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Abstract: As an important thermosetting material, flame-retardant epoxy resin has various appli-
cations in the aerospace, chemical, and electronics industry, and other fields. However, the flame
retardancy of epoxy resins is often improved at the expense of mechanical performance. The con-
tradiction between flame retardancy and mechanical properties seriously impedes the practical
applications of epoxy resin (EP). Herein, iron-loaded polydopamine functionalized montmorillonite
(D-Mt-Fe3+), which was prepared by dopamine, iron chloride and montmorillonite in an aqueous so-
lution, was introduced to prepare iron-loaded polydopamine functionalized montmorillonite/epoxy
resin composites (D-Mt-Fe3+/EP). As expected, D-Mt-Fe3+/EP-10 with 10 phr of D-Mt-Fe3+ passed
the UL-94 V-0 rating, achieved a limiting oxygen index (LOI) value of 31.0% and reduced the smoke
production rate (SPR) and total smoke production (TSP), indicating that the introduction of D-Mt-
Fe3+ could endow EP with satisfactory flame retardancy through the radical scavenging function of
dopamine in the gas phase and the catalytic charring effect of iron ions, respectively. Encouragingly,
the mechanical property was also enhanced with the flexural strength increased by 25.5%. This work
provided an attractive strategy for improving both the mechanical properties and fire resistance of
EP, which greatly broadened their applications in the chemical industry and electronics field, etc.

Keywords: epoxy resin; iron-loaded polydopamine; montmorillonite; flame retardancy

1. Introduction

With the rapid growth of polymer materials, the flame-retardant performance of these
polymers (such as epoxy resin, unsaturated polyester, etc.) and their fiber-reinforced com-
posite materials, which are commonly used in the chemical industry and electronics field,
has gradually received attention because the flammability poses a great threat to the safety
of people’s lives and property in the case of various fire accidents [1]. As a thermosetting
material, epoxy resin (EP) is widely used in coatings, adhesives, sealants and lightweight
structures in automobiles and ships because of its good dimensional stability, strong cor-
rosion resistance and enhanced mechanical properties [2]. In addition, epoxy resin also
occupies a pivotal position in fiber-reinforced composite materials. With the development
of the automotive and electronics industry, epoxy resin is in huge demand [3,4]. However,
compared to other commonly used polymers, epoxy resins have poor flame-retardant
properties [5]. For example, the limiting oxygen index of epoxy resin is only about 19 [6],
which means that it will continue to burn once ignited in air. EP has the disadvantage of
being highly flammable, which limits its widespread applicability in various fields.

Up to now, many chemical compounds have been discovered to be used as flame
retardants to inhibit the spread of flames. According to the chemical structure, flame
retardants can be divided into organic and inorganic flame retardants. For organic flame
retardants, some halogen-containing flame retardants exhibit excellent flame-retardant
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properties. However, these halogen-containing flame retardants would release toxic and
harmful gases when they burned, which can cause damage to humans and the environment.
With the emphasis on environmental protection, halogenated flame retardants have been
greatly limited [7,8]. Some organic compounds containing phosphorus, silicon and nitrogen
show good flame-retardant properties and have attracted much attention [9–12]. However,
these organic compounds also have some drawbacks. For example, micro-molecule liquid
organic flame retardants can easily penetrate out of the polymer matrix due to their weak
interaction with the polymer matrix, resulting in poor flame retardancy [13]. In addition,
the synthesis process of macro-molecule organic flame retardants is usually complex with
low yields. Up to now, inorganic flame retardants are often used in flame retardant EP
because of their smokeless, non-toxic and inexpensive characteristics [14–16]. As a kind
of inorganic filler, montmorillonite (MMT) has the advantages of small size, high thermal
stability and high intercalation capacity [17], which has received special attention in the
field of flame retardants [18,19]. MMT can generate SiO2 and other substances to cover the
surface layer during the combustion process, playing a role in protecting the underlying
resin matrix from further damage [20,21]. Meanwhile, MMT can also help to reduce the
release rate of smoke, heat, and toxic gases during the combustion process [22,23]. However,
due to the agglomeration and hydrophilic properties of MMT, the interaction between EP
and MMT is weak, which deteriorates the mechanical properties of the modified EP and
has become a major limitation for further application.

