Microfluidizing Technique Application for Algerian Cymbopogon citratus (DC.) Stapf Effects Enhanced Volatile Content, Antimicrobial, and Anti-Mycotoxigenic Properties
Abstract
:1. Introduction
2. Results
2.1. Effect of Microfluidization on LGEO Volatiles
2.2. Droplet Size, PDI, and ξ-Potential
2.3. Transmission Electron Microscopy (TEM) Images
2.4. Cytotoxicity of LGEO and Its Microfluidized Nanoemulsion
2.5. Antimicrobial Effect of LGEO and MF-LGEO
2.5.1. Antibacterial Effect of LGEO and MF-LGEO
2.5.2. Antifungal Effect of LGEO and MF-LGEO
2.5.3. Anti-Mycotic and Anti-Mycotoxigenic Effect
3. Discussion
4. Materials and Methods
4.1. Chemicals and Microorganisms
4.2. Extraction of LGEO Essential Oil by Hydrodistillation
4.3. Preparation of LGEO nanoemulsion
4.4. Nanoemulsion Characterizations
4.5. Gas Chromatography–Mass Spectrometry (GC-MS)
4.6. Evaluation of LGEO and Its Nanoemulsion Cytotoxicity
4.6.1. MTT Cell Viability Assay
4.6.2. WST-1 Cell Viability Assay
4.6.3. Cell Morphology
4.7. Antibacterial Activity of LGEO and Its Nanoemulsion Using Agar Diffusion Method
4.8. Evaluation of the Antifungal Effect of LGEO and Its Nanoemulsion
4.8.1. Spore Suspension Preparation for Antifungal Evaluation
4.8.2. Well Diffusion Test
4.8.3. Determination of Minimal Antifungal Concentrations (MFC)
4.8.4. Simulated Experiment to Evaluate the Anti-Mycotoxigenic Impact
4.9. Determination of Mycotoxin Degradation in Simulated Media
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Llinares, R.; Ramírez, P.; Carmona, J.A.; Trujillo-Cayado, L.A.; Muñoz, J. Assessment of Fennel Oil Microfluidized Nanoemulsions Stabilization by Advanced Performance Xanthan Gum. Foods 2021, 10, 693. [Google Scholar] [CrossRef] [PubMed]
- Majewska, E.; Kozłowska, M.; Gruczyńska-Sękowska, E.; Kowalska, D.; Tarnowska, K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation—A Review. Pol. J. Food Nutr. Sci. 2019, 69, 327–341. [Google Scholar] [CrossRef]
- Mansour, A.F.; Fikry, R.M.; Saad, M.M.; Mohamed, A.M. Chemical composition, antioxidant and antimicrobial activity of (Cymbopogon citratus) essential oil cultivated in Madinah Monawara, Saudi Arabia and its comparison to the Egyptian chemotype. Int. J. Food Nutr. Sci. 2015, 4, 29. [Google Scholar]
- Onawunmi, G.O. Evaluation of the antimicrobial activity of citral. Lett. Appl. Microbiol. 1989, 9, 105–108. [Google Scholar] [CrossRef]
- Robacker, D.C.; Hendry, L.B. Neral and geranial: Components of the sex pheromone of the parasitic wasp, Itoplectis conquisitor. J. Chem. Ecol. 1977, 3, 563–577. [Google Scholar] [CrossRef]
- Mercier, C.; Chabardes, P. Organometallic chemistry in industrial vitamin A and vitamin E synthesis. Pure Appl. Chem. 1994, 66, 1509–1518. [Google Scholar] [CrossRef]
- Abegaz, B.; Yohannes, P.G.; Dieter, R.K. Constituents of the essential oil of Ethiopian Cymbopogon citratus Stapf. J. Nat. Prod. 1983, 46, 424–426. [Google Scholar] [CrossRef]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar] [CrossRef]
- Farouk, A.; Abdel-Razek, A.G.; Gromadzka, K.; Badr, A.N. Prevention of Aflatoxin Occurrence Using Nuts-Edible Coating of Ginger Oil Nanoemulsions and Investigate the Molecular Docking Strategy. Plants 2022, 11, 2228. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Formulation of Antimicrobial Edible Nanoemulsions with Pseudo-Ternary Phase Experimental Design. Food Bioprocess Technol. 2014, 7, 3022–3032. [Google Scholar] [CrossRef]
- Milicevic, D.; Nesic, K.; Jaksic, S. Mycotoxin Contamination of the Food Supply Chain—Implications for One Health Programme. Procedia Food Sci. 2015, 5, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. [Google Scholar]
- Berthiller, F.; Crews, C.; Dall’Asta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef]
