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Abstract: Natural kaolinite underwent advanced morphological-modification processes that involved
exfoliation of its layers into separated single nanosheets (KNs) and scrolled nanoparticles as nanotubes
(KNTs). Synthetic nanostructures have been characterized as advanced and effective oxaliplatin-
medication (OXAP) delivery systems. The morphological-transformation processes resulted in a
remarkable enhancement in the loading capacity to 304.9 mg/g (KNs) and 473 mg/g (KNTs) instead
of 29.6 mg/g for raw kaolinite. The loading reactions that occurred by KNs and KNTs displayed
classic pseudo-first-order kinetics (R2 > 0.90) and conventional Langmuir isotherms (R2 = 0.99). KNTs
exhibit a higher active site density (80.8 mg/g) in comparison to KNs (66.3 mg/g) and raw kaolinite
(6.5 mg/g). Furthermore, compared to KNs and raw kaolinite, each site on the surface of KNTs may
hold up to six molecules of OXAP (n = 5.8), in comparison with five molecules for KNs. This was
accomplished by multi-molecular processes, including physical mechanisms considering both the
Gaussian energy (<8 KJ/mol) and the loading energy (<40 KJ/mol). The release activity of OXAP
from KNs and KNTs exhibits continuous and regulated profiles up to 100 h, either by KNs or KNTs,
with substantially faster characteristics for KNTs. Based on the release kinetic investigations, the
release processes have non-Fickian transport-release features, indicating cooperative-diffusion and
erosion-release mechanisms. The synthesized structures have a significant cytotoxicity impact on
HCT-116 cancer cell lines (KNs (71.4% cell viability and 143.6 g/mL IC-50); KNTs (11.3% cell viability
and 114.3 g/mL IC-50). Additionally, these carriers dramatically increase OXAP’s cytotoxicity (2.04%
cell viability, 15.4 g/mL IC-50 (OXAP/KNs); 0.6% cell viability, 4.5 g/mL IC-50 (OXAP/KNTs)).

Keywords: kaolinite; exfoliation; methanol; oxaliplatin; loading; cytotoxicity

1. Introduction

Noncontagious diseases, particularly the most frequent form of cancer, have been
responsible for the vast majority of fatalities worldwide, and this influence is expected to
increase by 75% in the next few years [1,2]. Colorectal cancer, one of the most frequently
occurring cancers of the digestive system, affects roughly 13% of cancer patients world-
wide [3,4]. It has a significant detrimental effect on human life and is one of the two
primary top variables that result in death and increase global rates of mortality. In the
mucosal layers, colorectal malignancy initially appeared as a polyp before spreading to the
submucosa and adjacent tissues. Then, during its most advanced phases, the oncologic
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cells extensively infiltrated the lymph nodes as well as adjacent organs [5–7]. To inhibit
the ongoing and continuing spread of cancer cells, a variety of chemotherapy treatments
have been implemented [8,9]. However, the majority of frequently applied chemotherapies
are toxic to normal fresh cells as well as having a number of adverse effects on a variety of
organisms, such as kidney damage and bone-marrow suppression [4,5]. To enhance the
selectivity as well as the biological safety of the most commonly utilized chemotherapies,
several strategies have been investigated [5]. This entailed developing innovative forms of
chemotherapy or improving the therapeutic and safety attributes of widely used medica-
tions to meet global demand and the expense of living in developing and underdeveloped
nations [3].

Oxaliplatin (OXAP) has been confirmed as one of the most successful chemotherapy
drugs employed for the therapy of cancerous cells owing to its ability to produce active
platinum-based structures that have an intense inhibitory effect on the replication of DNA
in tumor cells [3,4,10]. However, the OXAP drug was approved by the FAD organization to
be applied as chemotherapy during the treatment of the metastatic stages of cancer, and its
metabolic byproducts and associated derivatives demonstrate considerable toxic effects
on healthy and infected cells [7,11]. OXAP revealed a variety of serious adverse effects
during the course of therapy, including myelotoxicity, cardiotoxicity, and gastrointestinal
problems [7,12]. Furthermore, additional concerns connected to OXAP’s poor bloodstream
solubility have been reported [6,13]. As a result, a variety of innovative delivery tech-
niques were developed as a successful approach for enhancing the selectivity, solubility,
curative value, release rate, and therapeutic effects of OXAP drugs and can also maintain
the provided dose of the medication at the recommended quantities [11,12]. This may
minimize the adverse impacts of the medication on other healthy cells and regulate how
long carcinogenic cells remain exposed to the medication ions [9,11].

Several types of inorganic, organic, and organic/inorganic hybrid structures have
been described as successful delivery vehicles for the OXAP drug in addition to various
forms of chemotherapies [9,14,15]. These structures significantly enhance the retention
and permeation impacts of anticancer medications. Alginate, cellulose/zeolite, cyclodex-
trin/phillipsite, mesoporous silica, bentonite/cellulose, polymers, lipid nanoparticles, and
liposomes were among the materials that were used in these formulations [4,9,11,12]. Clay
minerals, such as kaolinite, vermiculite, montmorillonite, sepiolite, and halloysite, were
widely reported as the most effective carriers of the common chemotherapies. The majority
of clay minerals have distinct layered aluminosilicate frameworks that have significant
ion-exchange capability, biological compatibility, non-toxic nature, stable chemical prop-
erties, adsorption capacity, affordable prices, thermal resistance, and flexible chemical
properties [16–19].

Kaolinite clay mineral is a naturally occurring hydrous aluminum silicate material
with a 1:1 intercalated tetrahedron/octahedron framework [12,20]. Despite the fact that
the kaolinite mineral is abundant in nature and inexpensive in comparison with frequently
encountered industrial clay minerals such as montmorillonite, the studies introduced on its
potential as a therapeutic delivery structure remain insufficient [12,21]. This was attributed
to the estimated small surface area, quick release rate, weak ion-exchange capability, and
poor capacity to absorb drugs in contrast to bentonite and halloysite, which are the two
most extensively utilized clay-based carriers of drugs [22]. Consequently, various modi-
fication methods have been implemented to enhance the physical and chemical qualities
of kaolinite, including scrolling, exfoliation, organic functionalization (organosilanes and
amino alcohols), polymeric intercalation, and inorganic hybridization.

The morphological properties of the prepared materials have a significant influence
on their chemical, biological, and physical properties, as the morphology can significantly
influence the adsorption capacity, surface area, and extent of active site exposure [23]. Pro-
ducing nanomaterials with one-dimensional (nanotubes and nanorods) or two-dimensional
geometries has been proposed for many applications as a result of their remarkable surface
area, excellent dispersion properties, and significant surface reactivity [24–26]. In more
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recent years, the exfoliation of the layered units of clay minerals into separated forms
of single silicate sheets with two-dimensional forms has been developed as a highly ad-
vanced modification methodology. This technique was successfully applied to produce
innovative nanostructures of clay minerals that have significant biological compatibil-
ity, adsorption capacity, oxidation characteristics, surface reactivity, anticancer activity,
surface area, and dispersion properties [12,27]. However, this method was extensively
addressed for montmorillonite, while only a few studies concerning exfoliated kaolinite
have been described [12,27]. Additionally, one-dimensional nanostructures with notable
high biological activity, chemical reactivity, surface area, and catalytic performances were
suggested as highly advanced nanomaterials for a variety of applications [12,25,26]. Syn-
thetic kaolinite nanoscrolls or nanotubes have recently been recognized as innovative and
efficient adsorbent materials with outstanding surface area, an advanced porous frame-
work, and significant reactivity [28]. By simply exfoliating kaolinite sheets, dealumination
transforms them into nanoscrolls under the influence of ultrasonic sound waves and
chemical-expansion reactions. The resulting material has semicrystalline characteristics, a
significant surface area, a well-ordered porous framework, and an outstanding adsorption
capacity [22].