Currently, surface treatment is the most commonly used method for enhancing the
interaction between EP and MMT [24–26]. For MMT, a suitable coupling agent is usually
used to reduce its surface polarity and thus improve the compatibility with epoxy resins.
Kim et al. used 3-aminopropyltriethoxysilane (3-APTES) for the surface treatment of MMT
to reinforced epoxy composites [27]. Batool et al. prepared epoxy multilayer composites
using (3-aminopropyl) trimethoxysilane (APTMS)-treated MMT [28]. Hua et al. used
(3-aminopropyl)-tri-ethoxy-silane (APTES) as a coupling agent to couple graphene oxide
with nano-MMT. The polar effect of the APTES group helped to improve the dispersion of
the nanomaterials in the epoxy-resin coating [29]. Nevertheless, with increasing concern
for environmental protection, a great deal of research has turned to bio-based materials for
the modification of MMT. Among them, polydopamine (PDA) has received widespread
attention as a new and efficient biomass modifier [30,31]. The structure of a dopamine
(DA) molecule is similar to the secreted mussel adhesion protein catechol, and its surface
is rich in active amino groups and catechol. Under alkaline conditions, polydopamine
membranes rich in active groups can be spread on the surfaces of various materials by
oxidative self-polymerization in air [32,33]. In addition, the amino and catechol groups
on the surface of dopamine can be used as reaction sites for metal ions. The addition
of transition metal ions, such as Fe3+, Mn3+ and Ni2+, to the dopamine polymerization
reaction can lead to the formation of transition metal-containing PDA materials [34–36].
Metal-containing dopamine materials have a stronger ability to scavenge radicals than pure
PDA [37], especially iron-loaded polydopamine (Fe-PDA), which can act as catalysts for
the charring of EP materials during combustion [38]. And the radical scavenging ability of
the PDA can also improve the flame retardancy of EP [39,40].

Herein, in order to realize a dual performance improvement simultaneously in epoxy
resin, we propose a novel iron-loaded polydopamine functionalized montmorillonite
(D-Mt-Fe3+), which can be obtained by the treatment of MMT with biomass dopamine
complexed with iron ions. The obtained D-Mt-Fe3+ was confirmed by FTIR and XPS.
After that, D-Mt-Fe3+ was added to epoxy resin to prepare iron-loaded polydopamine
functionalized montmorillonite/epoxy resin composites (D-Mt-Fe3+/EP), as shown in
Figure 1a. The adhesion and radical-scavenging abilities of PDA are expected to help
improve the dispersion and flame-retardant efficiency of MMT. In addition, a detailed
analysis of char residue after a cone calorimeter test is conducted to investigate the catalytic
carbonization ability of D-Mt-Fe3+ in EP composites. The flame retardancy of D-Mt-Fe3+
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in the gas phase and the condensed phase is also summarized. As expected, the resulting
D-Mt-Fe3+/EP has improved mechanical properties while reducing the risk of fire.
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2. Results and Discussion

2.1. Structural Analysis of D-Mt-Fe3+

The element components in D-Mt-Fe3+ were analyzed by XPS, and the presence of Fe,
O, N, C and Si in D-Mt-Fe3+ can be observed in Figure 2a, indicating that the preparation of
D-Mt-Fe3+ was successful. The elemental states in D-Mt-Fe3+ were further analyzed. The
spectrum of Fe 2p (Figure 1b) was divided into two main peaks with binding energies at
717.9 eV and 714.7 eV, corresponding to Fe 2p1/2 and Fe 2p3/2, respectively, which indicate
that the iron in D-Mt-Fe3+ is present mainly in the ferric state, not ferrous state. Two distinct
peak intensities at 404.6 eV and 402.6 eV were mainly due to N–H and N=C, respectively,
indicating D-Mt-Fe3+ carries a large number of amino groups, which is favorable for
the interaction between the synthesized product and the EP substrate (Figure 2c). The
deconvolution of the O 1s peak in Figure 2d showed O=C (537.2 eV), O–C (535.4 eV) and
O–Fe (533.3 eV) signals. This shows that coordination bonds are formed between iron ions
and catechol groups on the surface of D-Mt-Fe3+. Figure 2e shows the infrared spectra of
MMT, D-Mt and D-Mt-Fe3+. The characteristic peak of MMT appeared at 1006 cm−1, which
was attributed to the Si–O vibration. The IR spectrum of D-Mt reveals adsorption peaks at
1642 and 3425 cm−1, which can be attributed to the stretching vibration of aromatic ring
and hydroxyl group, respectively. This indicates that the polydopamine was successfully
bound to the MMT surface. In the IR spectrum of D-Mt-Fe3+, a phenolic peak at 3370 cm−1

appeared which was weaker than the peak at 3425 cm−1 of D-Mt, which is due to the
complexation of the iron ion with the catechol on the polydopamine [41]. Furthermore, it
can be seen from XRD spectra (Figure 2f) that various Fe-containing substances such as
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Fe3O4, Fe3C and Fe were formed after combustion. The Fe3+ in the D-Mt-Fe3+ can react
with nearby hydrocarbons during combustion to form Fe3C. In the presence of oxygen
and the pyrolytic gasification products of the epoxy resin, the Fe3+ can be oxidized to form
Fe3O4 with a partial reduction to Fe [42].
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2.2. Thermal Stability

