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Abstract: The altered activation or overexpression of protein kinases (PKs) is a major subject of research
in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best avail-
able option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal
chemistry and drug development strategies, playing a vital role as a fundamental framework in the
structure of various PKIs. This scaffold holds major importance and is considered a privileged structure
based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement func-
tion. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK,
B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US
FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib,
Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring
within the clinically tested PKI and on the additional required elements of their chemical structures. Re-
lated important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine,
pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.

Keywords: adenine-mimetic; ATP-competitive; asciminib; avapritinib; crizotinib; encorafenib;
erdafitinib; pralsetinib; pirtobrutinib; ruxolitinib

1. Introduction

The protein kinases (PKs) represent a large family of enzymes that catalyze the transfer
of a phosphate group, released by adenosine triphosphate (ATP), to the hydroxyl group of
serine, threonine or tyrosine residues of their protein substrates [1]. Protein phosphorylation
is an essential cellular mechanism of regulation with high impact on signal transduction,
cell growth and proliferation [2]. In general, PKs can function on multiple substrates and
various proteins can be phosphorylated by more than one specific kinase [3]. The aberrant
activation (or overexpression) of PKs has been frequently observed in cancer cells and
represents a major mechanism of tumoral development, making PKs the focus of extensive
research and the most widely-studied therapeutic targets in the field of oncology [4]. Protein
kinase inhibitors (PKIs) have emerged as valuable therapeutic options in the treatment
of various cancers, and their development has radically transformed the field of targeted
cancer therapy [5].

PKIs encompass a diverse range of chemical structures, as different compounds have
been developed to interact selectively with specific enzymes but share some common
structural features or scaffolds that are essential for the target binding and inhibitory
activity [6–8]. The concept of privileged scaffolds was introduced to describe chemical
frameworks that have shown broad activity against multiple targets within a specific
target family [9,10]. The scaffolds are not limited to a single target family, but they have
demonstrated a higher propensity for successful drug discovery within that particular
target class [11]. In the context of PKs, there are several privileged scaffolds that have
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proven effective in developing kinase inhibitors, such as the pyrazolo[3,4-d]pyrimidine
scaffold [12–14], the imidazo[1,2-b]pyridazine scaffold [15] or the indazole ring [16]. Several
structural modifications of these heterocycles are needed to enhance the binding affinity
and selectivity of the inhibitors [1].

The pyrazole scaffold is widely used in medicinal chemistry and drug discovery, and it
represents an important building block in the development of PKIs, being a key privileged
scaffold [17–19]. The literature provides several in-depth reviews focused on the design,
synthesis, and biological evaluation of pyrazole-based anticancer agents, highlighting the
pharmacological potential of this scaffold [20–23], but takes little notice of its propensity
toward the family of PKs.

The objective of this study was to present, in a critical manner, the importance of
the unfused pyrazole ring in the structures of clinically tested PKIs, and to accentuate the
additional structural requirements. The notion “unfused pyrazole” was used to avoid the
confusion with fused pyrazoles, because many authors incorrectly use the term “pyrazole”
for both types of compounds. The study tries to offer chemists the proper pharmacological
background in order to select the appropriate therapeutic target or biological pathway they
wish to investigate for their synthesized pyrazoles.

The review is structured based on the primary target of the pyrazole-based inhibitors
detailing the specifics of each class. Table S1 presents a summary of the clinical as-
says performed on the reviewed compounds and their approval status with the Food
and Drug Administration (FDA) and the European Medicines Agency (EMA). The com-
pleted/suspended studies were not included in the table.

2. The Chemical Profile of the Pyrazole Ring

Pyrazole is a compound from the five-membered heterocycles class, with two nitrogen
heteroatoms in vicinal positions. This diazole heterocycle has aromatic character, present-
ing a system of six π electrons, four of them coming from three carbon atoms and one
nitrogen atom, hybridized sp2, with each contributing one electron from the unhybridized
p orbital [24]. The second nitrogen atom provides a pair of electrons located in a p orbital
that is coplanar with the other p orbitals. The extended molecular orbital is formed by the
interpenetration of these atomic orbitals stabilizing the heterocyclic system [25,26]. Due to
its pronounced aromatic character, pyrazole can participate in electrophilic substitution
reactions (nitration, sulfonation, halogenation) in position 4. Positions 3 and 5 are deacti-
vated because of the presence of electronegative nitrogen atoms, facilitating nucleophilic
attacks at these last two positions [27].

The substitutions on the pyrazole ring have a major impact on their chemical and
biological properties. The N-unsubstituted pyrazoles derivatives present amphoteric
properties, due to the pyrrole-like nitrogen (NH) that can easily donate its proton, while
the pyridine-like nitrogen atom (N) is capable of accepting protons. In general, the basic
character is prevalent, but the presence of electron donating groups on the ring can increase
the acidity of the NH group [26,28].

In terms of medicinal chemistry, the N-unsubstituted pyrazole ring is capable of
simultaneously donating and accepting hydrogen bonds, while the substitution at the
pyrrole-like nitrogen abolishes the acidic character and the capacity of the heterocycle to
serve as a hydrogen bond donor [28,29]. In contrast to the related heterocyclic structures
imidazole, thiazole, and oxazole, which tend to undergo metabolic oxidative cleavage to
electrophilic fragments, the drugs containing pyrazole rings exhibit higher stability against
oxygenases, such as P450. This stability is likely attributed to the strong acidic nature of
pyrazole, which renders its derivatives less susceptible to oxidative metabolism. Drugs
incorporating N-substituted pyrazoles as part of their structure frequently experience the
removal of the substituent attached to the pyrazole ring [30].
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3. Protein Kinases Structure and Inhibition Mechanisms

Both receptor protein kinases and non-receptor protein kinases share structural fea-
tures specific to the PK superfamily. The main difference between the two subclasses is
represented by the presence of a transmembrane segment and an extracellular segment
(needed for ligand-dependent activation) in the case of receptor tyrosine kinases. The
structure of PKs can be divided 12 subdomains (I-VIa, VIb-XI) or into N-terminal and
C-terminal lobes, which are connected by a hinge region [31,32].

The N-terminal lobe is smaller and consists of five-stranded antiparallel β-sheet, an
αC-helix occurring in both active and inactive conformations, and a glycine-rich loop (GRL
or P-loop) that connects the β1- and β2-strands [33]. One exception to this generalization
is represented by proto-oncogene kinase Pim-1, which has an extra beta-hairpin in the
N-terminal lobe [34]. A common feature regarding the primary structure of PKs is the
presence of a valine residue situated after the GRL, which is involved in hydrophobic
interactions with both the adenine fragment of ATP and various scaffolds specific to small
molecule PKIs [33]. The conserved β5-strand contains a bulky “gatekeeper” residue, which
is located adjacent to the hinge region and distal to the active site. This residue regulates
the interaction of PKs and nucleotides or small molecule PKI [35]. Mutations at this site
can lead to treatment resistance by preventing the binding of some competitive PKIs, while
other molecules can bypass this issue, acting as mutation resistant PKIs (e.g., T338M mutant
c-Src kinase is resistant to type I inhibitor dasatinib, but not type II inhibitor RL45) [36].
Interestingly, mutations of the gatekeeper residue in ERK2 MAP kinase enhance autophos-
phorylation, elevating the kinase activity, and promote the binding of PP1 derivatives and
N6-cyclopentyl ATP [35,37,38].

PKs can be found in either αCin (active) or αCout (inactive) conformations. The
αCin architecture is required for catalytic activity and is defined by the presence of a salt-
bridge between a positively charged lysine within the β3-strand and a negatively charged
glutamate within the αC-helix. Therefore, enzymatic activity cannot occur without the
conversion of the αCout conformation to the αCin architecture [33,39].

The secondary structure of the C-terminal lobe is characterized by eight conserved
α-helices (αD- αI, αEF1, αEF2) and four short β-strands (β6–β9). Interestingly, the second
amino acid residue of the β7 strand is involved in hydrophobic interactions with all small
molecules ATP-competitive PKI and is considered the “floor” of the adenine binding pocket.
Moreover, the C-terminal lobe is involved in the positioning of the protein substrate into
the active site and has a catalytic loop that mediates the γ-phosphoryl group transfer from
ATP to substrates [33,40,41].

