Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood
Abstract
:1. Introduction
2. Results and Discussion
2.1. Laser Operation Parameter Optimization of the LTE
2.2. Characterization of LTE from Wood and the Effect of Flame Retardant
2.3. Morphology and Sensing Mechanism of the LIG/TPU Electrode with Microhole Array, and Dielectric Layer of TPU with Microcone Array
2.4. Electrical Properties of the LMPS Composed of LTE, LIG/TPU Electrode with Microhole Array and Dielectric Layer of TPU with Microcone Array
2.5. Potential Applications for Human Motion Detection
3. Methods and Materials
3.1. Fabrication of the LTE and Microcone Array Pressure Sensor
3.2. Performance Test of the LTE and Microcone Array Pressure Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, H.; Razmjou, A.; Warkiani, M.-E.; Kottapalli, A.; Asadnia, M. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring. Sensors 2018, 18, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, L.; Yang, T.; Li, X.; Zang, X.; Zhu, M.; Wang, K.; Wu, D.; Zhu, K. Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring. Adv. Funct. Mater. 2014, 24, 4666–4670. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Mun, J.; Kwon, S.-Y.; Park, S.; Bao, Z.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [Green Version]
- Billard, A.; Kragic, D. Trends and Challenges in Robot Manipulation. Science 2019, 364, 1149. [Google Scholar] [CrossRef]
- Wang, J.; Wang, N.; Xu, D.; Tang, L.; Sheng, B. Flexible Humidity Sensors Composed with Electrodes of Laser Induced Graphene and Sputtered Sensitive Films Derived from Poly(ether-ether-ketone). Sens. Actuators B Chem. 2023, 375, 132846. [Google Scholar] [CrossRef]
- Xu, D.; Liu, B.; Wang, N.; Zhou, J.; Tang, L.; Zhang, D.; Sheng, B. Ultrasensitive and flexible humidity sensors fabricated by ion beam sputtering and deposition from polydimethylsiloxane. Vacuum 2023, 213, 112125. [Google Scholar] [CrossRef]
- Shi, S.; Liang, J.; Qu, C.; Chen, S.; Sheng, B. Ramie Fabric Treated with Carboxymethylcellulose and Laser Engraved for Strain and Humidity Sensing. Micromachines 2022, 13, 1309. [Google Scholar] [CrossRef]
- Wang, N.; Tong, J.; Wang, J.; Wang, Q.; Chen, S.; Sheng, B. Polyimide-Sputtered and Polymerized Films with Ultrahigh Moisture Sensitivity for Respiratory Monitoring and Contactless Sensing. ACS Appl. Mater. Interfaces 2022, 14, 11842–11853. [Google Scholar] [CrossRef]
- Wang, D.; Sheng, B.; Peng, L.; Huang, Y.; Ni, Z. Flexible and Optical Fiber Sensors Composited by Graphene and PDMS for Motion Detection. Polymers 2019, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Tong, J.; Wang, N.; Wang, Q.; Chen, S.; Sheng, B. Improved Sensitive Conductive Sponge Sensors with Tunnel-crack Broadening for Pressure, Humidity and Temperature Sensing Applications. Sens. Actuators B Chem. 2022, 358, 131497. [Google Scholar] [CrossRef]
- Horev, Y.-D.; Maity, A.; Zheng, Y.; Milyutin, Y.; Khatib, M.; Yuan, M.; Suckeveriene, R.-Y.; Tang, N.; Wu, W.; Haick, H. Stretchable and Highly Permeable Nanofibrous Sensors for Detecting Complex Human Body Motion. Adv. Mater. 2021, 33, 2102488. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xiong, Y.; Chen, J.; Zhao, S.; Chen, S.; Xu, B.; Sheng, B. Ultrasensitive and Highly Stretchable Fibers with Dual Conductive Microstructural Sheaths for Human Motion and Micro Vibration Sensing. Nanoscale 2022, 14, 1962–1970. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Xiao, J.; Chen, J.; Xu, D.; Zhao, S.; Chen, S.; Sheng, B. Multifunctional Hollow TPU Fiber Filled with Liquid Metal Exhibiting Fast Electrothermal Deformation and Recovery. Soft Matter 2021, 17, 10016–10024. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tong, J.; Wang, N.; Chen, S.; Sheng, B. Humidity Sensor of Tunnel-Cracked Nickel@polyurethane Sponge for Respiratory and Perspiration Sensing. Sens. Actuators B Chem. 2021, 330, 129322. [Google Scholar] [CrossRef]