Epoxy resin with an excellent thermal stability is crucial for fire-retardancy application.
The thermal stability and catalytic charring capability of D-Mt-Fe3+/EP composites were
investigated by thermogravimetric analysis (TGA). As shown in Figure 3a,b, there is just
one peak for all samples, indicating a single decomposition process with decomposition
temperatures ranging from 300 ◦C to 450 ◦C. However, the char residue of D-Mt-Fe3+/EP-
10 increased from 16% of EP-0 to 24% at 600 ◦C, indicating that D-Mt-Fe3+ significantly
increases the char residue of EP during the process (detailed char residue of D-Mt-Fe3+/EP
are shown in Table 1). This is inseparable from the catalytic charring role played by Fe3+ in
this process [43]. It can be clearly seen from the DTG curves that the maximum weight-loss
rate of D-Mt-Fe3+/EP-10 decreased from −1.9%/min of DPB/EP-0 to −1.2%/min, which
was due to the carbon layer formed by the catalytic carbonization ability of D-Mt-Fe3+ to
protect the matrix from destruction.
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Table 1. Relevant data from TGA and DTG tests.

Sample T5% (◦C) Tmax (◦C) RC600 (wt%)

EP-0 370 390 16
D-Mt-Fe3+/EP-5 350 386 22

D-Mt-Fe3+/EP-10 367 389 24

2.3. Flame Retardancy

The vertical burning test (UL-94) and limiting oxygen index (LOI) values are the main
methods used to study the flame retardancy of polymer materials. The flame retardancy
of EP composites with the introduction of D-Mt-Fe3+ was systematically investigated
using these methods. As shown in Figure 4a, the LOI values increased from 24.1% to
27.6% and 31.0%, respectively, which suggests that the LOI can be effectively improved by
the addition of D-Mt-Fe3+. In addition, D-Mt-Fe3+/EP showed a significantly improved
self-extinguishing ability with the rating of UL-94 testing increasing from V-1 of D-Mt-
Fe3+/EP-5 to V-0 of D-Mt-Fe3+/EP-10. D-Mt-Fe3+/EP shows low flammability in LOI and
UL-94, which is primarily due to the radical scavenging and catalytic carbonization of
D-Mt-Fe3+.
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D-Mt-Fe3+/EP.

Considering that LOI and UL-94 are small-scale laboratory simulations, there are
still significant differences for the actual fire scene. The cone calorimetry test has been
introduced as an improved method to evaluate the combustion behavior of D-Mt-Fe3+/EP.
In order to investigate the flame-retardant performance of D-Mt-Fe3+/EP in depth, cone
calorimetric tests were carried out. The heat release rate (HRR), total heat release (THR), to-
tal smoke production (TSP) and smoke production rate (SPR) are shown in Figure 4c–f. The
reduced HRR of both D-Mt-Fe3+/EP-5 and D-Mt-Fe3+/EP-10 are due to the accumulation
of a carbon layer during combustion. The carbon layer acts as a physical barrier, slowing
down the transport of oxygen and volatiles, thereby effectually reducing the heat-release
rate during the combustion process. Figure 4d shows the smoke production rate of D-Mt-
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Fe3+/EP; it can be observed that the smoke production rate decreased by 31.0% after the
addition of D-Mt-Fe3+, indicating that D-Mt-Fe3+ has a significant effect on SPR reduction.
Figure 4e is the THR of D-Mt-Fe3+/EP, which shows a trend in line with the HRR. The
average effective heat of combustion (Av-EHC) is an indicator of flame suppression in the
vapor phase [44]. As shown in Table 2, D-Mt-Fe3+/EP-5 and D-Mt-Fe3+/EP-10 exhibit a
lower Av-EHC value than EP, indicating that D-Mt-Fe3+ acts as a flame suppressor in the
vapor phase. That is because D-Mt-Fe3+ acts in the gas phase by eliminating adjacent H·
and OH· radicals [45,46], thus promoting the quench of the flame. Based on the analysis
above, D-Mt-Fe3+ plays a primary flame-retardant in the vapor phase. The mass loss rate
(MLR) reflects the degree of material combustion. The MLR values of D-Mt-Fe3+/EP also
decreases with the increase in D-Mt-Fe3+, indicating that the addition of D-Mt-Fe3+ could
improve the incomplete combustion of EP. Figure 4f shows the total smoke production for
D-Mt-Fe3+/EP and it can be observed that the total smoke production of D-Mt-Fe3+/EP
gradually decreases following the addition of D-Mt-Fe3+. Meanwhile, the changes in the
average carbon monoxide yield (Av-COY) and average carbon dioxide yield (Av-CO2Y)
values further confirmed the gas-phase effect of D-Mt-Fe3+. The combustion chain reaction
is inhibited by the trapping radicals in the gas phase by D-Mt-Fe3+. Therefore, less complete
combustion products (CO2) and more incomplete combustion products (CO) are generated
during the combustion process.

