Aromatic Plant-Based Functional Foods: A Natural Approach to Manage Cardiovascular Diseases
Abstract
:1. Introduction
2. Overview on Aromatic Plants and Their Volatile Extracts
3. Potential of Aromatic Plants and Volatile Extracts on the Cardiovascular System
4. Challenges in the Use of Essential Oils in Functional Foods
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- FAO. FAO Term Portal; FAO: Rome, Italy, 2005. [Google Scholar]
- Temple, N.J. A rational definition for functional foods: A perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research, Inc. Flavors and Fragrances Market Size Worth $44.6 Billion by 2030. 2023. Available online: https://www.bloomberg.com/press-releases/2023-02-13/flavors-and-fragrances-market-size-worth-44-6-billion-by-2030-grand-view-research-inc (accessed on 5 March 2023).
- Hasler, C.M.; Kundrat, S.; Wool, D. Functional foods and cardiovascular disease. Curr. Atheroscler. Rep. 2000, 2, 467–475. [Google Scholar] [CrossRef]
- Anderson, C.A.; Cobb, L.K.; Miller, E.R.; Woodward, M.; Hottenstein, A.; Chang, A.R.; Mongraw-Chaffin, M.; White, K.; Charleston, J.; Tanaka, T.; et al. Effects of a behavioral intervention that emphasizes spices and herbs on adherence to recommended sodium intake: Results of the SPICE randomized clinical trial. Am. J. Clin. Nutr. 2015, 102, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Ziaee, M.; Khorrami, A.; Ebrahimi, M.; Nourafcan, H.; Amiraslanzadeh, M.; Rameshrad, M.; Garjani, M.; Garjani, A. Cardioprotective Effects of Essential Oil of Lavandula angustifolia on Isoproterenol-induced Acute Myocardial Infarction in Rat. Iran. J. Pharm. Res. 2015, 14, 279–289. [Google Scholar]
- Yu, W.; Liu, Q.; Zhu, S. Carvacrol Protects against Acute Myocardial Infarction of Rats via Anti-oxidative and Anti-apoptotic Pathways. Biol. Pharm. Bull. 2013, 36, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastos, J.F.A.; Moreira, Í.J.A.; Ribeiro, T.P.; Medeiros, I.A.; Antoniolli, A.R.; De Sousa, D.P.; Santos, M.R.V. Hypotensive and Vasorelaxant Effects of Citronellol, a Monoterpene Alcohol, in Rats. Basic Clin. Pharmacol. Toxicol. 2009, 106, 331–337. [Google Scholar] [CrossRef]
- AlSaffar, R.M.; Rashid, S.; Ahmad, S.B.; Rehman, M.U.; Hussain, I.; Parvaiz Ahmad, S.; Ganaie, M.A. D-limonene (5 (one-methyl-four-[1-methylethenyl]) cyclohexane) diminishes CCl 4 -induced cardiac toxicity by alleviating oxidative stress, inflammatory and cardiac markers. Redox Rep. 2022, 27, 92–99. [Google Scholar] [CrossRef]
- Jackson-Davis, A.; White, S.; Kassama, L.S.; Coleman, S.; Shaw, A.; Mendonca, A.; Cooper, B.; Thomas-Popo, E.; Gordon, K.; London, L. A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J. Food Prot. 2023, 86, 100025. [Google Scholar] [CrossRef]
- ISO 9235; Aromatic Natural Raw Materials—Vocabulary. ISO: Geneva, Switzerland, 2013.