- Anjorin, T.S.; Salako, E.A.; Makun, H.A. Control of toxigenic fungi and mycotoxins with phytochemicals: Potentials and challenges. In Mycotoxin and Food Safety in Developing Countries; Intech: Greenville, SC, USA, 2013; p. 181. [Google Scholar]
- Bavaro, S.L.; D’Antuono, I.; Cozzi, G.; Haidukowski, M.; Cardinali, A.; Logrieco, A.F. Inhibition of aflatoxin B1 production by verbascoside and other olive polyphenols. World Mycotoxin J. 2016, 9, 545–553. [Google Scholar] [CrossRef]
- Badr, A.N.; El-Said, M.M.; El-Messery, T.M.; Abdel-Razek, A.G. Non-traditional oils encapsulation as novel food additive enhanced yogurt safety against aflatoxins. Pak. J. Biol. Sci. 2019, 22, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef]
- Pilong, P.; Chuesiang, P.; Mishra, D.K.; Siripatrawan, U. Characteristics and antimicrobial activity of microfluidized clove essential oil nanoemulsion optimized using response surface methodology. J. Food Process. Preserv. 2022, 46, e16886. [Google Scholar] [CrossRef]
- García-Márquez, E.; Higuera-Ciapara, I.; Espinosa-Andrews, H. Design of fish oil-in-water nanoemulsion by microfluidization. Innov. Food Sci. Emerg. Technol. 2017, 40, 87–91. [Google Scholar] [CrossRef]
- Jafari, S.M.; He, Y.; Bhandari, B. Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol. 2007, 225, 733–741. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocoll. 2013, 30, 401–407. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control 2014, 37, 292–297. [Google Scholar] [CrossRef]
- Gago, C.M.L.; Artiga-Artigas, M.; Antunes, M.D.C.; Faleiro, M.L.; Miguel, M.G.; Martín-Belloso, O. Effectiveness of nanoemulsions of clove and lemongrass essential oils and their major components against Escherichia coli and Botrytis cinerea. J. Food Sci. Technol. 2019, 56, 2721–2736. [Google Scholar] [CrossRef]
- Manzoor, A.; Yousuf, B.; Pandith, J.A.; Ahmad, S. Plant-derived active substances incorporated as antioxidant, antibacterial or antifungal components in coatings/films for food packaging applications. Food Biosci. 2023, 53, 102717. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Kim, J.; Shin, S.-C.; Lee, S.-G.; Park, I.-K. Antifungal activity of Myrtaceae essential oils and their components against three phytopathogenic fungi. Flavour Fragr. J. 2008, 23, 23–28. [Google Scholar] [CrossRef]
- Liao, P.-C.; Yang, T.-S.; Chou, J.-C.; Chen, J.; Lee, S.-C.; Kuo, Y.-H.; Ho, C.-L.; Chao, L.K.-P. Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. J. Funct. Foods 2015, 19, 248–258. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X.; Xie, Y.; Liang, J. Antifungal properties and mechanisms of three volatile aldehydes (octanal, nonanal and decanal) on Aspergillus flavus. Grain Oil Sci. Technol. 2021, 4, 131–140. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Libyan J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef]
- Benoudjit, F.; Hamoudi, I.; Aboulouz, A. Extraction and characterization of Essential Oil and Hydrolate obtained from an Algerian Lemongrass (Cymbopogon citratus). Alger. J. Environ. Sci. Technol. 2022, 8, 2256–2263. [Google Scholar]
- Ali, H.; Al-Khalifa, A.R.; Aouf, A.; Boukhebti, H.; Farouk, A. Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. essential oil. Sci. Rep. 2020, 10, 2812. [Google Scholar] [CrossRef] [Green Version]
- Aouf, A.; Ali, H.; Al-Khalifa, A.R.; Mahmoud, K.F.; Farouk, A. Influence of Nanoencapsulation Using High-Pressure Homogenization on the Volatile Constituents and Anticancer and Antioxidant Activities of Algerian Saccocalyx satureioides Coss. et Durieu. Molecules 2020, 25, 4756. [Google Scholar] [CrossRef]
- Zheng, Y.; Shang, Y.; Li, M.; Li, Y.; Ouyang, W. Antifungal Activities of cis-trans Citral Isomers against Trichophyton rubrum with ERG6 as a Potential Target. Molecules 2021, 26, 4263. [Google Scholar] [CrossRef]