- Jayathilaka, W.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-Garcia, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S.-W.; et al. Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Adv. Mater. 2019, 31, 1805921. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, S.; Hu, T.; Jiang, C.; Sheng, B. Superstretchable and Linear-Response Strain Sensors With Carbon Nanotubes Ultrasonically Assembled on Silicone Rubber Film. IEEE Sens. J. 2023, 23, 8268–8276. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, J.; Zhou, J.; Shi, S.; Hou, M.; Sheng, B. Superelastic Conductive Fibers with Fractal Helices for Flexible Electronic Applications. Adv. Mater. Technol. 2023, 8, 2201951. [Google Scholar] [CrossRef]
- Carvalho, A.-F.; Fernandes, A.J.-S.; Martins, R.; Fortunato, E.; Costa, F.-M. Laser-Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis. Adv. Mater. Technol. 2020, 5, 2000630. [Google Scholar] [CrossRef]
- Lü, X.; Yu, T.; Meng, F.; Bao, W. Wide-Range and High-Stability Flexible Conductive Graphene/Thermoplastic Polyurethane Foam for Piezoresistive Sensor Applications. Adv. Mater. Technol. 2021, 6, 2100248. [Google Scholar] [CrossRef]
- Xu, D.; Duan, L.; Yan, S.; Wang, Y.; Cao, K.; Wang, W.; Xu, H.; Wang, Y.; Hu, L.; Gao, L. Monolayer MoS2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range. Micromachines 2022, 13, 660. [Google Scholar] [CrossRef]
- Ha, K.; Huh, H.; Li, Z.; Lu, N. Soft Capacitive Pressure Sensors: Trends, Challenges, and Perspectives. ACS Nano 2022, 16, 3442–3448. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Zhang, J. Flexible Capacitive Pressure Sensor Based on a Double-Sided Microstructure Porous Dielectric Layer. Micromachines 2023, 14, 111. [Google Scholar] [CrossRef]
- Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W.; Zhang, R.; Wang, Z.-L. Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Lett. 2012, 12, 3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.-B. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano 2017, 11, 4507. [Google Scholar] [CrossRef]
- Wu, W.; Wen, X.; Wang, Z.-L. Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging. Science 2013, 340, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, B.; Zhou, Q.; Chen, G.; Dai, Z.; Li, S.; Xu, Y.; Gao, Y.; Wen, W.; Zhou, B. In Situ Assembly of A Wearable Capacitive Sensor with A Spine-Shaped Dielectric for Shear-Pressure Monitoring. J. Mater. Chem. C 2020, 8, 15634–15645. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Zhu, B.; Wu, Y.; Du, X.; Lin, L.; Wu, D. Laser-Sculptured Hierarchical Spinous Structures for Ultra-High Sensitivity Iontronic Sensors with a Broad Operation Range. ACS Appl. Mater. Interfaces 2022, 14, 19672–19682. [Google Scholar] [CrossRef]
- Yang, J.; Luo, S.; Zhou, X.; Li, J.; Fu, J.; Yang, W.; Wei, D. Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 14997–15006. [Google Scholar] [CrossRef]
- Qin, J.; Yin, L.; Hao, Y.; Zhong, S.; Zhang, D.; Bi, K.; Zhang, Y.; Zhao, Y.; Dang, Z. Flexible and Stretchable Capacitive Sensors with Different Microstructures. Adv. Mater. 2021, 33, 2008267. [Google Scholar] [CrossRef]