PKs have a highly conserved catalytic loop, which contains an HRD (His/Arg/Asp) mo-
tif. Enzymatic activity is dependent on a catalytic tetrad (K/E/D/D—Lys/Glu/Asp/Asp).
The lysine of the tetrad is the same residue that forms a salt bridge with the αC-glutamate
but is also involved in salt bridge formation with α- and β-phosphates of ATP [33]. The
aspartate of the HRD sequence is the same as the first aspartate in the catalytic tetrad
and functions as a proton acceptor (Lowry-Brønsted base), abstracting the proton from
the substrate -OH [42]. The protein-substrate-binding activation segment starts with the
second aspartate of the catalytic tetrad and is followed by a phenylalanine and a glycine
(DFG pattern). The catalytic activity of many protein kinases is dependent on two Mg2+

ions, which are bound by the DFG aspartate and the terminal asparagine from the catalytic
loop [33,43].

The activation segment is highly variable among the protein kinase superfamily
and contains phosphorylatable residues, with their phosphorylation being mandatory for
enzymatic activity (with few exceptions). Moreover, the activation segment has an open
conformation in functional kinases and a closed conformation in inactive kinases. In active
conformations, the DFG aspartate points toward the nucleotide binding site and binds
the Mg2+ cation (DFGin), while in inactive conformations, the aspartate residue points
away from the nucleotide binding site (DFGout). In DFGin conformation, the phenylalanine
sidechain is packed against or under the αC-helix, while in DFGout conformation the



Molecules 2023, 28, 5359 4 of 32

phenylalanine is oriented into the ATP binding site. In a third, intermediate conformation
called DFGinter (or DFGup), the phenylalanine divides the active site into two halves, the
side chain being out of the αC-helix and pointing towards the β-sheets [33,39]. The DFGup
state was first reported in an Aurora A kinase triple-point mutant that mimics the active
site of Aurora B kinase bound to an inhibitor [44].

Currently, PKIs are categorized into 7 classes (I–VII), according to their mechanisms
of action and binding modes. Types I–V are reversible inhibitors, while types VI-VII m
are irreversible binders. Type I inhibitors interact with the enzyme in the active DFGin
conformation at the ATP binding site, while type II inhibitors bind to the inactive DFGout
conformation. Both type I and II molecules are competitive inhibitors. A subclass of type
I inhibitors, called type I 1

2 , bind to the enzyme in DFGin and αCout conformation. Type
III and IV PKIs are allosteric inhibitors that bind either within the ATP pocket (type III)
or the substrate-binding domain (type IV). Type V inhibitors are bivalent molecules that
target both the ATP binding pocket and substrate-biding domains. Lastly, type VI PKIs are
covalent inhibitors that react primarily with nucleophilic cysteines within the ATP binding
pocket or other sites proximal to the kinase domain, while type VII PKIs are nonclassical
allosteric inhibitors that bind covalently to the extracellular domain of receptor PKs [45–47].

4. Akt Inhibitors

Akt kinase, also known as protein kinase B, is a serine/threonine kinase that plays a
crucial role in cell survival, growth, proliferation, metabolism, and protein synthesis. It is a
key component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, which is
frequently dysregulated in cancer [48]. It consist of three isoforms (Akt 1–3) that share a
high degree of structural homology and similar functions but have some distinct roles in
specific tissues [49,50].

The most explored strategy was to target the ATP binding site, but despite its high
efficiency to generate potent inhibitors, this approach makes the development of selective
agents challenging because of the high homology of Akt with other PKs. The structures of
representative pyrazole-based Akt inhibitors are presented in Figure 1.
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Figure 1. The structures of Akt inhibitors Afuresertib, Uprosertib and the lead structure of their
development, the N-(2-phenylethyl)-5-pyrimidin-4-yl-thiophene-2-carboxamide derivate.

4.1. Afuresertib

A high throughput screening identified a N-(2-phenylethyl)-5-pyrimidin-4-yl-thiophene-
2-carboxamide derivative as an ATP-competitive inhibitor of Akt3. The structure activity
relationships highlighted the importance of the amide bond and revealed the distance of two
carbon atoms between the phenyl ring and the amide nitrogen as optimal [51]. Replacement
of the 2-aminopyrimidine fragment with a pyrazole ring improved the effect and was the first
step towards the development of afuresertib (GSK2110183) [52]. The pyrazole moiety is critical,
providing only a single hydrogen bond with the hinge region of the kinase. The halogen-
substituted benzene ring is also important by forming interactions with the hydrophobic
pocket under the P-loop [53].
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Afuresertib highly inhibits all three isoforms of Akt, with a higher potency against
Akt1, with a cited half-maximal inhibitory concentration (IC50) value of 0.02 nM compared
to Akt2 and Akt3 (IC50 values of 2 nM, respectivlly 2.6 nM). The mechanism is ATP-
competitive and fully reversible [52]. Afuresertib is under evaluation in combination with
other therapies in various clinical trials [54,55].

4.2. Uprosertib

Uprosertib (synonyms: GSK2141795, GSK795) is an ATP-competitive, orally bioavail-
able Akt inhibitor structurally similar to afuresertib, with the main difference being the
replacement of the thiophene fragment with a furan ring [56]. Uprosertib is undergoing
clinical investigation to treat triple-negative breast cancer [57].

5. Aurora Kinases Inhibitors

Aurora kinases are a group of three (AurA, AurB, AurC) serine/threonine protein
kinases that play crucial roles in regulating various aspects of cell division, particularly
in the process of mitosis. They are tightly regulated throughout the cell cycle to ensure
accurate chromosome segregation and proper cell division [58]. AurA promotes the cen-
trosome maturation and the mitotic spindle assembly preparing the transition from the
G2 phase to the M phase of the cell cycle. AurB and AurC regulate the dynamic interactions
between the chromosomes and the microtubules, ensuring proper chromosome alignment
and segregation [59,60]. The inhibitors are usually classified as selective toward a specific
Aurora isoform and nonselective (pan-Aur) inhibitors. The pyrazole template emerged
as an important scaffold in the design of both non-selective inhibitors and subtype selec-
tive inhibitors [61]. The structures of clinically important pyrazole-based inhibitors are
presented in Figure 2.
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5.1. Tozasertib

Tozasertib, also known as VX-680 or MK-0457, is a pan-Aur inhibitor, with some
degree of selectivity towards AurA. It has shown activity against a broad range of tumor
types, including both solid tumors and hematological malignancies. It was evaluated in
several clinical trials, the best response being observed in patients with leukemia [62].

An aminopyrazolyl substituted quinazoline derivative was identified as a lead in a
screening campaign to find pan-Aur inhibitors. Tozasertib was developed by structural
optimization of this lead compound mainly by using pyrimidine as a structural simplifi-
cation core quinazoline scaffold [63]. The 3-aminopyrazole scaffold is a well-established
adenine-mimetic pharmacophore, and in the case of tozasertib establishes hydrogen bonds
with Glu211 and Ala213 in the hinge region. The binding of the aminopyrazole fragment
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is similar with that of the related pyrrolopyrazole derivative, danusertib. The carbonyl
group of the cyclopropylamide fragment is also important for the interaction with the
kinase [64,65].

Several structurally similar compounds were developed based on tozasertib model,
such as ENMD-2076, an orally active potent inhibitor of AurA and of other cancer-related
kinases [66,67], and AT9283, a 4-pyrazolamine derivative with broad-spectrum activity
against a variety of kinases [68,69].

5.2. Ilorasertib

Ilorasertib, previously known as ABT-348, is a potent and ATP-competitive multitar-
geted kinase inhibitor with nanomolar potency against AurB and AurC, and micromolar
potency against AurA. Ilorasertib inhibits, also, the vascular endothelial growth factor
receptor (VEGFR) and the Src family of cytoplasmic tyrosine kinases [70]. Clinical evidence
indicates that the inhibition of VEGFR2 is obtained at lower doses compared with the
inhibition of Aurora kinsases [71].