- Donsì, F.; Senatore, B.; Huang, Q.; Ferrari, G. Development of Novel Pea Protein-Based Nanoemulsions for Delivery of Nutraceuticals. J. Agric. Food Chem. 2010, 58, 10653–10660. [Google Scholar] [CrossRef]
- Donsì, F.; Wang, Y.; Li, J.; Huang, Q. Preparation of Curcumin Sub-micrometer Dispersions by High-Pressure Homogenization. J. Agric. Food Chem. 2010, 58, 2848–2853. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors. J. Agric. Food Chem. 2012, 60, 12056–12063. [Google Scholar] [CrossRef]
- Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Fernandes, J.; Gattass, C.R. Topological Polar Surface Area Defines Substrate Transport by Multidrug Resistance Associated Protein 1 (MRP1/ABCC1). J. Med. Chem. 2009, 52, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Rosas, M.I.; Morales-Castro, J.; Ochoa-Martínez, L.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocoll. 2016, 52, 438–446. [Google Scholar] [CrossRef]
- Trang, D.T.; Hoang, T.K.V.; Nguyen, T.T.M.; Van Cuong, P.; Dang, N.H.; Dang, H.D.; Quang, T.N.; Dat, N.T. Essential Oils of Lemongrass (Cymbopogon citratus Stapf) Induces Apoptosis and Cell Cycle Arrest in A549 Lung Cancer Cells. BioMed Res. Int. 2020, 2020, 5924856. [Google Scholar] [CrossRef] [Green Version]
- Dudai, N.; Weinstein, Y.; Krup, M.; Rabinski, T.; Ofir, R. Citral is a new inducer of caspase-3 in tumor cell lines. Planta Medica 2005, 71, 484–488. [Google Scholar] [CrossRef]
- Cho, M.; So, I.; Chun, J.N.; Jeon, J.-H. The antitumor effects of geraniol: Modulation of cancer hallmark pathways. Int. J. Oncol. 2016, 48, 1772–1782. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Preet, S. Larvicidal bioefficacy, antioxidant activity and cytotoxicity assessment of lemongrass oil nanoemulsion for controlling dengue vector, Aedes aegypti. Int. J. Entomol. Res. 2021, 6, 153–159. [Google Scholar]
- Sharahi, J.Y.; Azimi, T.; Shariati, A.; Safari, H.; Tehrani, M.K.; Hashemi, A. Advanced strategies for combating bacterial biofilms. J. Cell. Physiol. 2019, 234, 14689–14708. [Google Scholar] [CrossRef]
- Tan, H.; Peng, Z.; Li, Q.; Xu, X.; Guo, S.; Tang, T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials 2012, 33, 365–377. [Google Scholar] [CrossRef]
- Yap, P.S.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Niewold, T.A. The Nonantibiotic Anti-Inflammatory Effect of Antimicrobial Growth Promoters, the Real Mode of Action? A Hypothesis. Poult. Sci. 2007, 86, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, M.-K.; Cheon, K.-H.; Kang, I.-G.; Park, C.; Jang, T.-S.; Han, G.; Kim, H.-E.; Song, J.; Jung, H.-D. Functionally assembled metal platform as lego-like module system for enhanced mechanical tunability and biomolecules delivery. Mater. Des. 2021, 207, 109840. [Google Scholar] [CrossRef]
- Maji, S.; Lee, H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int. J. Mol. Sci. 2022, 23, 2662. [Google Scholar] [CrossRef]
- Devi, M.A.; Sahoo, D.; Singh, T.B.; Rajashekar, Y. Antifungal activity and volatile organic compounds analysis of essential oils from Cymbopogon species using solid-phase microextraction-gas chromatography-mass spectrometry. J. Agric. Food Res. 2021, 3, 100110. [Google Scholar] [CrossRef]
- Valková, V.; Ďúranová, H.; Galovičová, L.; Borotová, P.; Vukovic, N.L.; Vukic, M.; Kačániová, M. Cymbopogon citratus Essential Oil: Its Application as an Antimicrobial Agent in Food Preservation. Agronomy 2022, 12, 155. [Google Scholar] [CrossRef]
- Dangol, S.; Poudel, D.K.; Ojha, P.K.; Maharjan, S.; Poudel, A.; Satyal, R.; Rokaya, A.; Timsina, S.; Dosoky, N.S.; Satyal, P.; et al. Essential Oil Composition Analysis of Cymbopogon Species from Eastern Nepal by GC-MS and Chiral GC-MS, and Antimicrobial Activity of Some Major Compounds. Molecules 2023, 28, 543. [Google Scholar] [CrossRef] [PubMed]