- Luo, Y.; Shao, J.; Chen, S.; Chen, X.; Tian, H.; Li, X.; Wang, L.; Wang, D.; Lu, B. Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Appl. Mater. Interfaces 2019, 11, 17796–17803. [Google Scholar] [CrossRef]
- Ji, B.; Zhou, Q.; Lei, M.; Ding, S.; Song, Q.; Gao, Y.; Li, S.; Xu, Y.; Zhou, Y.; Zhou, B. Gradient Architecture-Enabled Capacitive Tactile Sensor with High Sensitivity and Ultrabroad Linearity Range. Small 2021, 17, 2103312. [Google Scholar] [CrossRef] [PubMed]
- Ruth, S.R.-A.; Beker, L.; Tran, H.; Feig, V.-R.; Matsuhisa, N.; Bao, Z. Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals. Adv. Funct. Mater. 2019, 30, 1903100. [Google Scholar] [CrossRef]
- Le, T.-D.; Phan, H.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.-J.; Yoon, H.; Ko, S.-H.; Kim, S.; et al. Recent Advances in Laser-Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Adv. Funct. Mater. 2022, 32, 2205158. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.-G.; Yacaman, M.-J.; Yakobson, B.-I.; Tour, J.-M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef] [Green Version]
- Kulyk, B.; Silva, B.F.-R.; Carvalho, A.-F.; Silvestre, S.; Fernandes, A.J.-S.; Martins, R.; Fortunato, E.; Costa, F.-M. Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Appl. Mater. Interfaces 2021, 13, 10210–10221. [Google Scholar] [CrossRef]
- You, R.; Liu, Y.; Hao, Y.; Han, D.; Zhang, Y.; You, Z. Laser Fabrication of Graphene-Based Flexible Electronics. Adv. Mater. 2020, 32, 1901981. [Google Scholar] [CrossRef]
- Ye, R.; Chyan, Y.; Zhang, J.; Li, Y.; Han, X.; Kittrell, C.; Tour, J.-M. Laser-Induced Graphene Formation on Wood. Adv. Mater. 2017, 29, 1702211. [Google Scholar] [CrossRef] [PubMed]
- Le, T.-D.; Park, S.; An, J.; Lee, P.-S.; Kim, Y. Ultrafast Laser Pulses Enable One-Step Graphene Patterning on Woods and Leaves for Green Electronics. Adv. Funct. Mater. 2019, 29, 1902771. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.-P.; Arnusch, C.-J.; Tour, J.-M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Guo, H.; Yan, J.; Jiang, L.; Qu, L.; Yin, J.; Lu, J. Conductive Writing with High Precision by Laser-Induced Point-to-Line Carbonization Strategy for Flexible Supercapacitors. Adv. Opt. Mater. 2021, 9, 2100793. [Google Scholar] [CrossRef]
- Shintake, J.; Piskarev, Y.; Jeong, S.-H.; Floreano, D. Ultrastretchable Strain Sensors Using Carbon Black-Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors. Adv. Mater. Technol. 2018, 3, 1700284. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Huang, X.; Song, W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano 2021, 15, 18708–18741. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fei, Q.; Page, M.; Zhao, G.; Ling, Y.; Chen, D.; Yan, Z. Laser-Induced Graphene for Bioelectronics and Soft Actuators. Nano Res. 2021, 14, 3033–3050. [Google Scholar] [CrossRef]
- Kulyk, B.; Silva, B.F.-R.; Carvalho, A.-F.; Barbosa, P.; Girão, A.-V.; Deuermeier, J.; Fernandes, A.J.-S.; Figueiredo, F.M.-L.; Fortunato, E.; Costa, F.-M. Laser-Induced Graphene from Paper by Ultraviolet Irradiation: Humidity and Temperature Sensors. Adv. Mater. Technol. 2022, 7, 2101311. [Google Scholar] [CrossRef]
- Hong, J.; Wu, J.; Mao, Y.; Shi, Q.; Xia, J.; Lei, W. Transferred Laser-Scribed Graphene-Based Durable and Permeable Strain Sensor. Adv. Mater. Interfaces 2021, 8, 2100625. [Google Scholar] [CrossRef]
- Mahmood, F.; Zhang, H.; Lin, J.; Wan, C. Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors. ACS Omega 2020, 5, 14611–14618. [Google Scholar] [CrossRef] [PubMed]