- Council of Europe. European Pharmacopoeia, 9th ed.; Council of Europe: Strasbourg, France, 2016. [Google Scholar]
- Zuzarte, M.; Salgueiro, L. Essential oils chemistry. In Bioactive Essential Oils and Cancer; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–61. [Google Scholar]
- EUROPAM the EHGA. Guidelines for Good Agricultural and Wild Collection Practices for Medicinal and Aromatic Plants (GACP-MAP) _8.0; EMEA: Brussels, Belgium, 2010. [Google Scholar]
- Matera, R.; Lucchi, E.; Valgimigli, L. Plant Essential Oils as Healthy Functional Ingredients of Nutraceuticals and Diet Supplements: A Review. Molecules 2023, 28, 901. [Google Scholar] [CrossRef]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, L.; Wang, S.; Gao, Y.; Jin, F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: A systematic review. J. Ethnopharmacol. 2023, 301, 115829. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.C.B.; Costa, I.M.; Freire, M.A.M.; Lima, F.O.V.; Neta, F.I.; de Souza Lucena, E.E.; Alves, R.D.; Cavalcanti, J.R.L.P.; Pinheiro, F.I.; de Azevedo, E.P.; et al. Essential Oils in Experimental Models of Neuropsychiatric Disorders: A Systematic Review. Curr. Neuropharmacol. 2021, 19, 1738–1759. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Zuzarte, M.; Marques, C.; Girão, H.; Salgueiro, L. Protective Effects of Phenylpropanoids and Phenylpropanoid-rich Essential Oils on the Cardiovascular System. Mini Rev. Med. Chem. 2019, 19, 1459–1471. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Martín, M.J.; Ruiz, M.A.; Clares, B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int. 2016, 83, 41–59. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 5 March 2023).
- World Health Organization. Noncommunicable Diseases: Campaign for Action—Meeting the NCD Targets. 2011. Available online: https://cdn.who.int/media/docs/default-source/ncds/ncd-surveillance/global-ncds-surveillance-monitoring-framework24c84b44-7924-412d-ab83-2dfb88a45169.pdf?sfvrsn=f0d5925_3&download=true (accessed on 5 March 2023).
- Baroletti, S.; Dell’Orfano, H. Medication Adherence in Cardiovascular Disease. Circulation 2010, 121, 1455–1458. [Google Scholar] [CrossRef]
- Tuso, P.; Stoll, S.R.; Li, W.W. A plant-based diet, atherogenesis, and coronary artery disease prevention. Perm. J. 2015, 19, 62–67. [Google Scholar] [CrossRef] [Green Version]
- D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean Diet: A Review of Evidence of the Role and Sustainability of the Mediterranean Diet. Nutrients 2019, 11, 1306. [Google Scholar] [CrossRef] [Green Version]
- Alves-Silva, J.M.; Zuzarte, M.; Girão, H.; Salgueiro, L. Natural Products in Cardiovascular Diseases: The Potential of Plants from the Allioideae Subfamily (Ex-Alliaceae Family) and Their Sulphur-Containing Compounds. Plants 2022, 11, 1920. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Zuzarte, M.; Girão, H.; Salgueiro, L. The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules 2021, 26, 3506. [Google Scholar] [CrossRef]
- Kundu, S.; Shabir, H.; Basir, S.F.; Khan, L.A. Inhibition of As(III) and Hg(II) caused aortic hypercontraction by eugenol, linalool and carvone. J. Smooth Muscle Res. 2014, 50, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Criddle, D.N.; Madeira, S.V.F.; de Moura, R.S. Endothelium-dependent and -independent vasodilator effects of eugenol in the rat mesenteric vascular bed. J. Pharm. Pharmacol. 2010, 55, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Al-Trad, B.; Alkhateeb, H.; Alsmadi, W.; Al-Zoubi, M. Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat. Life Sci. 2019, 216, 183–188. [Google Scholar] [CrossRef]