Unfortunately, the impact of the morphology of the kaolinite nanostructures on its
properties and biological activity as a drug-delivery system and anticancer agent has
not been covered by satisfactory studies yet. Therefore, the presented study involved
deep investigation for the qualification of synthetic kaolinite nanosheets and kaolinite
nanoscrolls as nano-delivery structures of the oxaliplatin drug during the treatment of
colorectal cancer. The study involved a detailed assessment of the loading properties,
release profiles, equilibrium, and thermodynamics of the loading properties, release kinetics,
and cytotoxicity studies.

2. Results and Discussion
2.1. Characterization of the Carrier

Based on the XRD patterns, structural transformations from the crystalline properties
of kaolinite raw minerals to single nano-kaolinite sheets (KNs) and kaolinite nanotubes
(KNTs) were monitored. The initial phase of kaolinite displays normal peaks (12.33◦ (001),
20.85◦ (−110), 24.87◦ (002), and 26.64◦ (111)) of triclinic, highly crystallized kaolinite with its
d-spacing value (0.72 nm). After the DMSO intercalation step, the majority of the kaolinite
characteristic diffraction peaks were significantly diminished, with the exception of the
matching peaks (001) and (002), which were notably deviated (Figure 1B). The diffraction
pattern that was obtained after the sonication-induced CTAB exfoliation process (KNs)
demonstrated a full diminution for all remaining peaks, and the modified material appeared
to display an amorphous crystalline structure (Figure 1C). This confirms that the kaolinite
layers were successfully split into independent, single silicate layers of nano-crystalline
or semi-crystalline nature. The synthetic kaolinite nanotubes, or scrolled kaolinite (KNTs),
also display an XRD pattern with a noticeable reduction for the kanon peaks of kaolinite
and the existence of a new reduced peak at a 2 Theta angle of about 10.6◦, which is the
significant peak of the (001) crystallographic planes of scrolled kaolinite (Figure 1D).

Regarding the morphological transformation during the different synthesis procedures,
the starting kaolinite grains appeared as stacked pseudo-hexagonal flaky or platey-like par-
ticles either in the recognized SEM images (Figure S1A) or the HRTEM images (Figure S1B).
The exfoliated products’ acquired HRTEM images show that the kaolinite has been signifi-
cantly stripped away and separated into single layers (Figure 2A). Other analyzed images
revealed the presence of the separated kaolinite silicate sheets with notable preservation
of the pseudo-hexagonal outline but with smoother margins than the raw kaolinite flakes
(Figure 2B). Some samples have lighter gray tones in contrast with the kaolinite sheets’
overall gray tone, revealing disorder in the structural silicate units of kaolinite (Figure 2C).
The successful production of the KNTs has also been verified by SEM and HRTEM pictures
(Figure 2D–F). The kaolinite mineral’s flakes were subjected to a significant transformation
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into curled or scrolled nanoparticles with tabular shapes (Figure 2D). The scrolling particles
were found to be tubes with tubular hollow patterns with interior diameters ranging from
2 to 20 nm (Figure 2E,F). The length of the developed KNTs ranged from almost 50 nm to
over 600 nm, and the external diameter was found to be between 10 nm and 50 nm. The
morphological transformation of kaolinite is associated with remarkable enhancement in
the determined surface area as the value of raw kaolinite (10 m2/g) increased to 80.2 m2/g
and 105 m2/g after the exfoliation (KNs) and scrolling processes (KNTs), respectively.
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The changes in the particle-size distribution of the addressed carriers before and after
the loading processes were measured using a laser diffraction particle-size analyzer. The
main particle diameter of free kaolinite is 86 ± 3 µm while the OXAP-loaded particles have
a slightly higher mean diameter (89.5 µm). The same observations were detected after the
loading of both KNs and KNTs with the drug molecules. The mean particle diameter of
KNs increased from 630 nm to 683 nm while the determined mean value of KNTs increased
slightly from 312 nm up to 336 nm.

Regarding the chemical properties, the impact of the morphological-transformation
process from kaolinite into KNs and KNTs on the structural chemical groups was assessed
according to their FT-IR spectra. The spectrum of kaolinite displays clearly the characteristic
groups of its aluminosilicate structure, including Si-O (787 and 456 cm−1), Si-O-Al (526 and
680 cm−1), Si-O-Si (1020 cm−1), Al-OH (912 and 3500 cm−1), O-H (1641 cm−1), and Si-OH
(3689 cm−1) [20,29] (Figure 3A). The detected spectrum of KNs shows exactly the same
absorption bands corresponding to those observed in raw kaolinite, but with substantial
shifts in their positions, reductions in their intensity, and splitting of identifiable bands
at about 900 cm−1 and 1000 cm−1 (Figure 3B). This denotes effective exfoliation of the
aluminosilicate layers of kaolinite into monolayer layers or separate sheets and predicted
distortions of its octahedron and tetrahedron units [22,30] (Figure 3B).
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The same observations were reported during the investigation of the FT-IR spectrum
of the synthetic KNTs particles (Figure 3C). The corresponding bands of the aluminosilicate
structure deviated significantly as compared to their positions in kaolinite. This also
signifies the distortion effect of the exfoliation and scrolling modification on the structural
octahedron and tetrahedron units of kaolinite, in addition to the impact of the newly
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formed hydrogen bonds between the used organic reagents (CTAB and methanol) and
the hydroxyl-bearing functional groups of kaolinite (Figure 3C) [22]. After the loading
process of OXAP into K, KNs, and KNTs, the resulting FT-IR spectra demonstrate the
successful loading of the drug molecules. The interaction between the drug ions and the
active chemical groups of K, KNs, and KNTs resulted in a considerable deviation in the
positions of the corresponding bands of the essential functional groups. Moreover, the
loaded OXAP drug was confirmed based on the detected bands of its chemical structure,
such as the asymmetric and symmetric Pt–O binding (K (831.3 cm−1 and 1297.3 cm−1)
(Figure S2A), KNs (826.7 cm−1 and 1290 cm−1) (Figure S2B), and KNTs (818.7 cm−1 and
1289.2 cm−1) (Figure S2C) [12,31,32].