Table 2. Cone data of D-Mt-Fe3+/EP.

Sample TTI
(s)

Av-EHC
(MJ/kg)

MLR
(g/s)

TSP
(m2)

Av-COY
(kg/kg)

Av-CO2Y
(kg/kg)

EP-0 87 26 0.053 22.7 0.16 8.9
D-Mt-Fe3+/EP-5 74 25 0.050 22.3 0.46 4.2
D-Mt-Fe3+/EP-10 74 23 0.049 20.8 0.42 4.5

The carbon layer produced during combustion acts as a barrier to heat and oxygen,
thus protecting the underlying material from damage. Therefore, the analysis of the carbon
layer is crucial. In order to better investigate the char layer, the digital images and SEM
of D-Mt-Fe3+/EP after cone calorimetry test were analyzed. As shown in Figure 5a1, it
can be obviously found that EP-0 has almost no char remains after the cone test. From the
char residues of D-Mt-Fe3+/EP-5, it can be found that the incorporation of D-Mt-Fe3+ can
effectively promote the formation of a steady char structure, which is related to the catalytic
carbon formation capacity of Fe3+ [47]. Moreover, when the loading of D-Mt-Fe3+ increases
to 10 phr, the char layers are more complete, which can protect the underlying materials
from further degradation efficiently. The SEM images of the char of D-Mt-Fe3+/EP-10 show
a denser morphology which hinders flammable gas and oxygen transfer, thereby effectively
interrupting the combustion cycle.

Raman spectra are an effective means to characterize residual carbon. As illustrated
in Raman spectra (Figure 5a3–c3), there are two obvious overlapping peaks at 1311 cm−1

(D band) and 1578 cm−1 (G band), which are attributed to amorphous and graphitized
carbons, respectively. The intensity ratio (ID/IG) between the D and G peaks is used to
analyze the degree of graphitization of the carbon residues [48]. The smaller the D to G peak
integral strength ratio (ID/IG), the higher the degree of graphitization of the carbon layer,
and the stronger the corrosion resistance and heat resistance [49,50]. The value of ID/IG for
EP-0 was 2.30, while the ID/IG for D-Mt-Fe3+/EP-5 and D-Mt-Fe3+/EP-10 were 1.33 and
1.30, respectively. It is noteworthy that the ID/IG values for D-Mt-Fe3+/EP were smaller
than that of EP-0, which indicates the higher degree of graphitization of D-Mt-Fe3+/EP. The
result suggests that the D-Mt-Fe3+ increases the graphitic phase in char residues, which
provides more effective barriers against mass and heat diffusion.
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As shown in Figure 6, when comparing the SPR reduction value of D-Mt-Fe3+/EP-
10 and its corresponding LOI value with the other literature on flame-retardant epoxy
resins [51–54], it was found that the D-Mt-Fe3+ prepared in this paper showed a more
outstanding comprehensive performance related to improved LOI values and the reduction
in SPR. Based on the results and analysis of the above tests, the flame-retardant mechanism
of D-Mt-Fe3+ in EP composites is as follows. In the gas phase, D-Mt-Fe3+ is able to prevent
the combustion chain reaction by trapping H• and OH• radicals. This in turns leads to a
significant reduction in the yield of CO2 and a reduction in TSP, which facilitates flame
extinction. In the condensed phase, Fe3+ in D-Mt-Fe3+ plays a role in catalytic charring
during the combustion process, forming a dense and stable carbon layer structure. On the
one hand, it can hinder the release of combustible gases during the decomposition process.
On the other hand, it can also block the transmission of oxygen and heat, so as to protect
the substrate from being destroyed.
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2.4. Mechanical Properties of D-Mt-Fe3+/EP