- Tognolini, M.; Ballabeni, V.; Bertoni, S.; Bruni, R.; Impicciatore, M.; Barocelli, E. Protective effect of Foeniculum vulgare essential oil and anethole in an experimental model of thrombosis. Pharmacol. Res. 2007, 56, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, S.; Figueiredo, A.F.; Magalhães, P.J.C.; Leal-Cardoso, J.H.; Gloria, P.D. Cardiovascular effects of methyleugenol, a natural constituent of many plant essential oils, in normotensive rats. Life Sci. 2004, 74, 2401–2412. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, G.A.; de Souza, D.S.; Lima, B.S.; de Vasconcelos, C.M.L.; Araújo, A.A.D.S.; Durço, A.O.; Quintans-Junior, L.J.; Almeida, J.R.G.D.S.; Oliveira, A.P.; de Santana-Filho, V.J.; et al. Bradycardic and Antiarrhythmic Effects of the D-Limonene in Rats. Arq. Bras. Cardiol. 2019, 113, 925–932. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Zuzarte, M.; Marques, C.; Viana, S.; Preguiça, I.; Baptista, R.; Ferreira, C.; Cavaleiro, C.; Domingues, N.; Sardão, V.A.; et al. 1,8-Cineole ameliorates right ventricle dysfunction associated with pulmonary arterial hypertension by restoring connexin43 and mitochondrial homeostasis. Pharmacol. Res. 2022, 180, 106151. [Google Scholar] [CrossRef]
- Bai, C.; Ma, Q.; Li, Q.; Yu, L.; Zhen, D.; Liu, M.; Wei, C. Combination of 1,8-cineole and beta-caryophyllene synergistically reverses cardiac hypertrophy in isoprenaline-induced mice and H9c2 cells. Bioorg. Chem. 2022, 124, 105823. [Google Scholar] [CrossRef]
- Lahlou, S.; Carneiro-Leão, R.F.L.; Leal-Cardoso, J.H.; Toscano, C.F. Cardiovascular Effects of the Essential Oil of Mentha × villosa and its Main Constituent, Piperitenone Oxide, in Normotensive Anaesthetised Rats: Role of the Autonomic Nervous System. Planta Med. 2001, 67, 638–643. [Google Scholar] [CrossRef]
- Sensch, O.; Vierling, W.; Brandt, W.; Reiter, M. Effects of inhibition of calcium and potassium currents in guinea-pig cardiac contraction: Comparison of β-caryophyllene oxide, eugenol, and nifedipine. Br. J. Pharmacol. 2000, 131, 1089–1096. [Google Scholar] [CrossRef] [Green Version]
- Ju, M.-S.; Lee, S.; Bae, I.; Hur, M.-H.; Seong, K.; Lee, M.S. Effects of Aroma Massage on Home Blood Pressure, Ambulatory Blood Pressure, and Sleep Quality in Middle-Aged Women with Hypertension. Evid. Based Complement. Altern. Med. 2013, 2013, 403251. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.H. The Effects of the Inhalation Method Using Essential Oils on Blood Pressure and Stress Responses of Clients with Essential Hypertension. J. Korean Acad. Nurs. 2006, 36, 1123. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.-H.; Lee, S.-H.; Yoo, Y.-S. Effects of Aromatherapy on Changes in the Autonomic Nervous System, Aortic Pulse Wave Velocity and Aortic Augmentation Index in Patients with Essential Hypertension. J. Korean Acad. Nurs. 2010, 40, 705. [Google Scholar] [CrossRef] [Green Version]
- Veiskaramian, A.; Gholami, M.; Yarahmadi, S.; Amanolahi Baharvand, P.; Birjandi, M. Effect of aromatherapy with Melissa essential oil on stress and hemodynamic parameters in acute coronary syndrome patients: A clinical trial in the emergency department. Complement. Ther. Clin. Pract. 2021, 44, 101436. [Google Scholar] [CrossRef]