2.2. Encapsulation of OXAP Drug
2.2.1. Influence of the Encapsulation Parameters
Effect of pH

The pH of the solution being used has a significant impact on the encapsulating ef-
fectiveness of OXAP into K, KNs, and KNTs by directing both the ionization nature of the
drug and the dominant charges on the carriers’ surfaces. Following specific parameters
(25 mg (carrier dose), 200 mg/L (drug concentration), 50 mL (volume), 4 h (duration),
and 20 ◦C (temperature)), the influence of pH was monitored from pH 3 to pH 8. Ex-
perimentally, the OXAP-loading capacities of K, KNs, and KNTs rise considerably with
increasing pH from pH 2 (1.1 mg/g (K), 6.7 mg/g (KNs), and 40.4 mg/g (KNTs) towards
pH 8 (12.4 mg/g (K), 92.7 mg/g (KNs), and 165.5 mg/g (KNTs) (Figure 4A). This behavior
was attributed to an increase in both the solubility and mobility behaviors of OXAP in solu-
tions with an acidic pH [4,15]. Additionally, [Pt(dach)(H2O)Cl]+ and [Pt(dach)(H2O)2]2+

are the most predominant and stable ionized forms produced whenever the OXAP drug is
dissolved at such acidic pH levels [16]. These OXAP ions that are positively charged exhibit
a high electrostatic repulsion nature with the protonated chemical structures of K, KNs,
and KNTs, which are saturated with numerous positive hydronium ions [33]. As a result,
the basic state is favored throughout the loading of OXAP into KNs and KNTs, which is
consistent with the measured pH(PZC) values of KNs (pH = 6.8) and KNTs (pH = 6.4).

Encapsulation Interval

The encapsulation characteristics of K, KNs, and KNTs with regard to loading dura-
tion are essential factors in determining the equilibrium interval of the OXAP loading and
controlling the loaded quantity in accordance with the proposed dosage. The influence of
encapsulation periods was monitored from 1 h to 24 h, whereas other impacting experi-
mental variables were kept constant (25 mg (carrier dose), pH 8, 50 mL (volume), 20 ◦C
(temperature), and 200 mg/L (OXAP concentration)). The OXAP encapsulation capacities
of K, KNs, and KNTs demonstrate an adequate enhancing effect for the rise in the duration
of the tests up to 10 h for K, 18 h for KNs, and 8 h for KNTs (Figure 4B). Following that,
the experimental loading rate shows no significant changes or is almost stable, and there
is no notable increase in the quantity of encapsulated OXAP, establishing the equilibrium
states of the carriers (19.3 mg/g (K), 148.5 mg/g (KNs), and 243 mg/g (KNTs)) (Figure 4B).
The number of active and free sites that were present on the surfaces of K, KNs, and KNTs
at the beginning of the experiments led to a noticeably higher actual encapsulation rate
of OXAP [28]. As more sites are occupied with additional OXAP as the loading period is
extended, the number of accessible sites gradually diminishes, leading to a reduction in the
rate of the reaction. The full occupation of such active sites led to an equilibrium setting,
where no additional OXAP molecules could be loaded [34].
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including the pH (A), loading duration (B), OXAP concentration (C), and loading temperature
(D) (p < 0.05; n = 3).

OXAP Concentration

The maximal encapsulating capacities, equilibrium characteristics, and regulation
of the loaded OXAP dosage all depend on the encapsulation behaviors of K, KNs, and
KNTs in relation to the studied OXAP concentration. Following specific values of the affect-
ing variables (25 mg (carrier dose), pH 8, 50 mL (solution volume), 20 ◦C (temperature), and
24 h (duration)), the influence of OXAP concentrations was monitored from 100 to
800 mg/L. The high OXAP concentrations have a favorable impact on the observed en-
capsulation characteristics of K, KNs, and KNTs (Figure 4C). OXAP ions’ driving forces
and diffusion properties are induced by the presence of high quantities of OXAP ions,
which improves their chances to interact with effectiveness encapsulation sites and, con-
sequently, the OXAP-loading capacities of K, KNs, and KNTs [35,36]. This enhancement
impact was observed up to an OXAP concentration of 500 mg/L for K and KNs, and
600 mg/L for KNTs. Following that, the increase in OXAP concentration showed a ne-
glect effect reflecting an equilibration state (Figure 4C). As a result, these concentrations
(500 mg/L for K and KNs, and 600 mg/L for KNTs) demonstrate the saturation concentra-
tions of K, KN, and KNTs at which they reach their experimental highest loading capacities
(27.7 mg/g for K, 302 mg/g for KNs, and 475.3 mg/g for KNTs) (Figure 4C). The observable
higher OXAP encapsulation capacities of KNs and KNTs can be attributed to the significant
enhancement in the surface area as well as the reactivity of the aluminosilicate sheets
that appear with semi-crystalline properties and high exposed active sites, especially the
siloxane groups.

Effect of Temperature

The drug-loading assays were conducted with a gradual increase in temperature
from 20 to 60 ◦C to determine if it affected K, KNs, and KNTs’ OXAP-loading capacities
in a favorable or unfavorable manner (Figure 4D). All the experimental variables of the
loading process were adjusted at 24 h (loading period), 800 mg/L (OXAP concentration),
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50 mL (the solution volume), pH 8, 20 mg (carrier dosage), and 20 ◦C (temperature). The
decrease in the OXAP-loaded quantities as the investigated loading temperature rises
(Figure 4D) supports the exothermic nature of K, KNs, and KNTs’ loading mechanisms.
At 60 ◦C, K, KNs, and KNTs have loading capacities of 11.8 mg/g, 257.4 mg/g, and
423.4 mg/g, respectively (Figure 4D). According to the findings of loading studies, both
KNs and KNTs demonstrate attractive qualities as OXAP carriers due to their high loading
capacities. Furthermore, by adjusting several loading variables, such as pH, duration, drug
concentration, and temperature, it is possible to manage the quantity of the entrapped drug
on both KNs and KNTs.

2.2.2. Encapsulation Mechanism
Kinetic Properties

Intra-Particle Diffusion Behavior

Intra-particle diffusion curves with three distinct stages and no crossovers with the
initial points of the curves have been detected for the loading reactions of OXAP into
K, KNs, and KNTs (Figure 5). This reveals the encapsulation of OXAP by collaborative
mechanisms in conjunction with the substantial impact of the diffusion of ions towards
the active receptors of K, KNs, and KNTs [35,37]. This could involve (A) loading by the
distributed active sites over the exterior surface (border), (B) intra-particle diffusion, and
(C) the mechanistic impact of the equilibrium stages [38]. The occurrence of the first stage
denotes the activity of the exterior encapsulation mechanisms during the initial stages of the
experiments, and the quantity of the surface-active receptors controls how effectively the
encapsulation reactions proceed (Figure 5) [39]. By extending the encapsulation period, a
new stage has been observed (Figure 5) that denotes the existence of additional mechanisms,
including the impact of the OXAP-diffusion actions and the layered encapsulation activities.
Finally, the equilibrium states of K, KNs, and KNTs during the OXAP-loading reactions
show the third stage to be the most predominant stage. This implies that the encapsulated
OXAP ions have occupied or consumed all the efficient binding sites (Figure 5) [5,36].
During this step, multiple mechanisms influence the encapsulation reactions, which may
involve molecular interaction as well as an interionic attraction [35].
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Figure 5. The intra-particle diffusion curves of the loading process of OXAP into K, KNs, and KNTs.

