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Abstract: The aim of this paper was to compare the effects of two clarification methods, protease
combined with heat treatment and bentonite, on the aroma quality of liqueur wines, and to iden-
tify and analyze the overall differences between the basic components and volatile aroma com-
pounds of liqueur wines after the two treatments by chemical analysis, headspace–solid-phase
microextraction–gas chromatography/mass spectrometry (HS-SPME-GC/MS), and orthogonal par-
tial least squares discriminant analysis (OPLS-DA). The results showed that total acidity, volatile
acidity and pH in liqueur wines after protease combined with heat treatment were not significantly
different from those of the blank control, and the ability to remove proteins was equal to that of the
bentonite treatment. A total of 58 volatile aroma compounds were detected by HS-SPME-GC/MS.
Compared with the blank control group (44 species, total 108.705 mg/L), 52 (83.233 mg/L) and
50 (120.655 mg/L) aroma compounds were detected in the bentonite and protease combined with
heat treatments, respectively. Compared with the control and bentonite treatment, the protease
combined with heat treatment significantly increased the total content of aromatic compounds in
liqueur wines, and the types and contents of olefins, furans and phenols were higher. Among them,
the compounds with major contributions in the protease combined with heat treatment were ionone,
β-damascenone, 3-methyl-1-butanol, alpha-terpineol and limonene, which helped increase the con-
tent of terpenoids and enhance the floral and fruit aroma of the wine. Meanwhile, linalool, diethyl
succinate, 2-methyl-3-heptanone, butanal diethyl acetal, hexanal and n-octanol were six compounds
with high content of aromatic compounds unique to liqueur wines after protease combined with heat
treatment. The sensory evaluation results were consistent with the results of aromatic compound de-
tection, and the overall quality was better. The results may provide a reference for further exploration
of protease-based clarifiers suitable for liqueur wines.

Keywords: liqueur wine; protease; HS-SPME-GC/MS; aroma quality; OPLS-DA

1. Introduction

Liqueur is a kind of sweet wine with low alcohol that has been fermented and
blended [1]. The appropriate combination of alcoholic content, the amount of sugar and
volatile compounds, giving liqueur a unique flavor and richness, may play a key role in
the acceptance of liqueur by consumers [2–4]. The quality and aromatic characteristics of
liqueur wines are influenced by various aspects such as grape variety, cultivation, vinifica-
tion and aging processes [5,6]. Clarity and stability are important parameters to measure
the quality of liqueur wines [7]. However, liqueur wines are extremely high in sugar and
contain many macromolecules such as proteins, polyphenols and pectins, which make
them prone to instability during storage. The addition of clarifying agents is an important
process used to regulate and protect the organoleptic properties of the wine and can im-
prove or solve instability problems caused by protein denaturation or aggregation during
aging by removing large molecules, such as unstable proteins [8]. Currently, bentonite is
a common clarifying agent in wine production due to its low price and good removal of
large molecules such as proteins [9]. Numerous studies have reported that bentonite, due
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to its unique negative electrostatic properties, can extensively adsorb positively charged
compounds, affecting the aroma and flavor characteristics of the wine, and that the poor
swelling and settling properties of bentonite can also lead to volume loss and waste genera-
tion in the wine [10,11]. Therefore, the development of economical alternative clarifying
agents to stabilize wines have become a popular topic of investigation by researchers.

Proteases have shown some effectiveness in improving the stability of wines due to
their specific enzymatic effect on proteins. It has been shown that enzyme combined with
heat treatment was better than treatment alone due to protein unfolding caused by heat
treatment, and that heat treatment did not affect the sensory characteristics of the wine [12].
Subsequently, related scholars treated the protein-rich permeate with targeted heat-binding
protease after fractionating the white wine by ultrafiltration, and the results showed that it
somewhat mitigated the effects of traditional stabilization on wine aroma and flavor, and
the heat stability of the reconstituted wine was significantly improved after heating the
wine with the addition of protease [7,13].

In this study, we compared the effects of protease combined with heat treatment
and bentonite treatment on the physicochemical index, aroma quality and sensory charac-
teristics of Semillon liqueur wine, and identified the unique aromatic compositions and
potential differences in liqueur wine after the two clarification and stabilization treatments,
with the aim of providing useful insights and technical support for the clarification and
stabilization of liqueur wine.

2. Results and Discussion
2.1. Chemical Components of Liqueur Wines

Table 1 shows the effect of different treatments on the basic composition of liqueur
wines. There was no significant effect of protease combined with heat treatment and
bentonite treatment on the total acidity, volatile acidity, and pH content of liqueur wines
compared to the blank control. The content of residual sugars increased slightly after
the protease combined with heat treatment, while the content of residual sugars did not
change significantly after the bentonite treatment compared to the blank control, and the
heating treatment did not have a significant effect on the composition of liqueur wines.
The bentonite and protease combined with heat treatments significantly reduced the total
protein content in liqueur wines, with heating only, bentonite and protease combined with
heat treatments reducing the protein content by 10.15%, 17.18% and 16.08%, respectively
(p < 0.05). This indicated that protease combined with heat treatment had less effect
of composition in liqueur wines, in agreement with previous research that found this
innovative approach to protein stabilization had no significant impact on wine quality [14].