- Jafari, S.; Sattari, R.; Ghavamzadeh, S. Evaluation the effect of 50 and 100 mg doses of Cuminum cyminum essential oil on glycemic indices, insulin resistance and serum inflammatory factors on patients with diabetes type II: A double-blind randomized placebo-controlled clinical trial. J. Tradit. Complement. Med. 2017, 7, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Jafari, T.; Mahmoodnia, L.; Tahmasebi, P.; Memarzadeh, M.R.; Sedehi, M.; Beigi, M.; Fallah, A.A. Effect of cumin (Cuminum cyminum) essential oil supplementation on metabolic profile and serum leptin in pre-diabetic subjects: A randomized double-blind placebo-controlled clinical trial. J. Funct. Foods 2018, 47, 416–422. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Mirkarimi, S.A.; Amini, M.; Mohtashami, R.; Kianbakht, S.; Fallah Huseini, H. Effects of Nigella sativa L. Seed Oil in Type II Diabetic Patients: A Randomized, Double-Blind, Placebo-Controlled Clinical. J. Med. Plants 2013, 12, 93–99. [Google Scholar]
- Rahmani, A.; Niknafs, B.; Naseri, M.; Nouri, M.; Tarighat-Esfanjani, A. Effect of Nigella Sativa Oil on Oxidative Stress, Inflammatory, and Glycemic Control Indices in Diabetic Hemodialysis Patients: A Randomized Double-Blind, Controlled Trial. Evid. Based Complement. Altern. Med. 2022, 2022, 2753294. [Google Scholar] [CrossRef] [PubMed]
- Bikmoradi, A.; Roshanaei, G.; Moradkhani, S.; Fatahi, A. Impact of inhalation aromatherapy with Damask Rose (Rosa damascena) on stress, anxiety and hemodynamic parameters of patients undergoing coronary angiography: A single blind randomized clinical trial. J. Complement. Integr. Med. 2022, 19, 753–761. [Google Scholar] [CrossRef]
- Upson, T.; Andrews, S. The Genus Lavandula; Royal Botanic Gardens: Kew, UK, 2004. [Google Scholar]
- Anjos, P.J.C.; Lima, A.O.; Cunha, P.S.; De Sousa, D.P.; Onofre, A.S.C.; Ribeiro, T.P.; Medeiros, I.A.; Antoniolli, A.R.; Quintans-Júnior, L.J.; Santosa, M.R.V. Cardiovascular effects induced by linalool in normotensive and hypertensive rats. Z. Naturforsch. C 2013, 68, 181–190. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Abduldaium, M.S.; Younis, N.S. Cardioprotective Effect of Linalool against Isoproterenol-Induced Myocardial Infarction. Life 2021, 11, 120. [Google Scholar] [CrossRef]
- Kim, J.R.; Kang, P.; Lee, H.S.; Kim, K.Y.; Seol, G.H. Cardiovascular effects of linalyl acetate in acute nicotine exposure. Environ. Health Prev. Med. 2017, 22, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, Y.S.; Kwon, S.; Lee, H.S.; Seol, G.H. Linalyl acetate prevents hypertension-related ischemic injury. PLoS ONE 2018, 13, e0198082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.K.; Hsieh, Y.S.; Kwon, S.; Lee, H.S.; Seol, G.H. Linalyl acetate restores endothelial dysfunction and hemodynamic alterations in diabetic rats exposed to chronic immobilization stress. J. Appl. Physiol. 2018, 124, 1274–1283. [Google Scholar] [CrossRef]
- Haddadi, M.; Robat Sarpooshi, H.; Jaghouri, E.; Dehnabi, A. The effect of aromatherapy with rose essential oil on apparent anxiety in patients with myocardial infarction. J. Complement. Integr. Med. 2022, 19, 1007–1012. [Google Scholar] [CrossRef]
- Soleimani, M.; Kashfi, L.S.; Mirmohamadkhani, M.; Ghods, A.A. The effect of aromatherapy with peppermint essential oil on anxiety of cardiac patients in emergency department: A placebo-controlled study. Complement. Ther. Clin. Pract. 2022, 46, 101533. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Sousa, C.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. The Anti-Inflammatory Response of Lavandula luisieri and Lavandula pedunculata Essential Oils. Plants 2022, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Francisco, V.; Neves, B.; Liberal, J.; Cavaleiro, C.; Canhoto, J.; Salgueiro, L.; Cruz, M.T. Lavandula viridis L’Hér. Essential Oil Inhibits the Inflammatory Response in Macrophages Through Blockade of NF-KB Signaling Cascade. Front. Pharmacol. 2022, 12, 695911. [Google Scholar] [CrossRef]