Kinetic Modeling

The kinetic characteristics of the pseudo-first-order (PFO) (Equation (1) and pseudo-
second-order (PSO) (Equation (2) models were used to evaluate the kinetic properties of the
OXAP-encapsulation processes performed by K, KNs, and KNTs. This had been completed
by non-linearly fitting the results with the models’ illustrative equations while considering
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the correlation coefficient (R2) and chi-squared (χ2) values as indicators of the fitting degree
(Table 1, Figure 6A–C).

Qt = Qe

(
1− e−k1.t

)
(1)

Qt =
Q2

e k2t
1 + Qek2t

(2)

Table 1. The obtained mathematical parameters of the studied kinetic, classic isotherm, advanced
isotherm, thermodynamic, and release kinetic models.

Model Parameters K KNs KNTs

Kinetic models

Pseudo-first-order

K1 (min−1) 0.175 0.155 0.253
Qe(Cal) (mg/g) 21.47 166.6 250.7

R2 0.94 0.94 0.90
X2 0.52 4.1 5.73

Pseudo-second-order

k2 (g mg−1 min−1) 0.0046 4.9 × 10−4 6.51 × 10−4

Qe(Cal) (mg/g) 29.44 234.5 334.2
R2 0.91 0.92 0.85
X2 0.73 5.4 7.3

Isotherm models

Langmuir

Qmax (mg/g) 29.63 309.3 473.8
b (L/mg) 0.001 0.0057 6.93 × 10−4

R2 0.99 0.99 0.99
X2 0.03 3.67 0.55
RL 0.55–0.90 0.18–0.63 0.64–0.93

Freundlich

1/n 0.155 0.33 0.92
kF (mg/g) 0.8 6.4 1.69

R2 0.99 0.99 0.99
X2 0.08 4.2 2.11

D–R model

β (mol2/KJ2) 0.0146 0.0231 0.0077
Qm (mg/g) 30.8 337.13 550.2

R2 0.99 0.98 0.96
X2 0.148 1.64 7.6

E (KJ/mol) 5.84 4.65 8.04

Monolayer model
of one energy

n 4.6 4.7 5.85
Nm (mg/g) 6.5 66.3 80.86

Q(sat) (mg/g) 29.9 304.9 473.07
∆E (kJ/mol) −5.3 −7.5 −4.2

Thermodynamics

∆G◦ (kJ mol−1)

293.13 −8.13 −8.32 −15.88
303.13 −8.18 −8.52 −16.33
313.13 −7.90 −8.60 −16.75
323.13 −7.67 −8.77 −17.21
333.13 −6.85 −8.91 −17.60

∆H◦ (kJ mol−1) −4.16 −3.88
∆S◦ (J K−1 mol−1) 14.24 18.7

Release kinetics

Models
KNs

Determination coefficient

KNTs

Acetate buffer (pH 5.5) Phosphate buffer (pH 7.4) Acetate buffer (pH 5.5) Phosphate buffer (pH 7.4)

Zero-order 0.75 0.79 0.61 0.78
First-order 0.99 0.94 0.99 0.97

Higuchi 0.92 0.93 0.89 0.94
Hixson–Crowell 0.97 0.91 0.90 0.99

Korsmeyer–Peppas 0.94 0.93 0.93 0.91
n 0.62 0.72 0.60 0.70
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According to the established values of R2 and χ2, OXAP was encapsulated into K,
KNs, and KNTs in agreement with the kinetic specifications of the PFO model as compared
to the kinetic characteristics of the PSO model (Table 1). This was further substantiated by
the observation that the calculated OXAP-loading equilibrium capacities as parameters of
the PFO model (21.47 mg/g (K), 166.6 mg/g (KNs), and 250.7 mg/g (KNTs) were close
to the actually obtained values (19.3 mg/g (K), 148.5 mg/g (KNs), and 243 mg/g (KNTs).
Such kinetic features signify the existence of physical OXAP-loading mechanisms, which
might include electrostatic attractions [40,41]. However, the observed notable fit of the
performed OXAP-loading reactions by K, KNs, and KNTs with PSO kinetics at acceptable
degrees suggests a considerable impact of some weak chemical processes as essential
or as assistance mechanisms. This might include weak chemical interactions, such as
electron exchanges, hydrogen bonding, and electron sharing, as well as the development of
chemical complexes with the silicate structures of K, KNs, and KNTs [36,41]. Physically
encapsulating OXAP molecules above an outer layer of chemically encapsulating drug
molecules may lead to the operation of both chemical and physical processes [42].

Isotherm Properties

Classic Isotherm Models

The equilibrium characteristics of the OXAP-loading reactions into K, KNs, and KNTs
as potential carriers have been illustrated using the conventional assumptions of Langmuir
(Equation (3), Freundlich (Equation (4), and Dubinin–Radushkevich (D–R) (Equation (5).
This had been completed by non-linearly fitting the results with the models’ illustrative
equations while considering the correlation coefficient (R2) and chi-squared (χ2) values as
indicators of the fitting degree (Table 1, Figure 6D–F).
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Qe =
Qmax bCe

(1 + bCe)
(3)

Qe = K f C1/n
e (4)

Qe = Qme−βε2
(5)

The encapsulation of OXAP into K, KNs, and KNTs displays the equilibrium behaviors
of the Langmuir isotherm instead of the Freundlich hypothesis in accordance with the
established values of the model-fitting parameters. As a result, the OXAP molecules were
uniformly encapsulated on the exterior surfaces of K, KNs, and KNTs in monolayer forms
by numerous homogenously dispersed active receptors [5,39]. Additionally, the values of
the RL parameter being less than one reveal the favorable encapsulation of OXAP ions
in raw kaolinite as well as KNs and KNTs carriers. Additionally, the theoretical maximal
OXAP encapsulation capacities of K, KNs, and KNTs were estimated as mathematical
parameters of the Langmuir isotherm to be 29.6 mg/g, 309.3 mg/g, and 473.8 mg/g using
the Langmuir fitting parameters.

Regarding the studied D–R model, its isotherm characteristics might significantly
reveal the energetic heterogeneity of K, KNs, and KNTs as carriers of OXAP, whether they
have homogeneous or heterogeneous surfaces [43]. Determining the Gaussian energy
(E) as an attained theoretical parameter of the D–R model considerably emphasizes the
nature of the predominant loading mechanisms, whether they have chemical or physical
characteristics. While the chemical loading system displays values >16 kJ/mol, the phys-
ical loading reaction shows a Gaussian energy of less than 8 kJ/mol. Gaussian energy
levels between 8 and 16 kJ/mol are indicative of complicated systems or weak chemical
loading processes [5,43]. The OXAP-encapsulation processes by K, KNs, and KNTs have
corresponding Gaussian energies of 5.84 kJ/mol, 4.65 kJ/mol, and 8.04 kJ/mol, respectively
(Table 1). While the determined E values of K and KNs are within the same range and
suggest dominant impact for the physical mechanisms during their loading with the OXAP
drug, the recognized value for the loading of OXAP into KNTs displays significant effect
for the weak chemical process during the reaction in addition to significant effect for the
physical processes.