The importance of the pyrazole ring in the structure of ilorasertib was revealed in
the process of lead optimization. In the effort to increase the AurB inhibitory potency of a
4-amino-thienopyridine derivative, a series of aromatic rings were added in the position
7 of the heterocycle. Benzene, furan, and thiophene had little effect, while 3-pyrrole and
3-pyrazole had a medium impact. The best results were achieved with the pyrazole ring
substituted in position 4. Docking studies confirmed the role of the pyrazole moiety that
fits into the extended-hinge region of the enzyme [72].

5.3. Barasertib

Barasertib, also known as AZD1152, is a prodrug that is rapidly converted by the
seric phosphatases to the active barasertib-hQPA, also referred to in the literature as
defosbarasertib and AZD1152-HQPA, a potent and selective AurB inhibitor [73]. There are
many articles that seem to confuse barasertib with its active form barasertib-hQPA or fail
to clearly present it as such.

Barasertib is pyrazolyl-aminoquinazoline derivative for which the importance of the
pyrazole scaffold was demonstrated in its lead optimization stage. The drug development
process started with an anilino-quinazoline derivative that presented sub-micromolar
potency against both AurA and AurB. The benzene ring was changed with several rings,
such as pyrimidine, thiazole, and pyrazole. The pyrazole fragment was preferred because
it afforded both potent inhibitors and also less lipophilic compounds with better drug-like
properties [74].

Barasertib was evaluated in several clinical assays focused on various cancer types,
such as acute myeloid leukemia, relapsed or refractory diffuse B-cell lymphoma, and small-
cell lung cancer. The results indicated positive responses to the treatment and an acceptable
toxicity profile [75,76].

6. MAPK Inhibitors

Mitogen-activated protein kinases (MAPKs) are a family of PKs that play a critical
role in cellular physiology, signaling, and various diseases. The three major subfamilies
of MAPKs are the extracellular signal-regulated kinases (ERKs), p38 MAPKs, and c-Jun
N-terminal kinases (JNKs). Dysregulation of the MAPKs signaling pathways is associated
with several diseases, including cancer, cardiovascular disorders, neurodegenerative dis-
eases, and inflammatory diseases [77]. The structures of two compounds are presented in
Figure 3.
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6.1. Pexmetinib

Pexmetinib, also referred in the literature as ARRY-614, is a potent, orally bioavailable,
dual p38 MAPK and angiopoietin-1 receptor (Tie-2) inhibitor. There is little available recent
literature that reviews its structure-analysis relationship, but it is known that the compound
is a type II PKI that binds both p38 MAPK and Tie-2 kinase in the DFGout conformation [78].

Chemically it is a pyrazoyl urea derivative and is very structurally similar to doramapi-
mod (synonym: BIRB-796), a very potent allosteric inhibitor p38 MAPK [79]. Predominantly,
doramapimod has an immunomodulator profile and has been studied for its potential
therapeutic use in rheumatoid arthritis, chronic obstructive pulmonary disease, and other
inflammatory disorders [80]. Based on the chemical similarities of these compounds, we
consider that they share the same binding mechanism, with the t-butyl group on the pyra-
zole occupying the lipophilic domain exposed upon rearrangement of the activation loop
(DFGout) [81]. Acumapimod (BCT197) is another pyrazole-based inhibitor of p38, but it is
beyond the subject of this review because it is developed as an anti-inflammatory agent [82].

Pexmetinib inhibited both p38 MAPK and Tie-2 in nanomolar ranges in various
cell-based systems and it was efficacious in preclinical tumor xenografts in mice models
of chronic myelogenous leukemia and multiple myeloma at doses ranging from 30 to
100 mg/kg twice a day, orally [78]. It is currently under phase Ib and II clinical trials
for possible treatment of renal cell cancer, melanoma, solid tumors, and myelodysplastic
syndrome [83].

6.2. Ravoxertinib

Ravoxertinib (GDC-0994) is a potent, reversible, ATP-competitive, and highly selective
ERK1 and ERK2 inhibitor, with IC50 of 6.1 nM and 3.1 nM, respectively. It inhibits ERK
phosphorylation and activation of ERK-mediated signal transduction pathways, thus
preventing ERK-dependent tumor cell proliferation and survival [84].

Ravoxertinib’s development began with a pyrimidinyl-pyridone derivative identified
as a selective ERK1/2 inhibitor. This lead compound exhibited several desirable qualities,
but also presented certain problematic characteristics. Notably, it had a very high human
dose projection (>1 g/day), primarily due to metabolism occurring at the tetrahydropyran
ring bound to the pyrimidine fragment. The replacement of the tetrahydropyran with
heteroaromatic rings improved the metabolic stability and conserved the hydrogen bond
with Lys114 of ERK2. The use of aminopyridine was detrimental because of the CYP3A4 in-
hibitory effect, but substituted 4-aminopyrazoles and 5-aminopyrazole provided good
results. The N-methyl-5-aminopyrazole was chosen based on its higher cell potency and
metabolic stability [85].

The X-ray crystallography data indicated that 2-aminopyrimidine binds to ERK2 by
hydrogen bonds with Met108 and Leu107 in the hinge region, while the pyrazole ring bonds
to Lys114. The methyl bound to the pyrazole ring is essential for the selectivity towards
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cyclin-dependent kinase 2 (CDK2) by sterically compromising the binding interactions.
Other important binding elements are the pyridone carbonyl, the hydroxymethyl group,
and the fluorochlorophenyl fragment [85].

In a phase I dose escalation study conducted in patients with locally advanced or
metastatic solid tumors, ravoxertinib exhibited both an acceptable safety profile and desir-
able pharmacodynamic effects [86].

7. B-Raf Inhibitors

The RAF (Rapidly Accelerated Fibrosarcoma) kinases have been discovered more
than two decades ago and comprise a family of three serine/threonine PKs, indexed
with prefixes A to C [87]. The RAS-RAF-MEK-ERK cascade, crucial for various cellular
processes such as regulation of cell cycle (including apoptosis), cell differentiation and
proliferation [88], involving all the members of this kinase family, but, among them, B-
Raf (expressed by the chromosome 7 located oncogene BRAF) [89] is the PK frequently
altered in multiple cancer types, with notable mutation rates observed in skin, thyroid,
gastrointestinal (GI), and lung cancers [90].

The best studied activating BRAF mutations occur at position V600 (V600E, V600K), the
most common being the V600E mutation, characterized by the substitution of valine with
glutamic acid at position 600 of the kinase domain. A BRAF mutation classification model
breaks down three classes: class I (independent of upstream RAS signaling; activate the
downstream ERK pathway without requiring dimerization), class II (require dimerization to
activate the MEK-ERK pathway; independent of RAS signaling), and class III (downstream
signaling through dimerization with wild-type CRAF; rely on upstream activation through
genomic alterations or RTK signaling) [89,91]. Of the three classes, only compounds that
target the first type of mutations have demonstrated clear clinical benefit.

The use of first-generation RAF inhibitors, such as dabrafenib or vemurafenib, led to
better understanding the mechanisms of resistance and shed light on the importance of
homo- or heterodimerization of B-Raf and C-Raf as critical in intrinsic or drug-induced
resistance [92].

Encorafenib

Encorafenib, sometimes identified as LGX818, is an EMA and FDA approved, highly
potent RAF inhibitor. Just as with the multikinase inhibitor sorafenib, encorafenib com-
petitively binds to the ATP socket domain of the kinases, with selective anti-proliferative
and apoptotic activity in cells expressing B-Raf, especially those harboring the V600E mu-
tation [91]. As opposed to dabrafenib, it presents the benefit of an increased half-life and
increased potency against wild-type B-Raf and C-Raf (with a Ki of 0.3 nM). Structurally,
amongst other small molecule inhibitors that target B-Raf, it presents a high hydrogen
acceptor to donor ratio (10:3), with a high number of rotatable bonds (10) [93].

As with other PKIs, it has been postulated that for the effective inhibition of both
the kinase domains of the protein, DFGin and DFGout, B-Raf inhibitors should possess an
appropriately sized linker between the hydrogen bond donor part of the molecule and the
hydrogen bond accepter [94].