Table 1. Effect of different treatments on the basic composition in liqueur wines.

Residual Sugar/(g/L) Total Acidity/(g/L) Volatile Acidity/(g/L) pH Protein/(mg/L)

CK 98. 90 ± 0.75 bc 4.24 ± 0.07 a 0.57 ± 0.00 a 4.11 ± 0.01 a 59.86 ± 0.99 a

H 99.23 ± 1.75 ab 4.23 ± 0.06 a 0.57 ± 0.02 a 4.11 ± 0.00 a 53.60 ± 0.25 b

B 96.97 ± 0.06 c 4.17 ± 0.01 a 0.56 ± 0.01 a 4.11 ± 0.00 a 49.57 ± 0.98 c

ASE 101.10 ± 0.90 a 4.20 ± 0.04 a 0.56 ± 0.02 a 4.11 ± 0.00 a 50.30 ± 0.25 c

CK: blank control, H: heat treatment only, B: bentonite treatment, ASE: protease combined with heat treatment.
Different lowercase letters in the table indicate significant differences among treatments (p < 0.05).

2.2. Aroma Quality of Liqueur Wines
2.2.1. Volatile Compound Analysis

The chemical class, content and sensory characteristics of volatile aroma compounds
influenced the complexity of liqueur flavors, and the interaction of clarification stabilization
treatments on volatile compounds depended on the properties of the compounds, the
physicochemical properties of the clarifying agent and possible interactions with other
macromolecules in liqueur wines [15,16]. To analyze the effect of protease combined
with heat treatment and bentonite treatment on volatile aroma compounds in liqueur
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wine, HS-SPME-GC-MS was used to examine the liqueur wine samples subjected to dif-
ferent treatments. The data in Table 2 show that a total of 58 volatile aroma compounds
were detected in liqueur wines after three different treatments. Compared with the blank
control group (44 species, total 108.705 mg/L), 52 species (83.233 mg/L) and 50 species
(120.655 mg/L) of aroma compounds were detected in the bentonite and protease com-
bined with heat treatments, respectively, indicating that the types and contents of volatile
aroma compounds in liqueur wines changed after different treatments, with the bentonite
treatment causing the greatest decrease in the total content of aroma compounds, while the
protease combined with heat treatment increased the variety and total content of aroma
compounds in the wines.

As can be seen from Table 2 and Figure 1, the largest number and proportion of ester
compounds were found in the wines of all treatment groups, followed by alcohols. Among
them, the types of aroma compounds in the blank control were ranked as esters (20) >
alcohols (11) > aldehydes (6) > ketones (3) > acids (2) > olefins (1) = others (1), and the
percentage ranking was esters (45.45%) > alcohols (25.00%) > aldehydes (13.64%) > ketones
(6.82%) > acids (4.55%) > olefins (2.27%) = others (2.27%). Bentonite treatment of aroma
compounds ranked as esters (19) > alcohols (12) > aldehydes (7) > ketones (3) > other (2) >
acids (1) = olefins (1), with the proportion of ester (42.22%) > alcohols (26.67%) > aldehydes
(15.56%) > ketones (6.67%) > other (4.44%) > acids (2.22%) = olefins (2.22%). The aroma
compounds in the samples of the protease combined with heat treatment were ranked as
esters (21) > alcohols (12) > olefins (5) > aldehydes (4) > ketones (3) = other (3) > acids (2),
with the proportion of esters (42.00%) > alcohols (24.00%) > olefins (10.00%) > aldehydes
(8.00%) > ketones (6.00%) = others (6.00%) > acids (4.00%).
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Esters

Esters are among the most important volatile compounds in wines. They are mainly
produced by yeast during alcoholic fermentation, are synthetic secretions of yeast cells and
are the main source of fruity aroma in liqueur wines [17]. The content of esters in wines
generally did not exceed 100 mg/L, but the low threshold of most esters and the interactions
between the aromatic compounds made it possible for changes in ester content to also
have some effect on the overall aroma of liqueur wines. A total of 22 esters were found in
the test wines (Table 2), with contents ranging from 26.03% to 37.82% of the total volatile
compound content. The total ester content of the blank control group was 35,569.51 µg/L,
while the ester content of the liqueur wines after bentonite and protease combined with
heat treatment was 31,479.28 µg/L and 31,410.94 µg/L, respectively, which were 11.50%
and 11.69% less than the total ester content of the blank control group, respectively.