Advanced Isotherm Models

The sophisticated isotherm models that were used based on the equilibrium funda-
mentals of statistical physics theory provide additional information about the K, KNs,
and KNTs as OXAP carriers with regard to the interface between the drug in solution
and the surfaces of the carriers. According to the advanced monolayer model with one
energy level (Equation (6) and its mathematical parameters, either steric or energetic, the
loading behaviors and the controlled mechanistic processes have been evaluated (Figure 7,
Table 1). The determination coefficient (R2) and root mean square error (RMSE) values
were considered the main determinants of the fitting degrees.

Q = nNo =
nNM

1 +
(

C1/2
Ce

)n =
Qo

1 +
(

C1/2
Ce

)n (6)

The model’s steric mathematical parameters included the density of occupied active
receptor sites (Nm(OXAP)) on the surfaces of K, KNs, and KNTs, the number of OXAP
molecules loaded per active site on their surfaces (n(OXAP)), and the OXAP-encapsulation
capacities of K, KNs, and KNTs at their saturation states (Qsat(OXAP)). The estimated ener-
getic parameter involved the determined encapsulation energy (∆E). The results reflected
an increment in the quantities of the effective encapsulation site after the morphologi-
cal transformation of kaolinite (Nm(OXAP) = 6.5 mg/g) into separated nanosheets (KNs)
(Nm(OXAP) = 66.3 mg/g) and scrolled kaolinite nanotubes (KNTs) (Nm(OXAP) = 80.86 mg/g).
This strong increment in the quantities of the active sites might be attributed to the remark-
able increase in the surface area and, in turn, the interaction interface, the enhancement
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in the reactivity of the silicate sheets, and the significant exposure of the active hydroxyl-
bearing siloxane groups after the modification processes. This was reflected in the deter-
mined OXAP-loading capacities of K, KNs, and KNTs at their saturation states, which were
greatly enhanced after the morphological-transformation processes from 29.9 mg/g for
kaolinite to 304.9 mg/g and 473.07 mg/g for KNs and KNTs, respectively. Additionally, the
detected numbers of the loaded OXAP ion per active site on the surfaces of K, KNs, and
KNTs (n (OXAP)) demonstrate vital impact for the morphological-transformation process on
their surficial properties as carriers. The estimated values of n(OXAP) during the loading
process of OXAP into K, KNs, and KNTs are 4.6, 4.7, and 5.85. These values are higher
than 1, which impels the vertical loading of the OXAP ions on the surfaces of K, KNs, and
KNTs in addition to the retention of the drug ions by multi-molecular mechanisms [44,45].
However, each active site on the surfaces of K and KNs can be loaded with about five
molecules of OXAP, and each active site on the surface of KNTs can be loaded with up to
six molecules of OXAP.

Molecules 2023, 28, x FOR PEER REVIEW 13 of 24 
 

 

loaded OXAP ion per active site on the surfaces of K, KNs, and KNTs (n (OXAP)) 
demonstrate vital impact for the morphological-transformation process on their surficial 
properties as carriers. The estimated values of n(OXAP) during the loading process of OXAP 
into K, KNs, and KNTs are 4.6, 4.7, and 5.85. These values are higher than 1, which impels 
the vertical loading of the OXAP ions on the surfaces of K, KNs, and KNTs in addition to 
the retention of the drug ions by multi-molecular mechanisms [44,45]. However, each 
active site on the surfaces of K and KNs can be loaded with about five molecules of 
OXAP, and each active site on the surface of KNTs can be loaded with up to six molecules 
of OXAP. 

 
Figure 7. Fitting of the OXAP-loading results with the advanced monolayer model of one energy 
site. 

The loading energies (E) of OXAP into K, KNs, and KNTs were calculated using 
Equation (7), based on the theoretically obtained remaining OXAP concentrations at their 
half-saturation states (C1/2) as well as the drug’s solubility at different temperatures 
(Table 1). ∆𝐸 = −𝑅𝑇 𝑙𝑛 ቆ 𝑆𝐶ଵ/ଶቇ  (7)

The determined encapsulation energies of OXAP into K, KNs, and KNTs are −5.3 
KJ/mol, −7.5 KJ/mol, and −4.2 KJ/mol, respectively. These values support the previous 
findings about the physical encapsulation mechanisms (ΔE ≤ 40 kJ/mol) of OXAP into K, 
KNs, and KNTs [44]. These processes might involve van der Waals forces (ΔE = 4 to 10 
kJ/mol), dipole forces (ΔE = 2 to 29 kJ/mol), and hydrogen bonding (ΔE < 30 kJ/mol) 
[46,47]. 

Thermodynamic Properties 
Within an operating temperature range of 20 °C to 60 °C, the thermodynamic 

characteristics of the OXAP-encapsulation processes by K, KNs, and KNTs were 
investigated. This was conducted considering the other study factors at specific values 
(25 mg (dosage), 24 h (duration), 50 mL (volume), 800 mg/L (OXAP concentration), and 
pH 8). This included the basic thermodynamic functions such as Gibbs free energy (Go) 
(Equation (8) as well as the entropy (ΔS°) and enthalpy (ΔH°) which were obtained by 
fitting the data with the Van’t Hof equation (Equation (9) (Figure 8) [27]. 

100 200 300 400 500 600 700 800

0

100

200

300

400

500

 K
 KNs
 KNTs
 Monolayer model of one energy

Q
e 

(m
g/

g) 

Ce (mg/L)
Figure 7. Fitting of the OXAP-loading results with the advanced monolayer model of one energy site.

The loading energies (E) of OXAP into K, KNs, and KNTs were calculated using
Equation (7), based on the theoretically obtained remaining OXAP concentrations at their
half-saturation states (C1/2) as well as the drug’s solubility at different temperatures
(Table 1).

∆E = −RT ln
(

S
C1/2

)
(7)

The determined encapsulation energies of OXAP into K, KNs, and KNTs are
−5.3 KJ/mol, −7.5 KJ/mol, and −4.2 KJ/mol, respectively. These values support the
previous findings about the physical encapsulation mechanisms (∆E ≤ 40 kJ/mol) of
OXAP into K, KNs, and KNTs [44]. These processes might involve van der Waals forces
(∆E = 4 to 10 kJ/mol), dipole forces (∆E = 2 to 29 kJ/mol), and hydrogen bonding
(∆E < 30 kJ/mol) [46,47].

Thermodynamic Properties

Within an operating temperature range of 20 ◦C to 60 ◦C, the thermodynamic charac-
teristics of the OXAP-encapsulation processes by K, KNs, and KNTs were investigated. This
was conducted considering the other study factors at specific values (25 mg (dosage), 24 h
(duration), 50 mL (volume), 800 mg/L (OXAP concentration), and pH 8). This included the
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basic thermodynamic functions such as Gibbs free energy (Go) (Equation (8) as well as the
entropy (∆S◦) and enthalpy (∆H◦) which were obtained by fitting the data with the Van’t
Hof equation (Equation (9) (Figure 8) [27].