- Gierlinger, N.; Schwanninger, M. The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy 2007, 21, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Madyaratri, E.-W.; Ridho, M.-R.; Aristri, M.-A.; Lubis, M.A.-R.; Iswanto, A.-H.; Nawawi, D.-S.; Antov, P.; Kristak, L.; Majlingová, A.; Fatriasari, W. Recent Advances in the Development of Fire-Resistant Biocomposites—A Review. Polymers 2022, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hu, L. Nanoscale Ion Regulation in Wood-Based Structures and Their Device Applications. Adv. Mater. 2021, 33, 2002890. [Google Scholar] [CrossRef] [PubMed]
- Mannion, P.-T.; Magee, J.; Coyne, E.; O’Connor, G.-M.; Glynn, T.-J. The Effect of Damage Accumulation Behaviour on Ablation Thresholds and Damage Morphology in Ultrafast Laser Micro-Machining of Common Metals in Air. Appl. Surf. Sci. 2004, 233, 275–287. [Google Scholar] [CrossRef]
- Ma, C.; Li, G.; Qin, L.; Huang, W.; Zhang, H.; Liu, W.; Dong, T.; Li, S. Analytical Model of Micropyramidal Capacitive Pressure Sensors and Machine-Learning-Assisted Design. Adv. Mater. Technol. 2021, 6, 2100634. [Google Scholar] [CrossRef]
- Sengupta, D.; Lu, L.; Gomes, D.R.; Jayawardhana, B.; Pei, Y.; Kottapalli, A.G.P. Fabric-like Electrospun PVAc-Graphene Nanofiber Webs as Wearable and Degradable Piezocapacitive Sensors. ACS Appl. Mater. Interfaces 2023, 15, 22351. [Google Scholar] [CrossRef]
- Ha, K.; Zhang, W.; Jang, H.; Kang, S.; Wang, L.; Tan, P.; Hwang, H.; Lu, N. Highly Sensitive Capacitive Pressure Sensors over a Wide Pressure Range Enabled by the Hybrid Responses of a Highly Porous Nanocomposite. Adv. Mater. 2021, 33, 2103320. [Google Scholar] [CrossRef] [PubMed]
- Chhetry, A.; Kim, J.; Yoon, H.; Park, J.Y. Ultrasensitive Interfacial Capacitive Pressure Sensor Based on a Randomly Distributed Microstructured Iontronic Film for Wearable Applications. ACS Appl. Mater. Interfaces 2019, 11, 3438–3449. [Google Scholar] [CrossRef] [PubMed]
Material | Structure | Fabrication Method | Highest Sensitivity (kPa−1) | Working Range (kPa) | Response & Recovery Time (s) | Refs. |
---|---|---|---|---|---|---|
CNT/PDMS | gradient micro-dome | micro-engraving | 0.065 | 0–1700 | <0.1 | [31] |
Graphene–PVAc | nanofiber | electrospinning | 0.014 | 2–320 | 0.4 | [52] |
rGO-TPU | foam | freeze-drying, dip-coating and chemical reduction | 0.0152 | 20–1940 | 0.16 | [19] |
CNT-Ecoflex | foam | dip-coating | 1.52 | 0–50 | 0.094 | [53] |
Wood-TPU | micro-cone | laser scribe and engraving | 0.11 | 20–1400 | 0.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, C.; Lu, M.; Zhang, Z.; Chen, S.; Liu, D.; Zhang, D.; Wang, J.; Sheng, B. Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood. Molecules 2023, 28, 5339. https://doi.org/10.3390/molecules28145339
Qu C, Lu M, Zhang Z, Chen S, Liu D, Zhang D, Wang J, Sheng B. Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood. Molecules. 2023; 28(14):5339. https://doi.org/10.3390/molecules28145339
Chicago/Turabian StyleQu, Chenkai, Meilan Lu, Ziyan Zhang, Shangbi Chen, Dewen Liu, Dawei Zhang, Jing Wang, and Bin Sheng. 2023. "Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood" Molecules 28, no. 14: 5339. https://doi.org/10.3390/molecules28145339
APA StyleQu, C., Lu, M., Zhang, Z., Chen, S., Liu, D., Zhang, D., Wang, J., & Sheng, B. (2023). Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood. Molecules, 28(14), 5339. https://doi.org/10.3390/molecules28145339