In many cases, the addition of flame retardants to improve the flame retardancy of
epoxy resins often reduces its mechanical properties. Therefore, its mechanical properties
are an important parameter to evaluate the comprehensive properties of resin materials.
Figure 7a,b show the flexural strength and tensile strength of D-Mt-Fe3+/EP, respectively.
Compared to EP-0 (151.3 ± 3.3 MPa), the addition of D-Mt-Fe3+ increases the flexural
strength of EP, reaching 169.9± 2.3 MPa for D-Mt-Fe3+/EP-5 and 176.8± 2.2 MPa for D-Mt-
Fe3+/EP-10. The flexural strength of D-Mt-Fe3+/EP-10 was increased by 25.5% compared
to EP-0. The tensile strength of EP-0 was 53.5 ± 2.5 MPa, while D-Mt-Fe3+/EP-10 shows
the best tensile properties, reaching 55.2 ± 2.5 MPa. This indicates that the tensile strength
of D-Mt-Fe3+/EP also increases significantly with the increase in D-Mt-Fe3+ content.
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As shown in Figure 7c, EP-0 has a smooth fracture with only a few radial streaks,
indicating a typical brittle fracture due to the insufficient dispersion of stress and rapid crack
extension. Unlike EP-0, D-MT-Fe3+/EP has distinct ductile fracture characteristics. For the
representative fracture surface of D-MT-Fe3+/EP-10 (Figure 7e), it showed a significant
increase in folds and ripples, and the direction of the ripples was perpendicular to the
direction of the force, indicating that the cracks can effectively prevent the rapid fracture of
the material [55].

3. Experimental Procedure
3.1. Materials

Montmorillonite (MMT) was obtained from Adamas Reagents Co., Ltd. (Shang-
hai, China). Iron (III) chloride hexahydrate (>99.0%, FeCl3·6H2O) was purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) Dopamine hydrochloride
(>99.8%, C8H12ClNO2) was provided by Yitai Technology Co., Ltd. (Wuhan, China).
Anhydrous ethanol (A. R., C2H6O) was supplied by Titan Technology Co., Ltd. (Shanghai,
China). Tris(hydroxymethyl)aminomethane (>99.9%, C4H11NO3, Tris) was purchased from
Macklin Biochemical Co., Ltd. (Shanghai, China). 4,4-diaminodiphenylmethane (98%,
C13H14N2, DDM) was supplied by Sarn Chemical Technology Co., Ltd. (Shanghai, China).
Bisphenol-A epoxy resin (E-51) was purchased from Fujian Yunsen Technology Co., Ltd.
(Zhangzhou, China). All materials were used directly without further purification.
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3.2. Preparation of Iron-Loaded Polydopamine Functionalized Montmorillonite (D-Mt-Fe3+)

Firstly, 20 g MMT was dispersed in 1 L deionized water and stirred for 12 h, then
tris(hydroxymethyl)aminomethane (Tris) (2.42 g, 20 mmol) was added to adjust the pH
of the solution to 8.5. A weight of 161.5 mg (0.85 mmol) dopamine hydrochloride was
then added, stirred for 2 h and centrifuged at 4000 rpm for 15 min to remove the super-
natant. The supernatant was removed and washed with deionized water to remove the
uncoated polydopamine to obtain dopamine-modified montmorillonite (D-Mt). After that,
0.076 g (0.28 mmol) FeCl3·6H2O was added to the above mixture (the molar ratio between
dopamine hydrochloride and Fe3+ was 3:1). The reaction mixture was continuously stirred
at room temperature for 2 h. The mixture was centrifuged at 4000 rpm for 15 min and the
lower layer was washed three times with deionized water to remove the uncomplexed
Fe3+. Finally, the product was dried in an oven at 60 ◦C for 24 h to obtain iron-loaded
polydopamine functionalized montmorillonite (D-Mt-Fe3+). The preparation process of
D-Mt-Fe3+ is shown in Figure 1b.