In (Kc) =
∆So

R
− ∆Ho

RT
(8)

∆G0 = −RT In Kc (9)
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Recognizing the values of ∆S◦ and ∆H◦ with negative signs demonstrates the
exothermic, spontaneous, and favorable characteristics of the OXAP-encapsulation
mechanisms using K, KNs, and KNTs as potential carriers. Additionally, the positively
signed ∆S◦ values of the K, KNs, and KNTs loading systems for OXAP indicated an
increase in the randomness of the reactions that occurred with regard to the temperature
that was being tested.

2.3. In Vitro Release Profiles

The percentages of OXAP molecules that diffused into the two examined buffer
solutions (phosphate (pH 7.4) and acetate (pH 5.5)) which acted as media to simulate
the investigated tumor cells, were determined to monitor the release profiles of KNs
and KNTs (Figure 9). The observed OXAP-release patterns from KNs and KNTs into the
assessed buffers display significant variations in the diffusion rates as a consequence of
the extension of the release period. The measured release parentages corroborate quick
diffusion rates throughout the early diffusion periods of the tests, which slowly decrease
until the equilibrium interval with a constant rate of diffusion or the full release of the
trapped OXAP dosage (Figure 9). The notable quick diffusion of OXAP out of KNs and
KNTs structures during the initial phases of accomplished tests was primarily attributed to
the desorption processes of the physically adsorbed drug molecules or the weakly bonded
ions with the surficial active groups of KNs and KNTs [18,48]. Following that, all of the
barely loaded OXAP ions had been entirely diffused, and the release mechanisms became
restricted mainly to the chemically complexed drug ions with the active groups KNs and
KNTs, resulting in a decrease in release rates [12,27]. In comparison to the estimated release
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% in the buffered phosphate solution (pH 7.4), the established OXAP-release behavior in the
tested acetate buffering solution (pH 5.5) is higher (Figure 9). Such release characteristics
were attributed to the excellent mobility and solubility of OXAP in low pH solutions [15].
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Figure 9. The OXAP-release profiles of KNs and KNTs either in the acetate buffer (A) or the phosphate
buffer (B) (p < 0.005; n = 3).

OXAP is typically released from KNs over a period of 180 h and 160 h, respectively, in
phosphate and acetate buffers as well, without the entire diffusion state being marked. The
realized maximum diffusing percentages are 100% (180 h; pH 5.5) and 89.3% (180 h; pH
7.4) (Figure 9A). Nearly 50% of the loaded dosage of OXAP diffused within 30 h (pH 5.5)
and 40 h (pH 7.4). In comparison to KNs, loaded OXAP molecules inside the framework of
KNTs display greater diffusion properties. After 22 h (pH 5.5) and 30 h (pH 7.4), about 50%
of the loaded dosage of OXAP diffused. After 120 h (pH 5.5) and 160 h (pH 7.4), the entire
diffusion state had been achieved (Figure 9B). Experiments have shown that OXAP moves
more easily through KNTs than through KNs. This could be because large amounts of the
drug are thought to be trapped in the pores of KNTs, and there are also many active sites
that act as hubs for the weak physical loading of OXAP. Moreover, the high numbers of
loaded OXAP per active site (n(OXAP) = 5.85) on the surface of KNTs suggested increasing
the aggregation properties of the drug molecules on the surface of KNTs as compared to
KNs (n(OXAP) = 4.7), which induces the release rate of the loaded dosages of the drug.

Supplying OXAP molecules directly into patients’ bodies as anticancer chemotherapy
at continuous and very slow rates is encouraged during the course of therapy of the tumor
cells since this method provides long-term contact and actual interaction between the
cancerous cells and the introduced therapy [7,12]. In certain circumstances, it is advised
to introduce the recommended therapeutic dose of the medicine at specific time intervals
through the quick delivery of the medication at an abrupt rate and within short periods of
time. As a result, the established delivery systems of KNs and KNTs are very successful in
loading and releasing OXAP molecules at regulated levels.

2.4. Release Kinetic Studies

The kinetic features of the OXAP-releasing reactions from KNs and KNTs can, poten-
tially, be used as evidence of the mechanism that operates during the diffusion reactions.
The explored kinetic releasing models include the zero-order (Z-O) (Equation (10), first-
order (F-O) (Equation (11), Higuchi (H-G) (Equation (12), Hixson–Crowell (H–C) (Equation
(13), and Korsmeyer–Peppas (K–P) (Equation (14) models [12]. These models were assessed
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based on the findings of the linear regression-fitting procedures of the release results and
their mathematical equations within the two buffers under study.

Wt −W0 = K0.t (10)

ln(W∞/Wt) = K1.t (11)

Wt = Kht1/2 (12)

W1/3
o −W1/3

t = KHCt (13)

Wt/ W∞ = Kp tn (14)

Based on the Z-O model assumptions, OXAP release may occur without an important
impact of the loaded dose or amount on the release profiles, and the system suggests a
stable diffusion rate [13]. According to the F-O supposition, the release characteristics of
OXAP are significantly dependent on the loaded number of its molecules [1]. For the kinetic
characteristics that match the hypothesis of Higuchi kinetics, the OXAP release occurs by
means of diffusion mechanisms that are also dependent on certain parameters [1,49]. These
include the following: (1) loaded OXAP diffuses at stable rates and in only one direction;
(2) the quantity of the loaded dosage is greater than its actual release level; (3) the solubility
and swelling characteristics of the utilized carrier have a neglected impact on the release
efficiency; and (4) the addressed carrier has been distinguished by its sink nature [13].
Hixson–Crowell kinetics has been utilized to demonstrate release processes that involve
the performance of erosion mechanisms and display a controlling influence of both the
surface area and grain diameter of the incorporated solid carriers [13,50]. The Korsmeyer–
Peppas model primarily demonstrates release systems that incorporate the collaboration of
diffusion and erosion processes, particularly for the hybrid delivery system [1,51].

Based on the calculated determination coefficient, the estimated fitting degrees show
that the OXAP release data from KNs and KNTs and the kinetic characteristics of the F-O
model (Figure 10C,D, Table 1) match up better than those of the Z-O model (Figure 10A,B,
Table 1). Based on this kinetic behavior, the total quantity of loaded OXAP medication has
a major impact on the release characteristics of both KNs and KNTs. The release findings
for KNs and KNTs are in strong agreement with both Higuchi’s (Figure 10E,F; Table 1) and
Hixson–Crowell’s (Figure 10G,H, Table 1) kinetic assumptions. Therefore, a combination
of diffusion and erosion mechanisms were engaged in the OXAP-release behaviors of
KNs and KNTs. The erosion behavior may be attributed to the partial disintegration of
silicate materials at higher pH levels. The excellent match between the OXAP release
behaviors and the kinetic hypothesis proposed by the Korsmeyer–Peppas model reveals
the existence of diffusion processes as the major mechanism, together with the accelerating
influence of erosion processes, particularly in phosphate buffers (Figure 10I, Table 1).
The estimated values of the diffusion exponent (n) as fitting parameters for either KNs
(0.62 (acetate) and 0.72 (phosphate) or KNTs (0.6 (acetate) and 0.7 (phosphate) verify non-
Fickian transportation behaviors that are in accordance with the earlier kinetic studies
about the cooperation of both diffusion and erosion mechanisms [22].
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Figure 10. Fitting of the OXAP-release results with zero-order model (A,B), fitting of the OXAP-
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(E,F), fitting of the OXAP-release results with Hixson–Crowell model (G,H), and fitting of the OXAP-
release results with Korsmeyer–Peppas model (I).