Ethyl acetate, isoamyl acetate, ethyl caproate and ethyl caprylate are the four types
of esters with high ester content in liqueur wines and are also very typical volatile aroma
compounds in wines, mainly giving liqueur wines their fruity aroma. The content of ethyl



Molecules 2023, 28, 5129 4 of 15

esters was reduced after bentonite treatment except for ethyl octanoate, diethyl succinate,
trans-4-decenoate and ethyl laurate, which was consistent with the findings of Vincenzi
et al. [18]. Bentonite treatment resulted in significant removal of ethyl esters and fatty acid
esters. Overall, the changes in the content of most esters after protease combined with heat
treatment were not significantly different from the blank control group, indicating that the
effect of this treatment on esters was lower than that of the bentonite treatment group.

Alcohols

Alcohols are another important group of volatile compounds in wines, mainly pro-
duced by yeast metabolism during wine fermentation, and have a pungent odor [19,20].
The contribution of alcohols to the aroma depends on their concentration in wines. When
their concentration is below 300 mg/L, they can provide a pleasant aroma; above this
threshold, an irritating aroma will be felt. A total of 16 alcoholic aroma compounds were
detected in the test wines, and the total alcohol content in the blank control, bentonite
and protease combined with heat treatments were 58,047.00 µg/L, 38,981.47 µg/L and
755,770.72 µg/L, respectively.

As can be seen from Table 2, four volatile compounds, namely isobutanol, isoamyl
alcohol, n-hexanol and phenylethyl alcohol, were present in high levels in each wine
sample, giving the liqueur wines a floral aroma. Among them, n-hexanol has a grassy
flavor, and its high content leads to a raw green flavor in the wine [21]. When compared
to the control group, the content of hexanol in the wines after bentonite and protease
combined with heat treatment decreased by 25.77% and 8.83%, respectively, which may
reduce its negative impact on the aroma of liqueur wines. Phenylethanol has a floral aroma,
and when compared to the control group, the bentonite treatment reduced the content of
phenylethanol in the wines by 49.60%, while the protease combined with heat treatment
increased the content of phenylethanol in the wines by 0.87%. Isoamyl alcohol has a banana
taste, and there was no significant difference in its content in the protease combined with
heat treatment compared to the control group, but its content was significantly decreased
in the bentonite-treated group (p < 0.05). In addition, both linalool and α-pinoresinol were
detected in all treatment groups, which are both major terpenoids in wines, mainly from
free aroma or glycosidic aroma precursors that impart floral and fresh aroma to liqueur
wines [22]. The bentonite treatment resulted in significantly lower levels of α-pinoresinol
than the blank control, by 31.08%, while the protease combined with heat treatment resulted
in a 56.29% higher content than the blank control. Vincenzi et al. [18] suggested that the
mechanism of aroma losses after bentonite treatment may be due to the direct adsorption
of the clay. In this experiment, we also confirmed this.

Carbonyl Compounds

The concentration of carbonyl compounds in wines is relatively low, but they can
contribute to the overall aroma through a synergistic effect [16,17]. Ten carbonyl compounds
(three ketones and seven aldehydes) were detected in the liqueur wines (Table 2). After
treatments, the ketones in liqueur wines ranged from 411.99 to 598.40 µg/L and the
aldehydes from 12,006.38 to 14,233.23 µg/L. Among them, ionone and β-damascenone
belong to grape terpenoids and C13-norbornenes, respectively, which can give liqueur
wines a floral and fruity aroma. The contents of both were reduced after bentonite treatment,
and the protease combined with heat treatment increased the content of both by 47.97%
and 90.40%, respectively. Among the aldehydes, the content of all aldehydes decreased
after the bentonite or protease combined with heat treatment, except for the content of
isobutyraldehyde diethyl acetal, but the effect of protease combined with heat treatment on
various aldehydes was less than that of the bentonite treatment.

Other Volatile Compounds

Small amounts of organic acids have a positive effect on improving the flavor of
liqueur wines, but too high levels can also produce unpleasant sensations [17,19]. Both
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bentonite and protease combined with heat treatment decreased the content of acetic and
octanoic acids in liqueur wines, and protease combined with heat treatment reduced the
content of both by 14.38% and 28.29% compared to the control group.

In addition, five olefins, two furans and one phenol were detected in the tested
liqueur samples, and the total contents of each substance ranged from 39.44 to 270.27 µg/L,
193.81 to 211.68 µg/L and 0 to 40.29 µg/L, respectively. The protease combined with heat
treatment significantly increased the types and contents of olefins, furans and phenols,
which contributed to the formation of floral, lemon and almond aroma in liqueur wines.

Table 2. Types and concentrations of aroma compounds in liqueur wines after different treatments.