Diving forward into the structural analysis of small molecule B-raf inhibitors,
1,3,4-triarylpyrazole derivatives similar to encorafenib have been synthetized and eval-
uated as having a promising inhibitory and thus antiproliferative potential, especially
those with a sulfonamide functional group [95–97]. Moreover, the two aryl rings at po-
sitions 3 and 4 of encorafenib’s pyrazole scaffold (Figure 4) also play an important role
in binding to the active kinase domain, through hydrophobicity and hydrogen bonding
valences [98]. However, in another study that investigated imidazothiazole derivatives as
B-raf V600E inhibitors, the strategy of replacing the hydrophobic fluoro group with the
more hydrophilic nitro group managed to secure both the electrophilic and the hydrogen
bond acceptor characteristics of the aromatic substituent, thus increasing the kinase binding
ability, possibly revealing insights on the presence and importance of the sulfonamide
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moiety (alongside the two halogen groups on the aromatic ring at position 3) in the design
of encorafenib [99].
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Figure 4. The structure of Encorafenib.

There are several clinical trials focused on evaluating encorafenib in various cancer
types, the majority of them in combination with other anticancer agents (Table S1). The
combination of encorafenib with binimetinib, a MEK inhibitor, was approved by FDA
in 2018 for patients with advanced melanoma harboring the BRAF V600 mutation [100].
In 2020, the FDA granted approval for the utilization of encoratinib in combination with
cetuximab to treat metastatic colorectal cancer characterized by the BRAF-V600E mutation,
following prior treatment [101].

8. Inhibitors of Various Other Serine/Threonine Kinases

This section groups a series of pyrazole derivatives that inhibit various serine/threonine
kinases. Their structures are presented in Figure 5.
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Figure 5. The structures of Prexasertib, Voxtalisib, and Simurosertib.

8.1. Prexasertib

Prexasertib (investigational name: LY2606368) is an ATP-competitive, second-generation
checkpoint kinase (CHK) 1 inhibitor that blocks DNA repair of cancer cells, leading to the
accumulation of damaged DNA and, consequently, cell apoptosis [102]. The IC50 value
on CHK1 is less than 1 nM, and the assay on a broad panel of other 224 PKs revealed that
only CHK2 and the RSK family kinases presented an IC50 under 10 nM (8 nM and 9 nM,
respectively) [103].

Structurally, it contains an aminopyrazine core and a 2,6 dialkoxy phenyl group linked
by the pyrazole ring. A molecular docking study revealed that prexasertib develops
four binding interactions with CHK1 (pdb 7AKM), a strong hydrogen donor bond with
Glu91, two weak hydrogen acceptor bonds toward Lys38 and Lys132, and a hydrophobic
interaction with Leu15 [104].
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Prexasertib is currently being evaluated in phase I and II clinical trials both in mono-
therapy and in combination with other drugs for the treatment of advanced or metastatic
cancer, including ovarian, breast or prostate cancers, brain tumors, head and neck squamous
cell carcinoma, and small cell lung cancer [102].

8.2. Voxtalisib

Voxtalisib, referred also as XL765, is a dual inhibitor of mTOR and phosphoinositide
3-kinase (PI3K). It was developed manner, with a weaker effect on mTOR2. An analysis of
sensitivity based on genotypes through the refinement of a pyridopyrimidinone derivative
to achieve effective inhibition of the PI3K/mTOR pathway in living organisms, while
maintaining desirable drug-like characteristics. It inhibits various class I PI3K isoforms and
mTOR1 in an ATP-competitive indicated that PIK3CA-mutant cell lines demonstrated a
higher degree of sensitivity towards voxtalisib, whereas cell lines with RAS or BRAF muta-
tions tended to exhibit lower sensitivity [105]. The literature concerning these compounds
is sometimes confusing and should be carefully analyzed because the code XL765 is also
used for a (3,5-dimethoxyphenyl)aminoquinoxaline derivative developed as a PI3K/mTOR
inhibitor [106].

8.3. Simurosertib

Cell division cycle 7 (Cdc7) is a serine/threonine kinase that gained considerable
interest as a promising target in cancer therapy because it plays a vital role in the initiation
and preservation of DNA replication in eukaryotic cells [107].

Simurosertib, also known as TAK-931, is a targeted inhibitor of Cdc7 with a time-
dependent and ATP-competitive mechanism. It has been chosen as an advanced, replication
stress-inducing anticancer drug, due to its ability to extend replication stress and induce
subsequent mitotic abnormalities. It inhibits the proliferation in both in vitro and in vivo
preclinical cancer models, showcasing its unique activity spectrum, especially against
cancer cell lines carrying RAS mutations [108].

Development of this compound started with a thieno[3,2-d]pyrimidin-4(3H)-one
derivative, serendipitously identified as a Cdc7 inhibitor. The replacement of the pyridine
fragment bound in position 6 with a 3-methylpyrazole ring significantly enhanced the
potency. The presence of the methyl group on the pyrazole ring is notably significant,
contributing not only to high potency but also to time-dependency and a slow dissocia-
tion [109]. Several modifications at position 2 on the thienopyridine scaffold improved the
potency and lead to simurosertib [110].

According to the docking study, it binds to the Cdc7 kinase through several key
interactions, such as the hydrogen bond between Lys90 and the carbonyl group and the
hydrogen bonds between Pro135 and Lys137 with the nitrogen atoms in the pyrazole
ring [110].

In the first clinical trial in patients with solid tumors, simurosertib demonstrated that
it was overall well-tolerated and had a manageable safety profile. Based on these findings,
the recommended dose for phase II trials was determined to be 50 mg, administered once
daily, from days 1 to 14 of each 21-day treatment cycle [111].

9. JAK Inhibitors

Janus kinases (JAKs) are a family of four non-receptor tyrosine kinases: JAK1, JAK2,
JAK3, and Tyk2 (tyrosine kinase 2). They play a critical role in transmitting signals from
various cytokine and growth factor receptors to the nucleus, regulating gene expression and
controlling cellular processes, such as cell growth, differentiation, and immune responses.
The dysregulation of the JAK/STAT pathway is associated with various types of cancers and
autoimmune diseases [112]. JAK1 has an important role in inflammatory diseases caused by
aberrant autoimmune responses, while JAK2 is correlated with oncologic pathologies [113].

Several important mutations in JAKs, especially JAK2, are correlated with oncologic
processes because they cause a disruption of the auto-inhibitory function, rendering JAKs
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constitutively active. These gain-of-function mutations are highly prevalent in myelo-
proliferative neoplasms, making JAKs a highly sought-after therapeutic target [114]. The
structures of pyrazole-based JAKs inhibitors used in cancer treatment are presented in
Figure 6.
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9.1. Ruxolitinib

Ruxolitinib, formerly known as INCB018424, is a selective JAK1 and JAK2 inhibitor
with IC50 values close to 3 nM. The effect on JAK3 is significantly lower, with an IC50 value
close to 430 nM [115].

Structurally, ruxolitinib contains a pyrazole ring directly linked to a pyrrolo[2,3-d]
pyrimidine scaffold. Based on docking studies, ruxolitinib is considered a type I inhibitor of
JAK1 that binds to the DFGin state of the kinase. This interaction is facilitated by the shape
complementarity between ruxolitinib and the binding pocket in JAK1. Within the catalytic
domain, the pyrrolopyrimidine scaffold aligns with the hinge region and establishes two
hydrogen bond connections with Glu957 and Leu959, while the cyclopentane ring is
oriented towards the N-lobe and the nitrile group interacts with Lys908 [115]. The crystal
analysis of the JAK2 kinase domain grown with ruxolitinib showed a similar binding
mode to that described for JAK1, the main interactions being the hydrogen bonds with
Glu930 and Leu932 of the hinge region [116].

Ruxolitinib received FDA approval in 2011 for the treatment of myelofibrosis and
three years later for the treatment of patients with polycythemia vera. Furthermore, in
2019 and 2021, ruxolitinib obtained FDA approval for the treatment of acute and chronic
graft-versus-host disease, a non-neoplastic usage [113]. Since 2022, it is approved as a
topical treatment for atopic dermatitis [117].