- Zuzarte, M.R.; Martins, A.P.; Gonçalves, M.J.; Salgueiro, L.R. Mycotoxins Contamination in food: Alternative plant preservatives, legislation and detection methods. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 1–27. [Google Scholar]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Saeed, K.; Pasha, I.; Jahangir Chughtai, M.F.; Ali, Z.; Bukhari, H.; Zuhair, M. Application of essential oils in food industry: Challenges and innovation. J. Essent. Oil Res. 2022, 34, 97–110. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-González, G.F.; Leuner, O.; Melnikovova, I.; Fernandez-Cusimamani, E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front. Pharmacol. 2021, 12, 740302. [Google Scholar] [CrossRef]
- Kohlert, C.; van Rensen, I.; März, R.; Schindler, G.; Graefe, E.U.; Veit, M. Bioavailability and Pharmacokinetics of Natural Volatile Terpenes in Animals and Humans. Planta Med. 2000, 66, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kanwar, R.; Mehta, S.K. Recent Development in Essential Oil-Based Nanocarriers for Eco-Friendly and Sustainable Agri-Food Applications: A Review. ACS Agric. Sci. Technol. 2022, 2, 823–837. [Google Scholar] [CrossRef]
- Liao, W.; Badri, W.; Dumas, E.; Ghnimi, S.; Elaissari, A.; Saurel, R.; Gharsallaoui, A. Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Appl. Sci. 2021, 11, 5778. [Google Scholar] [CrossRef]
- Momin, J.K.; Joshi, B.H. Nanotechnology in foods. In Nanotechnologies in Food and Agriculture; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–24. [Google Scholar]
- Froiio, F.; Mosaddik, A.; Morshed, M.T.; Paolino, D.; Fessi, H.; Elaissari, A. Edible Polymers for Essential Oils Encapsulation: Application in Food Preservation. Ind. Eng. Chem. Res. 2019, 58, 20932–20945. [Google Scholar] [CrossRef]
- Lim, D.Y.; Lee, J.-S.; Lee, H.G. Nano-encapsulation of a combination of clove oil and thymol and their application in fresh-cut apples and raw minced beef. Food Control. 2023, 148, 109683. [Google Scholar] [CrossRef]
- Oprea, I.; Fărcaș, A.C.; Leopold, L.F.; Diaconeasa, Z.; Coman, C.; Socaci, S.A. Nano-Encapsulation of Citrus Essential Oils: Methods and Applications of Interest for the Food Sector. Polymers 2022, 14, 4505. [Google Scholar] [CrossRef]
- Salanță, L.C.; Cropotova, J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. Plants 2022, 11, 2488. [Google Scholar] [CrossRef]
- Dad, H.A.; Gu, T.-W.; Zhu, A.-Q.; Huang, L.-Q.; Peng, L.-H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol. Ther. 2021, 29, 13–31. [Google Scholar] [CrossRef]
- Zuzarte, M.; Vitorino, C.; Salgueiro, L.; Girão, H. Plant Nanovesicles for Essential Oil Delivery. Pharmaceutics 2022, 14, 2581. [Google Scholar] [CrossRef]
- Vandergriff, A.; Huang, K.; Shen, D.; Hu, S.; Hensley, M.T.; Caranasos, T.G.; Qian, L.; Cheng, K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 2018, 8, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.B.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D.; et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, X.; Deng, Z.-B.; Mu, J.; Zhang, L.; Yan, J.; Miller, D.; Feng, W.; McClain, C.J.; Zhang, H.-G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 2015, 4, 28713. [Google Scholar] [CrossRef]
- Benny, A.; Thomas, J. Essential Oils as Treatment Strategy for Alzheimerʼs Disease: Current and Future Perspectives. Planta Med. 2019, 85, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cardiovascular Condition | Essential Oil Trade Name (Chemical Composition) | Plant Scientific Name (Family) | Type and Number of Participants | Type of Intervention | Dose and Treatment | Outcomes | Ref. |