Number Compound Name
Average Content (µG·L−1)

Odor Description
CK B ASE

Esters

A1 Ethanedioic acid,
diethyl ester 142.90 ± 30.81 a 88.55 ± 11.68 b 137.46 ± 1.49 a /

A2 Ethyl acetate 14,853.45 ± 3048.37 a 8272.05 ± 753.22 b 12,345.61 ± 505.73
a

Banana, strawberry fragrance, fruit
flavor

A3 Ethyl propionate 323.53 ± 71.67 a 225.61 ± 17.29 b 259.05 ± 3.79 b Fruity

A4 Ethyl isobutyrate 123.78 ± 22.57 a 95.71 ± 11.03 b 102.68 ± 1.57 b Apple, floral, rubber, strawberry,
sweet

A5 Isobutyl acetate 99.48 ± 22.09 a 72.5 ± 10.49 b 84.47 ± 0.73 ab Sweet, banana, fruity, fruity aroma

A6 Ethyl butanoate 503.95 ± 114.94 a 389.33 ± 55.90 b 422.52 ± 9.31 ab Papaya, creamy fragrance,
pineapple, strawberry flavor

A7 Ethyl
2-methylbutanoate 47.03 ± 7.21 a 37.06 ± 3.14 b 35.96 ± 3.60 b Fennel, apple, bubblegum, fruit,

kiwi

A8 Ethyl isovalerate 56.51 ± 12.89 a 46.45 ± 7.79 a 48.62 ± 2.36 a Fennel, apple, citrus, fruit,
pineapple

A9 Isoamyl acetate 2143.51 ± 517.38 a 1675.69 ± 230.34 a 1823.19 ± 54.54 a Sweet fruit, banana, green apple
A10 Ethyl valerate 117.48 ± 22.51 a 82.75 ± 6.53 b 100.31 ± 26.84 ab Apple, dried fish, herbs, nuts, yeast

A11 Ethyl hexanoate 4385.23 ± 1064.73 a 3828.77 ± 55.38 a 3962.73 ± 585.16 a Fruity, strawberry, pineapple,
banana fragrance, green apple

A12 Methyl
2,2-dimethoxyacetate 110.88 ± 21.23 nd 114.01 ± 35.48 /

A13 Ethyl caprylate 10,283.06 ± 2073.98 b 12,903.69 ± 1777.82 a 10,020.47 ± 1562.42
b

Fruity, oily, fruity, ripe fruit, pear,
sweet aroma

A14 Ethyl orthoformate 311.89 ± 27.09 nd nd /

A15 Hex-(2 E)-enoate
<ethyl-> nd 26.26 ± 2.84 32.63 ± 0.00 /

A16 Ethyl furoate 143.31 ± 22.92 a 121.86 ± 12.36 a 143.41 ± 12.62 a Floral fragrance
A17 Diethyl succinate 589.97 ± 28.38 a 615.95 ± 67.93 a 403.49 ± 63.70 b Almond fragrance

A18 Ethyl
trans-4-decenoate 181.54 ± 38.26 b 1158.42 ± 43.22 a 186.22 ± 4.99 b /

A19 Phenethyl acetate 840.25 ± 142.26 a 807.7 ± 114.43 a 612.99 ± 36.36 b Rose, jasmine aroma, floral, sweet

A20 Dodecanoate
<ethyl-> 210.21 ± 34.08 b 735.59 ± 40.59 a 227.19 ± 27.57 b Sweet, beeswax, floral and fruity

A21 Benzoic acid,
2-methylpropyl ester nd nd 40.35 ± 0.00 /

A22 Whiskey lactone 101.54 ± 12.08 b 295.35 ± 202.81 a 307.58 ± 33.59 a Citrus flavor, coconut flavor
Total 35,569.51 ± 7335.47 31,479.28 ± 3424.82 31,410.94 ± 2971.84

Alcohols
B1 1-Propanol 792.08 ± 37.30 a 288.97 ± 5.14 b 720.82 ± 150.20 a Vegetable Aroma
B2 Isobutyl alcohol 3283.03 ± 231.54a 1240.1 ± 8.25 b 3051.51 ± 712.14 a Solvent taste, raw green flavor
B3 1-Butanol 71.81 ± 5.39 nd 67.25 ± 12.02 Herbal, alcoholic odor

B4 3-Methyl-1-butanol 47,175.56 ± 31,546.15
ab 33,588.39 ± 904.38 b 65,588.85 ±

12,669.62 a Apple brandy, spicy

B5 1-Pentanol nd nd 48.61 ± 0.00 Spicy, grassy aroma
B6 1-Hexanol 1648.18 ± 25.97 a 1223.39 ± 50.94 b 1502.62 ± 208.01 a Herbaceous, grassy fragrance
B7 3-Hexen-1-ol nd 27.23 ± 3.20 nd Floral, botanical, fruity
B8 3-Hexen-1-ol, (Z)- nd nd 42.42 ± 0.00 Grass flavor
B9 1-Heptanol 50.46 ± 0.66 a 47.01 ± 2.35 a 44.31 ± 8.17 a Grape flavor

B10 Butadienol <2,3-> 469.36 ± 23.64 nd 158.26 ± 0.00 Buttery, creamy, rubbery, fruity
B11 Linalool 272.86 ± 5.10 a 252.08 ± 20.08 a 212.94 ± 30.04 b Floral, lavender fragrance

B12 1-Octanol 68.52 ± 8.69 71.32 ± 5.34 nd Stimulating aromatic scent, jasmine,
lemon

B13 Phenylethyl alcohol 4068.14 ± 82.68 a 2050.14 ± 356.61 b 4103.36 ± 788.08 a Rose, floral, sweet fragrance
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Table 2. Cont.