Baricitinib is also a FDA approved pyrazole derivative structurally similar with rux-
olitinib that inhibits both JAK1 and JAK2, but the clinical studies have been focused on
the treatment of inflammatory diseases and not cancer [118]. The role of the pyrazole
ring in the structure of JAK1 inhibitors can be demonstrated by its use in the structure of
povorcitinib (synonym: INCB54707), a PKI in clinical trials for inflammatory diseases [119].
A similar example is izencitinib (TD-1473), a non-selective JAK inhibitor developed for
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the treatment of inflammatory bowel diseases [120]. Brepocitinib (PF-06700841), also an
aminopyrazole derivative, is a JAK1/Tyk2 inhibitor designed as treatment for severe au-
toimmune diseases [121]. Ropsacitinib (PF-06826647) contains two pyrazole rings directly
attached to a pyrazolopyrazine scaffold and can be considered a baricitinib derivative. It is
a selective inhibitor of Tyk2, and, currently, there are clinical trials for it as treatment for
various autoimmune disorders [30].

9.2. Itacitinib

Itacitinib is a JAK1 and JAK2 inhibitor with an IC50 value close to 3 nM for JAK1 and
around 21 times higher for JAK2. Chemically, it is a derivative of baricitinib, both shar-
ing the 3-(4-(7H-pyrrolo(2,3-d)pyrimidin-4-yl)-1H-pyrazol-1-yl)azetidin-3-yl)acetonitrile
scaffold. In a phase III study, itacitinib reduced the total syndrome score in patients with
myelofibrosis in a comparable manner with ruxolitinib, but with significantly less incidence
of thrombocytopenia [122].

9.3. Golidocitinib

Thrombocytopenia and anemia were associated with ruxolitinib treatment as a conse-
quence of the JAK2 inhibition, motivating research into the development of JAK1 selective
inhibitors [123]. Golidocitinib (AZD4205) is a highly potent, orally administered inhibitor
that specifically targets JAK1. This compound has shown remarkable efficacy in inhibiting
tumor growth both in laboratory settings, specifically in T lymphoma cells cultured in vitro,
and in animal models with tumor xenografts [117].

The compound was developed based on a 2-amino-pyrimidine derivative substituted
with a pyrazole and an indole ring. The introduction of a methyl-piperazine fragment
linked to the indole moiety improved JAK1 potency. An ortho substitution on the pyrazole
ring (position 3) proved to be important for its selectivity over JAK2 [123].

9.4. Gandotinib

Gandotinib is also known as LY2784544 and is an orally bioavailable, relatively se-
lective JAK2 inhibitor. It is a type I inhibitor binding to the ATP pocket of the active
conformation of the kinase [124].

The screening of a large collection of compounds lead to the identification of an
imidazopyridine derivative with a 3-aminopyrazole scaffold as a potent JAK2 inhibitor. The
drug design efforts were concentrated to achieve a better selectivity toward JAK2 compared
to JAK3. The core scaffold was kept and appropriate substitution of the imidazopyridazine
ring lead to gandotinib [125].

Gandotinib specifically targets the hyperactive JAK2V617F mutant enzyme, a protein
found in close to 90% of the polycythemia vera cases and over 50% of the patients suf-
fering from essential thrombocytopenia and myelofibrosis. The preliminary clinical trials
(Table S1) demonstrated an acceptable safety and tolerability profile [126].

9.5. Ilginatinib

Ilginatinib, also referred to as NS-018, is an orally bioavailable potent inhibitor of
JAK2 and Src-family kinases. It has an IC50 of 0.72 nM on JAK2, and selectivity ratios of
46-fold, 54-fold, and 31-fold toward JAK1 (IC50 = 33 nM), JAK3 (IC50 = 39 nM), and Tyk2
(IC50 = 22 nM), respectively [127]. It shows higher selectivity for JAK2V617F compared to
the wild form.

The analysis of the X-ray co-crystal structure of ilginatinib bound to JAK2 revealed
that it established hydrogen bonds with the backbone amino and carbonyl groups of
Leu932, which are located in the hinge region, and interacted with the carbonyl group
of Gly993 through two distinct hydrogen-bonding interactions. A hydrogen bond was
observed between a pyrazine nitrogen atom and a water molecule. Moreover, this water
molecule formed a second hydrogen bond with the carbonyl group of Gly993 [128].
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10. Bcr-Abl Inhibitors

Abl, a non-receptor tyrosine kinase encoded by the Abelson leukemia virus (ABL)
oncogene (from the long arm of chromosome 9), is widely expressed in nearly all human
tissues inside the nucleus (c-Abl) or cytoplasm of cells, regulating several cytoskeleton
functions. The breakpoint cluster region (BCR) gene (found on chromosome 22) encodes
the Bcr protein, a tyrosine kinase with cellular signaling function [129,130]. Accidental
fusion of BCR to ABL takes place commonly at three points (p185, p210 and p230), giving
rise to the chimeric BCR-ABL gene that produces Bcr-Abl proteins (e.g., the P210 protein, a
constitutively activated PK).

The fusion protein increases the kinase activity of the original Abl, disrupts signaling
pathways, and implicitly promotes abnormal proliferation, with decreased apoptosis, result-
ing in a clinical outcome that most often translates to various forms of leukemia [129,131].
Its structure distinguishes multiple domains, of which the SH1 region is best conserved, and
also harbors the catalytic site from which the dysregulated signaling pathway takes its start;
both the biochemistry of the Abl protein as well as the kinase structure and mechanism
have been described in great detail [132,133]. Briefly, the kinase consists of the classical
N-terminal and C-terminal lobes, connected by a hinge region, while ATP binds through
two hydrogen bonds inside a fissure between these two (while specific residues, such as
Thr315, play crucial roles in selectivity and resistance) [134].

Even though there are several approved Bcr-Abl inhibitors clinically used, the risk
of resistance remains a critical concern, rendering the research in this area highly impor-
tant [135]. Two Bcr-Abl inhibitors, asciminib and rebastinib, are pyrazole derivatives and
their structures are presented in Figure 7.
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10.1. Asciminib

Asciminib (also presented in literature as ABL001) is an EMA and FDA approved
potent, non-ATP competitive, selective allosteric Abl1 inhibitor. It was the first inhibitor in
its class to specifically target the myristate (or mysristoyl) pocket of Abl, characterized by a
Kd of 0.5–0.8 nM and an IC50 of 0.5 nM [136] (up to 20 nM by other authors [137]), with
the added advantage of activity against clinically meaningful mutations, demonstrating an
approximately 65% tumor growth suppression in chronic myeloid leukemia models [138].
Its off-target effects have been appreciated as minimal (no notable GPCR, transporter, ion
channel or nuclear receptor interactions) [137], hinting at structural characteristics that may
aid selectivity.

In designing asciminib, the cardiovascular adverse effects attributed to hERG activity
were alleviated by the use of the pyrazole ring as opposed to pyrimidine [139] or other
nitrogen heterocycles (e.g., imidazole in nilotinib) [140]. The amide moiety packed between
two aromatic cycles serves as a backbone to facilitate hydrogen bonds with Glu286 and
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Asp381 of the kinase, eliciting inhibitory activity [140], while the pyrazole ring forms a sim-
ilar bond with Glu481 and a hydrophobic interaction with Thr453 [136]. The trihalogenated
methoxy group has been shown to occupy the myristate pocket of the protein, with one
of the fluorine atoms interacting with Leu359, and promote helix-I bending [140,141]. The
addition of the hydroxyl group to the pyrrolidine heterocycle increases overall water solu-
bility, although the pyrazole ring also facilitates solubility and oral absorption [140]. Some
authors have pointed out that asciminib is a P-gp and BCRP substrate, with a very limited
amount being able to successfully cross the blood-brain barrier in murine models [142].

10.2. Rebastinib

Rebastinib (identified also as DCC-2036) is an investigational conformational control
Bcr-Abl inhibitor for Abl1 (wild-type and T315I mutant, with an IC50 of 0.8 nM and 4 nM),
as well as other families of proteins (e.g., Src, Lyn, Fgr, Hck, Kdr, FLT3, Tie-2, Axl) [143],
which was designed to surpass resistance to the first and second generation of inhibitors
in terms of Abl gatekeeper mutations [132]. It exhibits significant anti-proliferative effects
on Ba/F3 cells that express either native or mutant forms of Bcr-Abl1, with IC50 values
ranging from 2 nM to 150 nM and is currently studied for various types of locally advanced
or metastatic neoplasms [144].