---|---|---|---|---|---|---|---|
Hypertension | Blend: Lavender, marjoram, ylang-ylang, and neroli (20:10:15:2) | Lavandula angustifolia * (Lamiaceae); Origanum majorana * (Lamiaceae); Cananga odorata * (Annonaceae); Citrus aurantium * (Rutaceae) | Middle-aged women with hypertension; n = 99 | Aroma massage and aroma body cream | Five sessions, during 4 weeks [lavender, marjoram, ylang-ylang, and neroli blended in 20:10:15:2 ratio and diluted to 3%] | ↓ Blood pressure and ↑ quality of sleep | [38] |
Blend: Lavender, ylang-ylang, and bergamot (5:3:2) | Lavandula angustifolia * (Lamiaceae); Cananga odorata * (Annonaceae); Citrus bergamia (Rutaceae) | Hypertensive individuals; n = 52 | Aromatherapy | Daily for 4 weeks | ↓ Blood pressure and stress responses | [39] | |
Blend: Lemon, lavender, and ylang-ylang (2:2:1) | Citrus limonum (Rutaceae); Lavandula angustifolia (Lamiaceae); Cananga odorata (Annonaceae) | Essential hypertensive patients; n = 42 | Aromatherapy | 2 min per inhalation, two times per day for 3 weeks [lemon, lavender, and ylang-ylang blended in a 2:2:1 ratio] | ↓ Systolic blood pressure | [40] | |
lemon balm | Melissa officinalis (Lamiaceae) | Patients with acute coronary syndrome upon admission to the emergency department; n = 72 | Aromatherapy | Two drops in two aromatherapy phases for 10 min with 90-min interval | Regulation of mean arterial pressure and heart rate | [41] | |
Diabetes | green cumin [major compounds: Cumin aldehyde, thymoquinone, p-cymene, γ -phellandrene, limonene, and myrcene] | Cuminum cyminum (Apiaceae) | Patients with diabetes type II; n = 99 | Ingestion | 50 or 100 mg/day for 8 weeks | ↓ Glycemic indices, insulin resistance, and serum inflammatory factors | [42] |
cumin [major compounds: Cumin aldehyde (41.9%), γ-terpinene (16.5%), ρ-cymene (16.2%), and β-pinene (10.9%)] | Cuminum cyminum (Apiaceae) | Pre-diabetic patients; n = 64 | Ingestion | One soft gel (75 mg of cumin EO) per day for 10 weeks | Ameliorated insulin function and lipid profile, and anthropometric indices | [43] | |
black seed | Nigella sativa (Ranunculaceae) | Type II diabetic patients; n = 70 | Ingestion | 2.5 mL, two times a day after meals for 3 months | ↓ Glucose a, HbA1c, and BMI | [44] | |
Nigella sativa (Ranunculaceae) | Diabetic patients undergoing hemodialysis; n = 46 | Ingestion | One capsule (with 2 g of oil) per day after hemodialysis and apart from meals | ↑ Levels of SOD, MDA, TAC, hs-CRP, HbA1c, and FBS | [45] | ||
Cardiovascular disease | Damask Rose | Rosa damascena (Rosaceae) | Patients undergoing coronary angiography; n = 98 | Inhalation before coronary angiography | Five drops of 40% EO for 20 min | ↓ Hemodynamic parameters | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuzarte, M.; Girão, H.; Salgueiro, L. Aromatic Plant-Based Functional Foods: A Natural Approach to Manage Cardiovascular Diseases. Molecules 2023, 28, 5130. https://doi.org/10.3390/molecules28135130
Zuzarte M, Girão H, Salgueiro L. Aromatic Plant-Based Functional Foods: A Natural Approach to Manage Cardiovascular Diseases. Molecules. 2023; 28(13):5130. https://doi.org/10.3390/molecules28135130
Chicago/Turabian StyleZuzarte, Mónica, Henrique Girão, and Lígia Salgueiro. 2023. "Aromatic Plant-Based Functional Foods: A Natural Approach to Manage Cardiovascular Diseases" Molecules 28, no. 13: 5130. https://doi.org/10.3390/molecules28135130
APA StyleZuzarte, M., Girão, H., & Salgueiro, L. (2023). Aromatic Plant-Based Functional Foods: A Natural Approach to Manage Cardiovascular Diseases. Molecules, 28(13), 5130. https://doi.org/10.3390/molecules28135130