Number Compound Name Average Content (µG·L−1) Odor Description
CK B ASE

B14 2-Hexadecanol nd 31.95 ± 7.07 nd /
B15 alpha-Terpineol 147.02 ± 30.82 b 101.32 ± 1.21 c 229.78 ± 8.40 a Fresh, woody fragrance

B16 Triethylene glycol
monododecyl ether nd 59.59 ± 2.12 nd /

Total 58,047.00 ± 31,997.94 38,981.47 ± 1366.72 75,770.72 ±
14,586.69

Ketones

C1 2-methyl-3-
Heptanone 51.07 ± 0.75 b 58.19 ± 8.05 a 32.11 ± 0.00 c /

C2 Ionone 335.52 ± 5.52 b 324.53 ± 9.59 b 496.47 ± 119.79 a Violet fragrance

C3 Damascenone <(E)-,
beta-> 36.67 ± 1.28 b 29.26 ± 0.00 c 69.82 ± 1.41 a Poached apples, floral scents, fruits,

honey
Total 423.27 ± 7.55 411.99 ± 17.64 598.40 ± 121.20

Aldehydes
D1 1,1-Diethoxybutane 521.59 ± 99.38 425.24 ± 58.79 nd /
D2 Hexanal 33.23 ± 1.07 34.16 ± 1.01 nd Grassy smell, apple fragrance

D3 Isobutyraldehyde
Diethyl Acetal 153.69 ± 14.28 c 226.07 ± 17.68 b 408.07 ± 68.99 a /

D4 Furfural 11,446.78 ± 2760.11 a 9599.19 ± 1636.49 a 9902.16 ± 1327.07 a Herbal, tea, almond flavor, floral
D5 Methylal nd 57.83 ± 5.78 nd /
D6 Benzaldehyde 438.71 ± 4.24 a 387.21 ± 61.49 ab 351.37 ± 31.49 b Bitter almond flavor, oily flavor
D7 5-Methyl furfural 1639.23 ± 251.23 a 1276.68 ± 104.18 b 1560.78 ± 226.86 ab Caramel smell

Total 14,233.23 ± 3130.31 12,006.38 ± 1885.42 12,222.38 ± 1654.41
Acids

E1 Acetic acid 82.07 ± 2.95 nd 70.27 ± 0.00 Acetic acid smell
E2 Octanoic acid 109.19 ± 12.73 a 76.45 ± 4.39 b 78.3 ± 19.66 b Fatty acids, dairy products

Total 191.26 ± 15.68 76.45 ± 4.39 148.58 ± 19.66
Olefins

F1 alpha-Pinene nd nd 47.39 ± 0.00 Pine wood, resin incense

F2 γ-Terpinene 39.44 ± 4.24 nd 60.03 ± 22.26 Bitter, citrus, gasoline, resin,
turpentine

F3 Limonene nd nd 60.26 ± 13.14 Lemon scent
F4 Styrene nd 56.1 ± 13.05 44.72 ± 7.31 Special fragrance
F5 Octene <alpha-> nd nd 57.87 ± 0.00 /

Total 39.44 ± 4.24 56.10 ± 13.05 270.27 ± 42.71
Others

G1 Bois de Rose oxide 200.84 ± 48.69 a 176.72 ± 27.46 a 168.67 ± 7.62 a /
G2 Nerol oxide nd 44.96 ± 13.28 25.14 ± 0.00 Flowers, oil

G3 Butylated
Hydroxytoluene nd nd 40.29 ± 0.00 Toasted bread slices

Total 200.84 ± 48.69 211.68 ± 40.74 234.10 ± 7.62

“nd” indicates that the aroma compounds were not detected or the content was very small, “/” indicates that
the relevant information was not found. Different lowercase letters in the table indicated significant differences
among treatments (p < 0.05). Treatment abbreviations as in Table 1.

2.2.2. Principal Component Analysis

In general, a variety of volatile aroma compounds were detected in wine, and the
content varied greatly. To more directly compare the effects of bentonite and protease
combined with heat treatment on the aroma characteristics in liqueur wines, a principal
component analysis was performed on the aroma data in Table 2, and the contributions of
PC1 and PC2 were 47.00% and 38.90%, respectively. The cumulative variance contribution
of the two principal components was 85.90%, which was greater than 80%, i.e., these
two principal components could better reflect all of the variance of the original data
(Figure 2) [5].