Structurally, rebastinib follows the scaffold of earlier-developed PKIs in its class,
comprised of a head and a tail joined with a linker. Specifically, the linker takes the form
of an urea group that facilitates hydrogen bonding with amino acid residues from the
C-helix, such as Glu282 and Arg386; the rest of the configuration forms Van der Waals
interactions with the hydrophobic clusters of the kinase, leading to the DFGout arrangement,
which is further stabilized through the t-butyl attached to the pyrazole ring [132,145,146].
Conclusively, there is evidence in the literature that suggests both DFGout and C-helix-out
stabilization is achieved with ligands similar in structure to rebastinib, a conformation
which suppresses phosphotransferase activity from the catalytic domain [147,148].

It is currently used in Phase I clinical trials alone, for chronic myeloid leukemia, and in
combination with other chemotherapeutics, for patients with locally advanced or metastatic
solid tumors [149].

11. c-Met Inhibitors

MET (which stands for “mesenchymal-epithelial transition” or as an abbreviation
for the mutagen N-methylnitrosoguanidine [150]) is a proto-oncogene and fusion gene
discovered in the early 1980s [151] and found at locus 7q31 on human chromosome 7. It
encodes the 170–180 kD, two-chain HGFR (hepatocyte growth factor receptor, or simply
c-Met), a protein with transmembrane tyrosine-kinase function [152], and it is continuously
being researched for its involvement in oncologic pathologies, predominantly of the lung
and liver but also breast, ovarian, and GI cancers [153].

As a therapeutic strategy, targeting c-Met is customarily accomplished with three
categories of drugs: multikinase inhibitors, selective c-Met inhibitors and monoclonal
antibodies that target either the natural ligands or the receptor itself. Small molecule kinase
inhibitors are promising agents due to the relative ease of in silico assisted drug-design and
industrial synthesis [154]. The structures of pyrazole-based C-Met inhibitors are presented
in Figure 8.
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11.1. Crizotinib

Crizotinib, also identified in literature as PF-02341066, is an orally-bioavailable, FDA
and EMA-approved multikinase inhibitor, described as eliciting an effect at a low nanomo-
lar range on c-Met, ALK (anaplastic lymphoma receptor tyrosine kinase), proto-oncogene
tyrosine-protein kinase ROS [155] and VEGFR [156]. ALK is a related receptor tyrosine
kinase, belonging to the insulin receptor superfamily of PKs [157].

Pharmacodynamically, the compound is perceived as a type I inhibitor of ALK and
I 1

2 B inhibitor of c-Met (although some authors regard it as a type Ia [158]), with the general
accepted mechanism being a U-shaped competitive binding in the ATP-specific spot of
the kinases. It mirrors ATP interactions with the c-Met protein, e.g., hydrogen bonds
with proline, tyrosine, and methionine residues of the hinge region [159]. The selectivity
of the compounds is explained by an interaction called π-stacking, between crizotinib’s
delocalized π-electron clouds of its aromatic moiety and Tyr1230, a tyrosine residue found
inside the activation loop of the kinase [160].

The 2-aminopyridine fraction is pivotal in crizotinib’s activity on c-Met, as the amino
group mediates a hydrogen bond with the carbonyl group of Pro1158, while the nitrogen
atom inside the pyridine ring binds to the amino group of Met1160. The halogenated
3-benzyloxy part of the molecule confers its potency by ensuring both stability and
hydrophobic interactions [158]. The pyrazole fragment functions as a linker that pro-
vides an extended conformation and vector for the polar N-substituent (piperidine). The
pyrazole is also bound through the narrow lipophilic tunnel surrounded by Ile1084 and
Tyr1159 [161]. Crizotinib binds to ALK at Met1199 and Glu1197 through the aminopyridine
fragment [101].

Currently limited to its indication in non-small cell lung cancer (NSCLC) that is either
ALK positive or ROS positive, crizotinib is actively being researched for its responses in
many other types of cancer, such as glioblastoma (although it has a low permeability for
the blood-brain barrier, being a P-glycoprotein substrate), gastric and esophageal carci-
noma [155], or other GI and haematological malignancies, with regards to its antiangiogenic
characteristics [162,163].

11.2. Bozitinib

Bozitinib, also identified in literature as PLB-1001, CBT-101, APL-101, CBI-3103, borui-
tinib or vebreltinib, is a highly selective, ATP-competitive (type I) c-Met inhibitor with a
cited IC50 value of 8 nM [152]. It provides the advantage of being both orally bioavailable
and possessing blood-brain barrier permeability [164]. When preclinically compared to the
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already approved crizotinib and capmatinib, it proved its superior efficacy in the case of
lung cancer models while also strongly inhibiting tumor growth of gastric, lung, hepatic,
and pancreatic cell lines [165]. Presently, it is being clinically researched predominantly
as monotherapy for various types of cancers (e.g., NSCLC, glioblastoma or solid c-Met
expressing tumors).

Although it structurally shares the same pyrazole ring with the approved multikinase
inhibitor crizotinib, bozitinib extends one of its pyrazole heterocycle into an indazole
scaffold (which has been reported in literature to mediate hydrogen bonds with Tyr1230 and
Arg1086 of c-Met and effect a competitive, inhibitory action upon the receptor). In bozitinib,
the piperidine of crizotinib is replaced with a cyclopropyl group, attached to its other isolated
pyrazole ring. Additionally, the N-aminopyridine fragment of crizotinib is replaced by the
triazolo[4,5-b]pyrazine moiety, described at the beginning of the last decade as possessing
“exquisitely selective” ATP-competitive c-Met kinase inhibition properties [154,166].

11.3. Glumetinib

Glumetinib is also referred as SCC244 or gumarontinib and it is a type II ATP-
competitive c-Met inhibitor with oral bioavailability and high selectivity in the range
of tenths of a nanomolar (IC50 value of 0.42 ± 0.02 nM) [167]. It is currently investigated
for indications regarding lung and solid cancers [168,169].

The available literature [170,171] on the drug is currently lacking any in-depth struc-
ture activity analyses. One article suggests that the N-methylpyrazol-4-yl group might offer
a greater coplanarity with the core moiety, as seen in other c-Met inhibitors. The imida-
zopyridine and pyrazolopyridine bridged by the sulfonyl group increase the π-π stacking
with Tyr1230, while lowering the overall lipophilicity of the molecule, thus enhancing the
metabolic stability in both microsomal environment and the hepatocyte [172].

11.4. Merestinib

Merestinib (identifier: LY2801653) is presented as a type II ATP-competitive mul-
tikinase inhibitor (although some authors class its mechanism of action as ATP non-
competitive) [150,173,174]. Historically, the molecule was structurally designed as a c-Met
inhibitor, but was later screened over a broader panel of kinase targets. Its array of targets
include not only c-Met, but also RON, AXL, FLT3, c-Kit, MERTK (MER proto-oncogene
tyrosine kinase), Tie-2 (TEK), ROS1, NTRK (neurotrophic tropomyosin receptor kinase)
1/2/3, DDR (discoidin domain receptor) 1/2, and MKNK (MAP kinase interacting ser-
ine/threonine kinase) 1

2 [154,170,175]. With nanomolar ranges of inhibitory concentrations
for most of the previously-enumerated kinases, it is seen as a significant and potent inhibitor
of c-Met (IC50 value of 4.7 nM) [152].

Merestinib encompasses both a pyrazole and an indazole heterocycle and there
is little available recent literature that reviews its structure-analysis relationship. The
molecule has been reported to be active against certain c-Met mutations that drive resis-
tance against tepotinib or capmatinib. The distance between merestinib’s pyrazole and the
c-Met’s Val1228 was shown to be 4 Å smaller than is the case for capmatinib’s quinoline
heterocycle, hinting at a stronger interaction in this region. Apart from the canonical
4-fluorophenylamine which ensures penetration within the receptor’s hydrophobic pocket,
the co-crystal structure of c-Met and merestinib reinforces its base mechanism of action,
which is that of stabilizing the protein in its inactive DFGout state, and further analyses
revealed that the molecule has an increased occupancy time (t 1

2
of ~8.5 h) while also pre-

senting the advantage of a greater mutation tolerance, which is an advantage over type I
inhibitors [176–178].