2.5. Cytotoxicity Properties

Colorectal cancer (HCT-116) cell lines were used to test the cytotoxicity of free KNs,
KNTs, and their OXAP-loaded derivatives as potential anticancer agents and as promising
carriers of enhanced biologic effect on the therapeutic properties of the loaded OXAP
drug. Regarding the synthetic KNs and KNTs as free particles or unloaded materials, they
produce significant cytotoxic effects, particularly at high concentrations (>50 µg/mL), on
the evaluated HCT-116 tumor cell lines.

The free KNs (500 µg/mL) produced an inhibitory percentage of 17.41%, an IC-50 of
143.6 µg/mL, and cell viability of 82.59% (Figure 11A). The values that were determined
for free KNTs are 114.3 µg/mL (IC-50), 88.68% (inhibitory percentage), and 11.32% (cell
viability) (Figure 11A,B). Such significant cytotoxic qualities might be attributed to the
significant surface reactivity of the separated kaolinite sheets and their scrolled products as
nanotubes, in conjunction with the confirmed oxidation effects of clay nanomaterials as a
result of their structural impurities of various transitional metals. Also, the results declared
a remarkable impact of the one-dimensional morphology of kaolinite on its cytotoxicity as
an anticancer therapy.
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Figure 11. The cytotoxicity effect of free KNs (A), free KNTs (B), OXAP-loaded KNs (C), and OXAP-
loaded KNTs (D) on colorectal cancer cells (HCT-116) (p < 0.002; n =3).

In regards to the cytotoxic effect of OXAP-encapsulated KNs and KNTs, they have
a greater effect than OXAP alone. The determined cell viability, inhibitory percentage,
and IC-50 during the incorporation of the OXAP drug as a free drug without carriers are
11.62 %, 88.38 %, and 17.85 µg/mL, respectively. OXAP-encapsulated KNs (500 µg/mL)
possessed 2.04% cell viability, 97.96% inhibitory percentage, and an IC-50 of 15.40 µg/mL,
respectively (Figure 11C). OXAP-encapsulated KNTs have a cell viability of 0.61%, an
inhibitory percentage of 99.39%, and an IC50 of 4.53 µg/mL (Figure 11D). The applications
of such carriers significantly increase the interaction interface between the cancer cells and
the drug molecules, preserving prolonged and continuous interaction effects.

2.6. Comparison study

The saturation-loading capacities of K, KNs, and KNTs were compared to other
investigated delivery systems in the literature (Table 2). The presented values declared
the significantly higher OXAP-loading properties of KNs and KNTs as compared to the
reported natural zeolite (philipsite), synthetic zeolite (zeolite-A), and diatomite, as well as
the synthetic composites based on them. This signifies the value of the synthetic structure
as an enhanced OXAP-loading system with promising loading capacities as compared to
the recently evaluated structures.
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Table 2. Comparison between the loading capacities and release periods of the studied carrier and
other carriers in literature.

Carrier Loading Capacity (mg/g) References

Hydroxyapatite 49.1 [52]
Zeolite-A 109.03 [53]

Cellulose/zeolite-A 285.7 [4]
Phillipsite 79.6 [54]

B-cyclodextrin/phillipsite 291.5 [55]
Diatomite 65.9 [56]

B-cyclodextrin/diatomite 238.7 [57]
kaolinite 29.9 This study

KNs 304.9 This study
KNTs 473.07 This study

3. Experimental Work
3.1. Materials

The used kaolinite powder during the preparation of kaolinite single sheets and
kaolinite nanoscrolls was obtained as a refined sample from the Central Metallurgical and
Development Institute in Egypt. Dimethyl sulfoxide (DMSO) (>99.5%; CAS: 67-68-5; Sigma-
Aldrich), cetyltrimethylammonium bromide (CTAB) (>98%; CAS: 57-09-0; Sigma-Aldrich,
St. Louis, MO, USA), and methanol (>99.9%; CAS: 67-56-1; Sigma-Aldrich) were applied
during the exfoliation and scrolling steps. Oxaliplatin drug (Sigma-Aldrich; MW 397.29)
[SP-4-2-(1R-trans)]-(1, 2-Cyclohexanediamine-N,N′) [ethanedioata(2--)-O,O′]platinum) was
used during the loading and release tests.

3.2. Synthesis of Kaolinite Nanosheets (KNs) and Nanotubes (KNTs)

The kaolinite-layered units were exfoliated using a simple chemical expansion pro-
cess. The raw mineral kaolinite was pulverized for 6 h in a ball mill to attain kaolinite
powder with a size range of 20 to 100 µm. The pulverized mineral kaolinite (15 g) was then
homogeneously mixed with 50 mL of a dilute solution of DMSO (8 (DMSO):1 (distilled
water)) for 5 h by using a conventional magnetic stirring device. This process is essential
for destroying the existing hydrogen bonds that link the layered silicate units of kaolinite.
The subsequently formed DMSO-treated kaolinite had been washed using methanol for
20 min; this procedure was performed five times to remove the intercalated DMSO
molecules and replace them with the alcohol molecules, forming an organophilic product
known as methoxy kaolinite (Mth/K). The obtained Mth/K particulates were homogenized
with a previously prepared CTAB solution (20 g CTAB + 50 mL distilled water) for 48 h via a
complex mixing system composed of a magnetic stirrer in addition to an ultrasound source
(240 W), which results in the formation of exfoliated or separated kaolinite nanosheets
(KNs). Following that, the resultant KNs particulates were thoroughly rinsed with distilled
water, then slowly dried at 65 ◦C over 12 h, and then named KNs.

After the kaolinite sheets were successfully peeled off, the system was given more
CTAB (15 g), and the resulting mixture was sonicated for an extra 48 h at 80% power
(240 W) to ensure that the ductile silicate sheets of kaolinite had grown and been rolled into
nanoscrolls or nanotubes. The end-product was then separated from the mixture, washed
with a mixture of methanol and distilled water, and dried at 65 ◦C for 10 h.