As can be seen from Figure 2, the aroma characteristics of liqueur wine samples from
each treatment group can be well distinguished in the two-dimensional plane formed by the
two principal components, among which the control group had higher scores in the positive
half-axis of PC1 and PC2, which mainly reflected the aroma information of fatty acid ethyl
esters, so the floral and fruity characteristics of the control wine samples were more
prominent [23]. The wine like aroma profile of the protease combined with heat treatment
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group scored similar to the control group in the positive half-axis of PC1, while the PC2
score tended to the negative half-axis, with the prominent aroma profile in this region being
floral as well as weakly fruity. The bentonite treatment was distributed in the negative
half-axis region of PC1 and scored lower in PC2, where the most prominent aromatic
characteristics were greasy and slightly fruity. Overall, compared to the bentonite treatment,
the protease combined with heat treatment had less effect on the aroma compounds of
liqueur wines, and the compounds with major contributions were ionone (violet aroma),
β-damascenone (floral, fruit, honey), 3-methyl-1-butanol (apple brandy), alpha-terpineol
(light, woody aroma) and limonene (lemon aroma), which helped improve terpene aroma
in liqueur wines and enhance the floral and fruit aroma of the wine [24].
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2.2.3. OPLS-DA Analysis
OPLS-DA Modeling and Model Evaluation

The OPLS-DA analysis can effectively distinguish the liqueur wines after different
treatments. R2X and R2Y in the OPLS-DA model indicated the explanation rate of the
proposed model for X and Y matrices, respectively, and Q2 indicated the predictive ability
of the model. Theoretically, the closer R2 and Q2 are to 1.0, the better the model and the
higher the accuracy of the model fit [25]. Usually, R2 and Q2 higher than 0.5 model is
better, higher than 0.4 is acceptable, and the difference between the two should not be too
large [26,27]. In this experiment, the model had R2X = 0.942, R2Y = 0.996 and Q2 = 0.986.
where R2X = 0.942, indicating that the model captures 94.2% of the variation in the data,
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and R2 and Q2 were close to 1.0, indicating that the model had good interpretability and
a good fit. The samples of each treatment clustered well on the scatter plot of OPLS-DA
scores, with small intra-group differences, and complete separation of samples between
different groups was achieved.

In order to avoid the overfitting phenomenon when the OPLS-DA model can effec-
tively differentiate samples between groups but cannot effectively predict the new sample
dataset, the permutation test and CV-ANOVA function in SIMCA 14.1 was used to verify
the reliability of the model, and the results of the permutation test are shown in Figure 3B.
The points at the retention level equal to 1.0 were the R2 and Q2 of the original OPLS-DA
model. During the permutation test, if all R2 and Q2 are below the value of permutation
retention equal to 1.0, and the regression line at Q2 crosses the horizontal coordinate or is
less than 0, the intercept is generally considered negative and the statistical model is valid
and not overfitted [28]. As shown in Figure 3B, after 200 cross-validations, the model Q2

regression line still crossed the horizontal coordinate and the intercept of the cross with the
vertical coordinate was less than 0. This indicated that the model was not overfitted and the
OPLS-DA model established in this study was stable, reliable and statistically significant.
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Potential Markers of Variability

VIP (variable importance in projection) is the weight value of OPLS-DA model vari-
ables, which can be used to measure the intensity and explanatory power of the accumu-
lated differences of each component on the classification discrimination of each group of
samples; the larger the VIP value, the greater is the contribution [29,30]. Usually, VIP > 1 is
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the common differential metabolite screening criterion [31]. As shown in Figure 4, there
were 34 compounds with VIP > 1, indicating that there were more differential markers in
liqueur wines after different treatments, and the type of clarifying agent had a greater effect
on volatile aroma compounds in liqueur wines.
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Hierarchical Clustering Analysis of Sign Variability Components Based on OPLS-DA
Model VIP > 1

To further analyze the changes in the differential volatile aroma components in liqueur
wines after different treatments, a heat map hierarchical clustering analysis was done
on 34 marker differential compounds based on Section “Potential Markers of Variability”
in order to better represent the trends of 34 differential compounds in different liqueur
wines. As shown in Figure 5, the differential aroma compounds in the liqueur wine
samples could be divided into two major groups (six subgroups) by hierarchical cluster
analysis. The first group was dominated by the co-occurrence of aroma compounds in
the protease combined with heat treatment and control liqueur wine samples, and the
second group was dominated by the co-occurrence of aroma compounds in the bentonite
treatment and control liqueur wine samples. Among them, within the first major cate-
gory, 12 compounds were the main aroma compounds of the protease combined with
heat treatment group and 6 were the main aroma compounds of the control group; in the
second major category, 2 compounds were the main aroma compounds of the protease
combined with heat treatment group, 18 were the main aroma compounds of the bentonite
treatment group, and 13 were the main aroma compounds of the control group. Previous
studies have shown some differences in the effects of bentonite treatment and protease
combined with heat treatment on the aroma composition of wines, with the protease com-
bined with heat treatment inducing greater modification of aroma compounds (possibly
related to the action of protease) [32]. The present study found linalool, diethyl succinate,
2-methyl-3-heptanone, butanal diethyl acetal, hexanal and n-octanol, six compounds
with high content of aromatic compounds unique to liqueur wines after protease com-
bined with heat treatment. Seven compounds, namely ethyl acetate, propanol, isobutanol,
2,3-butanediol, methyl dimethoxyacetate, acetic acid and n-butanol, were the aroma com-
pounds with high contents specific to the bentonite treatment. Ethyl trans-2-hexenoate,
styrene and 3,6-dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran were the aroma com-
pounds with high contents that were unique to the control samples.