It is under investigation for its antineoplastic properties in advanced or metastatic
cancers, especially of biliary, colorectal, lung, or pancreatic origins, as well as solid tumors
and leukemias—-pathologies where the inhibition of any of the abovementioned plethora of
kinases exerts a crucial and beneficial effect, either clinically or pre-clinically [154,174,179–181].
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11.5. Savolitinib

Savolitinib, found in the available literature under several aliases (Volitinib, AZD6094,
HMPL-504, HM-5016504) is a novel and still experimental candidate that presents a tyrosine
kinase inhibitory profile and entered the clinical landscape (Table S1) at the beginning of
the last decade for patients with advanced solid tumors [182]. After screening more than
265 kinase targets, it has been described as a potent and selective (type I) inhibitor of the
phosphorylated form of the MET receptor, with an IC50 value of 4 nM [183]. Trials that
are ongoing or have ended explored its involvement in the treatment of colorectal, renal,
gastric, lung, and central nervous system (CNS) tumors [153,184–186].

Savolitinib is often regarded as different from other common second generation c-Met
inhibitors by lacking the quinoline moiety that has been canonically reported as conferring
selectivity (and also toxicity through aldehyde oxidase metabolism). It is built upon the
1,2,3-triazolo-4,5-b-pyrazine scaffold, with the pyrazole ring being situated contralaterally
to the hydrophobic pole [187]. It has been hypothesized that savolitinib interacts simi-
larly to the other c-Met inhibitors by adopting the predicable U-shape around kinase’s
Met1211 while providing the necessary hydrogen bonds or π-stacking with amino acids
also found in the activation loop. The molecule has been strategically fashioned to con-
tain the small methyl group that blocks the methylene linker from being metabolically
oxidized. The role of the pyrazole moiety has been reported in one recent paper as having
a positive influence on lipophilicity, ensuring a decreased clearance, while safeguarding
potency [187,188].

12. EGFR Inhibitors

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein that
plays a crucial role in cell signaling, promoting cell survival, growth, and division. EGFR
consists of several domains, including an extracellular ligand-binding domain and a cyto-
plasmic tyrosine kinase domain [189]. Pharmacologically, EGFR is targeted by monoclonal
antibodies that bind to the extracellular domain and block the kinase activation produced
by the various growth factors or by small molecules capable of entering the cell and interact-
ing with the intracellular tyrosine kinase domain of EGFR [190]. Based on their mechanism,
there are two major groups of EGFR inhibitors. The first type consists of inhibitors that
reversibly bind to the EGFR’s kinase domain and compete with ATP for binding, such
as erlotinib and gefitinib, while the second type entails inhibitors form a covalent bond
with the cysteine residue leading to an irreversible inhibition [191]. Many cancers harbor
a T790M mutation at the highly conserved gatekeeper, and the covalent inhibitors were
designed to circumvent this problem [192].

12.1. Lazertinib

Lazertinib, also referred as YH25448, is a brain-penetrant, irreversible EGFR inhibitor
that targets both the EGFR T790M mutation and the activating mutations Del19 and
L858R while having less effect on wild type-EGFR, and, therefore, having diminished side
effects [193].

The compound targets the Cys797 residue in the ATP-binding site of the EGFR kinase
domain through its acrylamide warhead and irreversibly inhibits the kinase activity. The
2-aminopyrimidine moiety (Figure 9) binds to the hinge residue Met793 through hydrogen
bonding, while the phenyl substituent in the pyrazole ring points to the gatekeeper residue
Met790 and the morpholine ring faces the solvent exposure region. The 2-aminopyrimidine
scaffold is considered the pharmacophore and confers selectivity for the mutated forms of
EGFR in contrast to the wild type [194]. The pyrazole ring substitutes the corresponding in-
dole ring of osimertinib and acts as a linker for the phenyl and for the dimethylaminomethyl
fragments [195].
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Figure 9. The structures of EGFR inhibitors Lazertinib and Mavelertinib.

Lazertinib is a third generation EGFR inhibitor approved in some countries, such
as the Republic of Korea, for the treatment of locally advanced or metastatic NSCLC in
patients with T790M mutation [196].

12.2. Mavelertinib

Mavelertinib, also known as PF06747775, is a third-generation covalent inhibitor of
EGFR, with low brain permeability and promising results in phase I clinical trials for
the treatment of EGFR-driven NSCLC [195,197]. It exhibits potent EGFR activity against
common mutants such as exon 19 deletion (Del), L858R, and double mutants T790M/L858R
and T790M/Del, while sparring wild-type EGFR [198]. As with other EGFR inhibitors,
it binds covalently to the Cys797 residue in the ATP-binding site, and is therefore less
effective on the emergence of the C797S mutation [199].

13. PDGFR Inhibitors

The platelet-derived growth factor receptor (PDGFR) belongs to the type III family
of receptor tyrosine kinases together with c-KIT, c-FMS, and FLT3. They are related to
a lesser degree to the VEGFR [200]. Elevated levels of PDGFRs have been consistently
associated with several types of cancer, such as glioma, Kaposi’s sarcoma, prostate cancer,
or GI stromal tumors [200].

Avapritinib

Avapritinib, also reported as BLU-285, is an orally bioavailable PKI against mutant
forms of PDGFRA and c-KIT. Chemically, the pyrazole ring is directly bonded to a pyrrolo-
triazine scaffold (Figure 10). It was designed as a ATP-competitive inhibitor, targeting
preferentially the active kinases conformation [201]. In vitro, avapritinib has demonstrated
potent activity on activation loop mutants, such as KIT-D816V and PDGFRA-D842V, on the
juxtamembrane domain mutations, such as KIT exon 11, and on the ATP binding pocket
mutations, such as KIT exon 13 and 14 [202]. The D842V mutation has been primarily
observed in patients with systemic mastocytosis and GI stromal tumors (GIST), cancers
that are resistant to imatinib or sunitinib [203].
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Avapritinib is approved by FDA and EMA as monotherapy for the treatment of adult
patients with inoperable or metastatic GIST harboring the PDGFRA exon 18 mutation,
including PDGFRA D842V mutation, and for the treatment of adult patients with aggressive
systemic mastocytosis, systemic mastocytosis with an associated haematological neoplasm,
or mast cell leukaemia after at least one systemic therapy [203].

14. FGFR Inhibitors

The fibroblast growth factor receptor (FGFR) family, comprising FGFR1 to FGFR4,
encompasses four members that exhibit high structural similarity. As with other receptor
tyrosine kinases, FGFRs are located on the cell membrane and can be triggered by external
signals, with the fibroblast growth factors (FGFs) serving as the natural ligands [204,205].
Several FGFR inhibitors share a pyrazole ring, with the most important being AZD4547,
an oral inhibitor selective for FGFR1, 2, and 3 [206]; Ly2874455, which is a pan-FGFR
inhibitor [207]; zoligratinib (synonym: Debio 1347) [208]; and the commercially available
erdafitinib [209].

Erdafitinib

Erdafitinib, also referred as JNJ-42756493, is a pan-FGFR inhibitor. Following en-
zyme binding, it inhibits FGFR phosphorylation and suppression of FGFR-related signal
transduction pathways, thus inhibiting tumor cell proliferation and cell death in FGFR-
overexpressing tumor cells [210].

It contains a 3-(1-methyl-1H-pyrazol-4-yl)-quinoxaline scaffold (Figure 11) and is a
reversible, type I 1

2 inhibitor that bind FGFRs in the inactive DFGin conformation A SE
VERIFICA DACA NU E DFG-OUT! in an ATP-competitive manner [211]. Molecular
docking analysis showed that erdafitinib displays hydrophobic interactions with Leu478,
Val486, Lys508, Val555, Leu624, and Asp635 residues of FGFR3, and forms hydrogen bonds
with Ala558 and Asn562 residues, respectively [211].
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The Kd values towards the four PK members of the FGFR family fall in the 0.24–2.2 nM
range, and the IC50 values between 1.2–5.7 nM, respectively. Erdafitinib exhibits a lower
affinity against VEGFR2 kinase, with Kd and IC50 values of 36.8 nM and 6.6 nM, respectively.
This is the reason why it presents fewer adverse reactions due to VEGFR2 inhibition (such as
diarrhea, vomiting, and fatigue [212]). The evidence of its antitumor activity was demonstrated
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in several FGFR-expressing cell lines and in animal models with FGFR translocations or
amplifications [212,213].