3.3. Preparation of Iron-Loaded Polydopamine Functionalized Montmorillonite/Epoxy Resin
Composites (D-Mt-Fe3+/EP)

Firstly, 5 g D-Mt-Fe3+ was dispersed in 30 mL anhydrous ethanol with ultrasonic
oscillation for 30 min. Secondly, 100 g EP was added to this suspension with continuously
stirred for 30 min to mix the EP well with D-Mt-Fe3+. After then, 25 g 4,4′-diamino-
diphenylmethane (DDM) was added to the mixture and stirred well until the DDM was
completely melted and the mixture became uniform with a stirring temperature of 100 ◦C.
Finally, the resulting EP composite was poured into the molds and cured at 120 and 150 ◦C
for 2 h, respectively, to obtain the cured sample. The preparation process of pure EP was
similar to that of the EP composites. EP with 0, 5 and 10 phr of D-Mt-Fe3+ were labeled as
EP-0, D-Mt-Fe3+/EP-5 and D-Mt-Fe3+/EP-10, respectively.

3.4. Measurements

The FTIR spectroscopy of the flakes (MMT, D-Mt and D-Mt-Fe3+ were mixed with
KBr and pressed into flakes, respectively) was investigated using a Nicolet 5700 FTIR
spectrophotometer (Nicolet, Florence, WI, USA) with 32 scans, and the wavenumber range
was from 400 to 4000 cm−1.

Thermogravimetric analysis (TGA) was performed using an SDTA 851e thermogravi-
metric analyzer (Mettler Toledo, Greifensee, Switzerland). The heating rate was 10 ◦C/min,
from 25 to 700 ◦C in a nitrogen atmosphere with a nitrogen flow rate of 50 mL/min.

The limiting oxygen index (LOI) was obtained using a HC-2C oxygen index instru-
ment (Jiangning, China) in accordance with GB/T2406.2-2009 standard, and the specimen
dimension was 130.0 × 6.5 × 3.0 mm3.

The vertical burning test (UL-94) was in accordance with the GB/T2408-2008 standard,
using a CZF-2 horizontal and a vertical burning tester (Jiangning, China). The specimen
dimension was 130.0 × 13.0 × 3.0 mm3.

The combustion test was measured using a cone calorimeter (Fire Testing Technol-
ogy, East Grinstead, UK) in accordance with ISO 5660. The specimen dimension was
100.0 × 100.0 × 3.0 mm3 and the heat radiation value was 35 kW/m2.

Scanning electron microscopy (SEM) images of char residues and fracture surfaces
were obtained by a JEOL-4800 Scanning Electron Microscope at an accelerating voltage of
5 kV to reveal the microscopic structure.

X-ray photoelectron spectroscopy (XPS) test was completed using an ESCALAB 250XI
electron spectrometer (Thermo Fisher Scientific, San Diego, CA, USA), using Al Ka radiation
(hν = 1486.6 eV) as the excitation source.

Tensile strength and flexural strength were tested using a CMT4104 universal testing
machine (SANS, Rockville, MD, USA). The standard of GB/T1040.2-2006 was used for the
tensile test while flexural properties were tested according to GB/T9341-2008. The load
rate was 2 mm/min with five repetitions for each scale of the sample.
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X-ray diffraction (XRD) patterns were scanned using a X’ Pert PXRD X-ray diffractome-
ter (PAN alytical, Almelo, The Netherlands). The p-XRD apparatus used Cu Kα radiation
(λ = 1.542 Å)-emitted X-rays which were received by a Lynx Eye detector.

4. Conclusions

In this study, a novel environmentally friendly flame-retardant, iron-loaded poly-
dopamine functionalized montmorillonite was developed by a simple design. Combining
the efficient ability of polydopamine to scavenge radicals with the catalytic charring effect
of iron ions, the combustion risk of D-Mt-Fe3+/EP can be significantly reduced and its
flame retardancy can be improved. Remarkably, the LOI value of D-Mt-Fe3+/EP-10 is 31.0%
and the UL-94 test rating is V-0, which is attributed to the synergistic effect of the gas phase
and the condensed phase. In the gas phase, the ability of polydopamine to trap radicals
interrupts the chain reaction of combustion, resulting in a 31.0% reduction in the smoke
production. In the condensed phase, the catalytic charring ability possessed by Fe3+ results
in a denser and more intact carbon layer, which facilitates the blocking of oxygen and heat
transport, thus reducing the possibility of fire risk. At the same time, the mechanical prop-
erties of D-Mt-Fe3+/EP are also improved with the addition of D-Mt-Fe3+, and the flexural
strength of D-Mt-Fe3+/EP-10 increases by 25.5%. This work provides a convenient method
for the preparation of environmentally friendly, sustainable bio-based flame retardants for
epoxy resins, which offers great potential for popular advanced engineering applications
such as construction materials, electrical, electronics and transportation, etc.
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