2.3. Sensory Evaluation

As shown in Figure 6, after sensory evaluation by the evaluators, it was found that
among a total of 18 sensory attributes involving aroma, flavor and mouthfeel in the test,
the liqueur wines presented after different treatments had high ratings for eight sensory
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attributes, including overall intensity (A), fruitiness (A), floral (A), overall intensity (F),
fruitiness (F), honey (F), acidity (M) and sweetness (M), where the overall aroma intensity
scores were similar among all the wines, and the overall odor and flavor intensity of the
different treated wine samples had high ratings, indicating that the liqueur wines had better
flavor characteristics. In addition, fruity, floral and sweetness were the most prominent
characteristics of the liqueur wine samples, which was consistent with the results of the
analysis of the volatile matter data of the liqueur wine samples from the different treatments
in the previous part of this study. Some (but not all) volatile alcohols, esters and terpenes
imparted desirable fruity and floral aroma [33] and these volatiles were abundant in ASE.
Thus, compared to the control and bentonite treatments, the protease combined with heat
treatment was more prominent in terms of fruit (A) and floral (A) odors. Meanwhile, the
distinctive organoleptic characteristics of liqueurs were usually closely related to their
high sugar content, while the oxidation, Maillard reaction, browning and caramelization
reactions that occurred during the aging phase may also give fortified wines their unique
organoleptic characteristics [34].
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3. Materials and Methods
3.1. Materials and Chemicals

Semillon grapes (24.6 ◦Brix) were harvested in 2020 from wine-growing sites in Qilian,
Gaotai County, Zhangye City, Gansu Province, China; ugni blanc brandy (51% vol) was
sourced from the Gansu Province Wine Industry Technology Research and Development
Center, China; and Italian Riesling ice wine (9% vol) was obtained from Qilian Wine Co.,
Zhangye City, Gansu Province, China.

AROMA White active yeast (Saccharomyces cerevisiae) was purchased from Enartis,
Italy, and acidic protease, derived from Aspergillus niger, 50 U/mg, was purchased from
Shanghai Yuanye Biotechnology Co. (Shanghai, China).

3.2. Vinifications and Samples
3.2.1. Small-Scale Winemaking

Grapes of uniform ripeness were selected, destemmed and crushed, and 60 mg/L SO2
(as sodium sulfite) and 35 mg/L pectinase were added uniformly to the must, which was
rapidly cooled down and left to stand at 10 ◦C for 8 h. After clarification, the precipitate was
separated, and 600 mg/L bentonite was added and left to stand for 4 d at 2 ◦C. Subsequently,
the precipitation was separated again. Alcoholic fermentation was carried out at 20 ± 1 ◦C
with 0.2 g/L addition of yeast, and the fermented base wine was stored at 14~16 ◦C for
1~2 months after the fermentation.

3.2.2. Liqueur Preparation

The Semillon liqueur wine with 18.8% vol alcohol and 98.90 g/L total sugar was
formulated with Semillon white wine (30.5%, v/v), ugni blanc brandy (27.8%, v/v), Italian
Riesling ice wine (12.6%, v/v), and Semillon grape juice (29.1%, v/v) with reference to the
blending parameters optimized by Ding et al. [35].

3.2.3. Clarifying Treatment

Pre-tests were conducted to determine the minimum bentonite dose and the optimal
amount of protease addition required for liqueur wine stabilization. Specifically, treatment
groups were: (H) treated with heat only (50 ◦C, 3 h); (B) 0.3 g/L bentonite added in the form
of aqueous suspension (2% W/V); and (ASE) 0.4 g/L protease added and kept at a constant
temperature of 50 ◦C for 3 h. The treated liqueur wine samples were stored at 20 ◦C for
48 h. The sediment was separated and the clarified liquid was collected for analysis.

3.3. Chemical Analysis

Liqueur composition, including residual sugar, total acid, volatile acid and pH, was
determined using a multifunctional wine analyzer [36].

The protein content was determined by using the Coomassie brilliant blue G-250
method with reference to the method of Bradford et al. [37]. Specifically, 1 mL of the wine
sample to be tested was aspirated, 5 mL of Coomassie brilliant blue G250 reagent was
added, shaken thoroughly and mixed well, and then allowed to rest for 2 min. Absorbance
was measured at 595 nm, and a standard curve was obtained using bovine serum albumin
as the standard.

