter χij [40]. Specifically, for the
system with the reduced number density ρ = 3, χij = (0.286 ± 0.002) × ∆aij. Therefore,
aAG = aBG = 25 indicates G is a cosolvent (good solvent) for A and B, while aAW = 25 and
aBW = 50 mean W is a selective solvent to A. The strong repulsion aAB = 50 represents that
beads A and B are immiscible, which are ubiquitous for polymer components. The solvent–
cosolvent interactions aWG is set to 15 or 30. Specifically, aWG < 25 presents an attractive
liquid mixture, for example, the dimethyl sulfoxide and water mixture exhibits a negative
free energy of mixing throughout the concentration range because of the strong hydrogen
bonds [41]. The value of aWG = 30, whose corresponding χWG = 0.286 × (30 − 25) = 1.43 is
below the critical value for phase separation of monomer blends (χcrit = 2.0), means the
solvent and cosolvent are marginally miscible, for example, the THF and water mixture [42].
If is worth noting that it is the difference between aWG and aAG (=aBG) which determines the
relative miscibility among cosolvents, water, and copolymers [34]. For the A2B12 copolymer,
the vesicular structure is thermodynamically stable in the final polymer solution (see below).
Our preliminary results indicate that the solvent exchange self-assembly behaviors between
aWG = 15~30 are in the middle of the two cases. Therefore, in this study, we only discuss the
self-assembly processes of A2B12 copolymers under the two extreme and typical instances.

For adjacent bonded beads, a harmonic spring force fS
i = ∑

j
CSrij is used, where CS

is the spring constant. To keep the balance of the accuracy and the efficiency of DPD
simulations, the mass, length, and energy presented by m, rcut, and kBT, respectively, are
set to m = rcut = kBT = 1, where kB is the Boltzmann constant, T is the temperature, and the
time unit τ = rcut (m/kBT)1/2 = 1. The magnitude of spring constant CS and the dissipation
parameter are chosen to be 4.0 and 4.5, respectively. The time step is ∆t = 0.05τ.

3.2. Solvent Exchange Method

All the simulations are performed in a 60× 60× 60 periodic box containing 6.48× 105

beads (ρ = 3). Initially, 1000 coarse-grained chains of A2B12, corresponding to the volume
fraction of copolymers (f p) about 2.16% are dispersed randomly in a mixed solvent com-
posed of W and G beads. The interaction parameters aij for all bead pairs are set to 25, and
after 1.0× 105 time steps for equilibrium, a homogenous mixture is obtained. Then, the pair
interaction parameters shown in Table 1 are imposed to the beads and after 2.0 × 106 time
steps of equilibrium, the self-assembly process is monitored by using a solvent exchange
strategy to mimic the dialysis process in the experiment.

Especially, in each solvent exchange step, the number of exchanged G beads (nG,ex)
is determined by the bead number that is supposed to switch (nG,sup) and the number
of beads outside of the polymer aggregates or away from single chains (nG,out). If nG,out
> 2 × nG,sup, nG,ex is equal to nG,sup, otherwise, nG,ex is set to 0.5 × nG,out. After each
solvent switch, the system is equilibrated with a time duration of teq, then, the next step is
performed until less than 200 G beads are left in the system. Finally, the trace amount of G
beads is switched and there are only W beads present in the systems.

The relative content of W beads in the mixed solvent (φW), defined as [42]
nW/(nW + nG) × 100%, is used to describe the solvent composition. Here, nW and nG
are the number of W beads and G beads in the simulation box, respectively. The initial
water fraction φW (φinit

W ) is set to 30% because below that concentration, no featured ag-
gregates are found (see the Section 2 Results and Discussion). The supposed exchange
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quantity at each step nG,sup is equivalent to 1.25% of the total solvent beads, and teq is
2.0 × 105 time steps. As observed in experiments, the morphology of the aggregates could
be kinetically trapped by the cosolvent/water ratio; therefore, different φinit

W values are also
adopted to investigate the self-assembly process. All the DPD simulations were conducted
using DL_MESO 2.4 software [43].

4. Conclusions

In this study, the influence of cosolvent on the vesicle formation pathways is investigated
by using dissipative particle dynamics. If is found that the presence of LLPS will be highly
dependent on the affinity difference of cosolvent to water and to polymer repeat units.
If the cosolvent and water is strongly attractive, LLPS occurs at the low water fraction, the
segregation of polymer segments afterwards is very quick and the membrane of the semi-
matured vesicles is dense. If the cosolvent and water is weakly repulsive, LLPS could be
observed within a wide range of solvent composition, the evolution of vesicle is relatively
slow, and the membrane is loose. Moreover, when the initial water fraction rises, micellization
is preferential, and at a specific solvent composition, the use of cosolvent with strong affinity
to water would promote to form small vesicles via an elongated semi-vesicle intermediate.
With the further increase of water fraction, in both cases, only bilayer bending and closing
processes are observed. If is found that the adsorption of the cosolvents in the polymer
domains and the resulting hydrophilic chain conformations are critical for the control over
the vesicle formation pathway. Our findings would be helpful for molecular engineering
of the vesicle structures and for further potential applications. If also should be mentioned,
the vesicular structures have been observed within a broad range of hydrophilic content of
copolymers, and in experiments the choice of solvents would be subtle on the control over the
final morphologies. Therefore, it is worthwhile to investigate the self-assembly of copolymers
with the varied hydrophilic-to-hydrophobic balance and to explore the delicate influences of
solvents on the formation and mechanisms of different morphologies in future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28135113/s1, Figure S1: The self-assembly of A2B12
during solvent exchange at φW = 40% in the case of aWG = 15. Figure S2: (a) The snapshot of an
aggregate having nagg = 32 observed at φW = 35% in the case of aWG = 30. (b) Density profiles of
water, cosolvent and copolymer blocks versus the distance from the mass center of the corresponding
morphologies in (a). Figure S3: The self-assembly of A2B12 during solvent exchange in the case of
aWG = 30 starting from φinit

W = 60%. An equilibrium duration of 2.0 × 106 time steps at φinit
W = 60%

and an exchange frequency of teq = 2.0 × 105 time steps are adopted.
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