Erdafitinib was found to successfully reverse multidrug resistance (MDR) caused by
ABCB1, also known as P-glycoprotein 1. Interestingly, erdafitinib did not have an impact
on ABCG2-mediated MDR. The expression and cellular localization of ABCB1 remained
unaffected by the drug [214].

It has been approved by the FDA since 2019 for adult patients with locally advanced
or metastatic bladder cancer with susceptible FGFR3 or FGFR2 genetic alterations that
has progressed during or following prior platinum-containing chemotherapy [210]. It is
currently under investigation for hepatocellular carcinoma, breast cancer, NSCLC, and
prostate cancer [214].

15. RET Inhibitors

RET, which stands for “rearranged during transfection”, is a receptor tyrosine kinase
responsible for binding neurotrophic factors. In certain types of human cancers, genetic
changes occur in the RET gene, resulting in activating point mutations or rearrangements
that give rise to chimeric oncoproteins where the kinase domain becomes fused with the
N-terminal region of heterologous proteins. The first generation of RET inhibitors are
multikinase inhibitors, with important off-target toxicities prompting the development of
potent inhibitors with high selectivity against RET [215].

Pralsetinib

Pralsetinib (BLU-667) is a highly potent RET inhibitor specifically developed to target
and inhibit resistance mutations in RET as well as the wild-type enzyme, demonstrating
subnanomolar potency with IC50 values of 0.3 nM and 0.4 nM for RET-V804L and RET-
V804M, respectively [216]. It inhibits at higher IC50 values other tyrosine kinase, such as
VEGFR2, FGFR2, and JAK2 [217].

It is an aminopyrazolyl substituted pyrimidine (Figure 12) that functions as a type I
inhibitor by binding the active site through two hydrogen bonds between the pyrazole ring
and the Ala807 and Glu805 residues. Type I PKIs usually pass through the gate and bind
both the front and back clefts, or only to the front cleft (type IB). Conversely, pralsetinib
attaches to the front cleft without passing through the gate, while wrapping around the
region outside the gate wall formed by the side chain of Lys758 and targeting the other
end in the pocket located in the back cleft [218]. The mutations L730V/I are resistant to
pralsetinib, with almost 60 fold higher IC50 values, because they produce a steric clash with
the cyclohexane fragment at the roof of the solvent-front region [219].
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In September 2020, the FDA granted accelerated approval for pralsetinib to treat adult
patients with metastatic fusion RET positive NSCLC, and on December 2020, for advanced
or metastatic medullary thyroid cancer with genetically defective RET [217]. Pralsetinib
exemplifies the concept of personalized medicine in cancer treatment, with the drug being
selected based on the specific genetic characteristics of the patient’s tumor.
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16. Inhibitors of Various Other Tyrosine Kinases
16.1. Mivavotinib

Mivavotinib, also known as TAK-659, is a highly potent, selective, reversible, and
orally available dual inhibitor of FLT3 and of the spleen tyrosine kinase (Syk), and it
is in clinical development for the treatment of patients with advanced solid tumors or
hematologic malignancies. Syk is a cytosolic non-receptor tyrosine kinase predominantly
found in hematopoietic cells, and it is a crucial component in the signaling pathway of the
B-cell receptor [220].

Mivavotinib binds to the hinge region of Syk in its DFGin conformation through the
lactam core, which makes two direct hydrogen bonds with the hinge through Glu449 and
Ala451. The amines of the cyclohexyl ring also interact with Asp512, Asn499, and Arg498,
while the methyl pyrazole ring (Figure 13) occupies the lipophilic region, with the nitrogen
forming a hydrogen bond with a water molecule. The compound was developed starting
from a 1,2-dihydro-3H-pyrrolo[3,4-c]pyridin-3-one derivative 4-substituited with an aniline
fragment. The pyrazole ring was used to replace the lead’s aniline in order to reduce the
lipophilic character, the CYP liability, and the interaction with hERG [220].
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Despite the good results on hematopoietic-derived cell lines and in murine mod-
els [221], a phase I clinical study in patients with relapsed/refractory acute myeloid
leukemia indicated modest results [221].

16.2. Pirtobrutinib

Pirtobrutinib, also known as LOXO-305, is a highly selective, orally bioavailable,
reversible, Bruton’s tyrosine kinase (BTK) inhibitor of both wild type and C481S mutant,
with similar IC50 values in both enzymatic and cell-based assays [222]. It is the leading
member of a new generation of BTK inhibitors that non-covalently inhibit the kinase
activity without a direct interaction with Cys481, unlike the covalent inhibitors that target
this residue. This mechanism renders pirtobrutinib active in ibrutinib-resistant chronic
lymphocytic leukemia (CLL), and this is the reason why Cys481S mutant variants of this
tyrosine kinase are resistant to treatment with previous generations of BKT inhibitors [223].

Pirtobrutinib demonstrated more than 100-fold selectivity against almost all of the
350 kinases tested in vitro. This high selectivity gives it a superior safety profile when com-
pared to covalent BTK inhibitors [224]. Chemically, it is based on the aminopyrazole carbox-
amide scaffold (Figure 13), a structure designed to replace the 4-aminopyrazolopyrimidine
structure of ibrutinib [225]. It was probably inspired by the structure of zanubrutinib, by
opening the tetrahydropyrazolo(1,5-a)pyrimidine ring. Pirtobrutinib fixes itself in the ATP-
binding site, forming three hydrogen bond interactions with the backbone of Glu475 and
Met477 in the hinge region. It also forms water-mediated hydrogen bonds with Lys430 and
Asp539, and an edge-to-face π-stacking interaction with Phe540. In multiple cell assays,
pirtobrutinib prevented Tyr551 phosphorylation in the kinase activation loop, probably
because it stabilizes BTK in a closed, inactive conformation [222].
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It is approved by FDA in the Accelerated Approval Program since January 2023 and
by EMA in a conditional marketing authorization in April 2023 for the treatment of adult
patients with relapsed or refractory mantle cell lymphoma after at least two lines of systemic
therapy, including another BTK inhibitor [226].

17. Conclusions

The review of the structures of PKIs clinically tested revealed 42 compounds that
contain an unfused pyrazole ring. For comparison, a similar search based on the pyrazole
isomer, the imidazole ring, revealed 10 compounds. Searches on the related pyrrole ring
prompted only 7 compounds, highlighting the importance of the pyrazole scaffold for this
class of compounds. There are also important PKIs that contain pyrazole-fused scaffolds
such as indazole, pyrazolo[4,3-b]pyridine, or pyrazolo[1,5-a]pyrimidine, but because of
the different electron distribution, aromatic profile, hydrogen bonding capacities, and
geometric particularities of each scaffold, we decided to focus only on the unfused pyrazoles
in order to have a more accurate picture of its role in the design of PKIs.

The pyrazole scaffold offers several advantages for the design of PKIs. Its aromatic
nature and ability to serve as hydrogen bond acceptor or donor facilitates interactions with
key residues in the kinase’s active site or binding pockets. The pyrazole ring can participate
in π-stacking interactions with aromatic residues in the kinase active site, enhancing
binding affinity.

The compounds reviewed here inhibit a large diversity of PKs, not being restricted
to a single family of kinases. The majority of the compounds have a relative selectivity
toward one single PK or limited to close related kinases, indicating the usefulness of the
pyrazole ring in the development of PKIs. The structure and mechanism of action analyses
revealed that the pyrazole ring can function as an analogue of the adenine fragment in ATP
and bind competitively to its site, or that it can be used as a linker to provide the proper
conformation for the inhibitor. It would be also wrong to assume that only the pyrazole
ring is important, since we can easily observe that each compound reviewed here contains
at least another cyclic structure.

In summary, the pyrazole ring plays a crucial role in the development of anticancer
therapies targeting specific PKs. It can serve as an ATP analogue, competitively binding
to the ATP binding site and as a linker, facilitating the proper conformation for effective
inhibition. However, it is important to consider the overall structure and composition of
the inhibitors as additional structural elements may uniquely contribute to their activity
and selectivity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28145359/s1, Table S1: Clinical trials and approved status
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