3.4. Volatile Analysis

Extraction and analysis of volatile compounds followed the methods proposed by
Ma et al. [5].

3.4.1. Aroma Enrichment

For headspace solid-phase microextraction (HS-SPME), 8 mL of wine sample was
taken in a 15 mL headspace vial, and 2.4 g of NaCl and 20 µL of the internal standard
2-octanol (concentration 82.07 mg/L) were added, sealed with a rotor, placed on a magnetic
stirrer, equilibrated in a water bath at 40 ◦C for 30 min and then extracted in headspace for
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30 min. After the extraction, the extraction head was removed and inserted into a GC-MS
coupler and aroma detection was performed.

3.4.2. GC-MS Conditions

Chromatographic conditions: chromatographic column: DB-WAX
(60 m × 2.5 mm × 0.25 µm); ramp-up procedure: 40 ◦C for 7 min, 4 ◦C/min to 200 ◦C
for 8 min; carrier gas (He) flow rate 1 mL/min; injection port temperature 240 ◦C; no
split injection.

Mass spectrometry conditions: electron bombardment ion source (EI); electron en-
ergy 70 eV; transmission line temperature 220 ◦C; ion source temperature 240 ◦C; mass
spectrometry scan range m/z 50 to 350.

3.4.3. Volatile Composition Analysis

Qualitative analysis: retention index (RI) and NIST-11, Wiley and flavor and fragrance
library search comparison were used for characterization, and a match of >700 was required
for library comparison.

Quantitative analysis: the concentration of volatile aroma compounds was carried out
by the internal standard method with 2-octanol as the internal standard. The calculation
formula was as follows:

X = A1 × C/A

where X indicates mass concentration of the aroma substance, µg/L; A1 is the peak area of
the measured aroma substance; C is the mass concentration of the internal standard, µg/L;
and A is the peak area of the measured internal standard.

3.5. Sensory Analysis

The sensory characteristics of liqueur wines were performed by a group of non-expert
consumers using the rate-all-that-apply (RATA) sensory method [38]. The sensory descrip-
tors evaluated in Table 3 were determined by referring to the method of Sui et al. [14] and
incorporating the sensory attributes of the grape varieties used in liqueurs. Specifically, the
panel members (n = 20, 10 females and 10 males, aged 18~35 years) were wine professionals
from the College of Food Science and Engineering, Gansu Agricultural University with
extensive knowledge of wine tasting. The sensory attributes of the corresponding grape
varieties and the use of the RATA procedure were explained to the panelists before the
start of the tasting. The RATA evaluation was carried out with controlled environmental
conditions (i.e., lighting and at a constant 22 ± 1 ◦C). During tasting, chilled liqueur wine
samples (10 ◦C, 25 mL) were served in 4-digit coded, clear 215 mL glasses using a random-
ized presentation order. Panelists assessed the intensity of each sensory attribute, where
0 = “not perceived”, 1 = “extremely low”, 4 = “moderate” and 7 = “extremely high”. A
1 min break was taken between samples, one sample at a time, and water and plain crackers
were provided for epiglottal cleansing.

Table 3. Table of sensory evaluation attributes.

Aroma (A) Flavor (F) Mouthfeel (M) Sensory Intensity Score

Overall intensity Overall intensity Acidity
0 = “ not perceived “
1 = “ extremely low “

4 = “ moderate “
7 = “ extremely high “

Fruity Fruity Bitterness
Floral Floral Sweetness
Honey Honey Dryness

Herbaceous Herbaceous Astringency
Solvent Solvent Alcohol heat/warmth

3.6. Statistical Analysis

All tests were repeated three times, plotted using Origin 2018, SIMCA 14.1 and
TBtools software, and data were statistically analyzed by SPSS 22. Analysis of variance
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(ANOVA) was used to analyze the data of all physicochemical parameters. Tukey’s range
test was used to determine the significant differences at p < 0.05, and data are expressed as
mean ± standard deviation.

4. Conclusions

The protease combined with heat treatment had a certain stabilizing effect on pro-
teins, and had no significant negative effect on other nutrients of liqueurs. A total of
58 volatile compounds were detected by HS-SPME-GC/MS. Compared with the blank con-
trol (44 species, total 108.705 mg/L), 52 (83.233 mg/L) and 50 (120.655 mg/L) compounds
were detected in the bentonite and protease combined with heat treatments, respectively.
The protease combined with heat treatment helped to improve the terpene aroma and
enhance the floral and fruity aroma in the liqueurs, and the compounds with major con-
tributions were mainly ionone, β-damascenone, 3-methyl-1-butanol, alpha-terpineol and
limonene. OPLS-DA achieved an accurate differentiation of the differential aroma com-
pounds in the liqueur wines after different treatments. Therefore, protease combined
with heat treatment can be used as an alternative to bentonite for the clarification and
stabilization of liqueurs.
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