3.3. Analytical Techniques

Using a PANalytical-Empyrean X-ray diffractometer within a measurement range of
0 to 70◦, the degree of crystallinity and crystalline phases were detected according to the
obtained XRD patterns. The chemical groups of KNs and KNTs as well as the synthetic
intermediate compounds were determined by a Fourier-transform infrared spectrometer
(FTIR8400S; Shimadzu, Kyoto, Japan) within detection ranges of 400 cm−1 to 4000 cm−1.
The expected changes in the morphological properties of kaolinite during the different
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modification procedures were verified based on the SEM images, which were captured
using a scanning electron microscope (Gemini, Zeiss Ultra 55) immediately after coating
the modified clay particles with thin films of gold. Furthermore, the interior features of
scrolled and exfoliated kaolinite were evaluated depending on their HRTEM images, which
were obtained by a transmission electron microscope (JEOL-JEM2100, Tokyo, Japan) at a
200 kV accelerating voltage. On the basis of the corresponding N2 adsorption/desorption
isotherms, both the surface area and porosity of KNs and KNTs were measured with a
surface-area analyzer (SA3100, Beckman Coulter Co.; USA).

3.4. OXAP Loading Studies

The encapsulating capacities of K as well as synthetic KNs and KNTs as delivery
structures for OXAP were assessed under the influence of several variables to regulate
the loading capacity. The loading pH (2–9), loading duration (1–24 h), tested OXAP
concentration (100–800 mg/L), and experimental temperature (20–60 ◦C) were all examined
as the controlling loading parameters. A vortex rotator device was used during the loading
processes to homogenize carrier particles in 50 mL of OXAP solutions after taking into
consideration all other variables that influence the reactions. After the completion of each
experiment, the utilized particulates of K, KNs, and KNTs were extracted from the aqueous
solutions of the OXAP drug via Whatman filter paper. The residual OXAP molecules
in the filtrates were measured by UV–Vis spectrophotometer (λ(max) = 209 nm), and the
determined concentrations were applied to calculate the quantities that were loaded in
mg/g using Equation (15). All loading assays were completed in three separate experiments,
and the displayed OXAP concentrations were the averages of all three experiments.

Loaded drug (mg/g) =
(Initial concentration− Residual concentration)× solvent volume

Carrier weight
(15)

3.5. The Release Studies

The release properties and diffusion patterns of OXAP from the investigated K, KNs,
and KNTs carriers were studied in two releasing media with different pH values (phosphate-
buffered saline solution, pH 7.4, and acetate-buffered saline solution, pH 5.5) and a fixed
temperature of 37.5 ◦C. The two independent tests for the release processes entailed ho-
mogenizing the loaded K, KNs, and KNTs carriers (100 mg/g of OXAP) throughout
500 mL of each of the mentioned buffers. The homogenization procedure was carried
out using a DISTEK dissolution device for 180 h as the entire release duration at a fixed
rotation speed of 200 rpm. The actual concentrations of the released OXAP were measured
using a UV–Vis spectrophotometer (λ(max) = 209 nm) based on regularly extracted samples
(5 mL) from both of the buffers that were used. These extracted samples were subsequently
reinserted into the overall release buffers to verify that the process occurred under identical
conditions. This was repeated three times, and the mean results were employed to calculate
the release percentages using Equation (16).

Drug release (%) =
Amount of Released OXAP

Amount of loaded OXAP
× 100 (16)

3.6. In Vitro Cytotoxicity
3.6.1. Cell Lines

Colorectal cancer cell lines (HCT-116) from the American Type Culture Collection
(ATCC, Rockville, MD, USA) were used during the cytotoxic assays. Chemical and biologi-
cal reagents, such as 0.25% trypsin-EDTA, dimethyl sulfoxide (DMSO), gentamycin, 3(4,5-
dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide (MTT 99%), fetal bovine serum,
DMEM, HEPES buffer, and RPMI-1640, were used during the incubation and cytotoxic as-
say. All the included cytotoxicity tests were completed at the Regional Center for Mycology
and Biotechnology, Al-Azhar University, Egypt.
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3.6.2. In Vitro Cytotoxicity

First, the selected HCT-116 cell lines were cultivated under very strict conditions in
RPMI-1640 medium with 10% fetal calf serum and 50 µg/mL gentamycin at 37 ◦C and
5% carbon dioxide. The cancerous cell lines (5 × 104 cells/well) were then immersed in
Corning® 96-well plates over 24 h after the three-times-per-week culture process. Then,
certain quantities of the OXAP-loaded K, KNs, and KNTs carriers were added to all
of the cell strains, and they were cultured a second time for a further 24 h. Using the
widely used MTT cell-proliferation assay technique, the number of viable cells generated
throughout the duration of incubation was determined. By fulfilling the incubation stage,
the cultivation media that had been incorporated had been successfully eliminated and
replaced with newly produced media (100 µL of RPMI). The freshly added media was
carefully blended together with the MTT (10 µL; 12 mM) and cultivated once more for
5 h until the remarkable formation of formazan that had a distinctive purple color. The
formazan was then successfully dissolved with 50 µL of DMSO solution. The final stage
involved measuring the optical density of the cell lines that had been cultivated throughout
the experiments using a microplate at a measurement wavelength of 590 nm. The values
determined were applied to calculate cell viability% using Equation (17) [5].

Cell viability (%) =
Mean OD

Control OD
× 100 (17)

4. Conclusions

Chemical exfoliation and scrolling of kaolinite in single sheets (KNs) and nanotubes
(KNTs), respectively, were evaluated as advanced modification methods to obtain highly
reactive modified forms of kaolinite with enhanced properties as drug-delivery systems for
oxaliplatin. The synthetic modified forms (KNs and KNTs) showed significant enhancement
in the OXAP-loading properties (304.9 mg/g for KNs and 473 mg/g for KNTs). This was
assigned experimentally to the strong increase in the surface area, surface reactivity, and
exposure of the active sites. Theoretically, this was attributed mainly to the increase
in the quantities of the active loading sites (80.8 mg/g (KNTs) and 66.3 mg/g (KNs))
as compared to kaolinite (6.5 mg/g) as well as the number of loaded OXAP ions per
site. These results also illustrate the higher loading properties of KNTs as compared to
KNs. The loading reactions occurred mainly by multimolecular physical mechanisms
in which the loaded ions were loaded in vertical form based on the Gaussian energies
(<8 KJ/mol) and loading energies (<40 KJ/mol). The advanced forms of kaolinite as
carriers have prolonged and continuous release profiles that consume about 100 h, which is
enhanced behavior as compared to the profile of kaolinite. The release properties occurred
according to non-Fickian transport characteristics with complex diffusion and erosion
mechanisms. Concerning their cytotoxic impacts on HCT-116 cancer cell lines, free KNs and
KNTs had cell viability percentages of 71.4% and 11.32%, respectively, whereas the OXAP-
loaded samples had cell viability percentages of 2.04% (KNs) and 0.61% (KNTs). These
supported the obtained forms of modified kaolinite to be applied as delivery systems for
the OXAP drug, which can be confirmed by further in vivo studies considering the different
biological aspects.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28135158/s1. Figure S1. SEM image (A) and
HRTEM image (B) of the used raw kaolinite. Figure S2. FT-IR spectra of OXAP loaded raw kaolinite
(A), exfoliated kaolinite sheets (B), and the synthetic kanolinite nanotubes (C).

https://www.mdpi.com/article/10.3390/molecules28135158/s1
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