- Aouf, A.; Bouaouina, S.; Abdelgawad, M.A.; Abourehab, M.A.S.; Farouk, A. In Silico Study for Algerian Essential Oils as Antimicrobial Agents against Multidrug-Resistant Bacteria Isolated from Pus Samples. Antibiotics 2022, 11, 1317. [Google Scholar] [CrossRef]
- Rashed, A.A.; Rathi, D.-N.G.; Nasir, N.A.H.A.; Rahman, A.Z.A. Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. Molecules 2021, 26, 1093. [Google Scholar] [CrossRef]
- Hossain, C.M.; Ryan, L.K.; Gera, M.; Choudhuri, S.; Lyle, N.; Ali, K.A.; Diamond, G. Antifungals and Drug Resistance. Encyclopedia 2022, 2, 1722–1737. [Google Scholar] [CrossRef]
- Kim, E.; Park, I.-K. Fumigant Antifungal Activity of Myrtaceae Essential Oils and Constituents from Leptospermum petersonii against Three Aspergillus Species. Molecules 2012, 17, 10459–10469. [Google Scholar] [CrossRef] [Green Version]
- Quintana-Rodriguez, E.; Rivera-Macias, L.E.; Adame-Alvarez, R.M.; Torres, J.M.; Heil, M. Shared weapons in fungus-fungus and fungus-plant interactions? Volatile organic compounds of plant or fungal origin exert direct antifungal activity in vitro. Fungal Ecol. 2018, 33, 115–121. [Google Scholar] [CrossRef]
- Farouk, A.; Ali, H.; Al-Khalifa, A.R.; Mohsen, M.; Fikry, R. Aroma volatile compounds of parsley cultivated in the Kingdom of Saudi Arabia and Egypt extracted by hydrodistillation and headspace solid-phase microextraction. Int. J. Food Prop. 2017, 20, S2868–S2877. [Google Scholar] [CrossRef]
- Bouaouina, S.; Aouf, A.; Touati, A.; Ali, H.; Elkhadragy, M.; Yehia, H.; Farouk, A. Effect of Nanoencapsulation on the Antimicrobial and Antibiofilm Activities of Algerian Origanum glandulosum Desf. against Multidrug-Resistant Clinical Isolates. Nanomaterials 2022, 12, 2630. [Google Scholar] [CrossRef]
- Charve, J.; Reineccius, G.A. Encapsulation Performance of Proteins and Traditional Materials for Spray Dried Flavors. J. Agric. Food Chem. 2009, 57, 2486–2492. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th online ed.; Texensis Publishing: Nashville, TN, USA, 2017. [Google Scholar]
- Badr, A.N.; El-Attar, M.M.; Ali, H.S.; Elkhadragy, M.F.; Yehia, H.M.; Farouk, A. Spent Coffee Grounds Valorization as Bioactive Phenolic Source Acquired Antifungal, Anti-Mycotoxigenic, and Anti-Cytotoxic Activities. Toxins 2022, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Alaufi, O.M.; Noorwali, A.; Zahran, F.; Al-Abd, A.M.; Al-Attas, S. Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Sci. Rep. 2017, 7, 13131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehata, M.G.; Badr, A.N.; El Sohaimy, S.A.; Asker, D.; Awad, T.S. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Ann. Agric. Sci. 2019, 64, 71–78. [Google Scholar] [CrossRef]
- Badr, A.N.; Shehata, M.G.; Abdel-Razek, A.G. Antioxidant activities and potential impacts to reduce aflatoxins utilizing jojoba and jatropha oils and extracts. Int. J. Pharmacol. 2017, 13, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC 18; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
S/N | Compound | RI a | LRI b | Area% | Identification Method c | |
---|---|---|---|---|---|---|
LGEO | MF-LGEO | |||||
1 | 6-Methyl-5-heptene-2-one | 983 | 985 | 0.94 | 0.59 | RI, MS |
2 | β-Myrcene | 992 | 991 | 3.61 | 2.76 | RI, MS, STD |
3 | Z-β-Ocimene | 1040 | 1037 | 0.64 | 0.52 | RI, MS |
4 | E-β-Ocimene | 1051 | 1050 | 0.34 | 0.70 | RI, MS |
5 | γ-Terpinene | 1063 | 1059 | 0.48 | 0.81 | RI, MS |
6 | Linalool | 1100 | 1096 | 1.42 | 0.98 | RI, MS, STD |
7 | Perillene | 1105 | 1103 | 0.31 | - | RI, MS |
8 | trans-Pinocarveol | 1140 | 1139 | 0.42 | 0.42 | RI, MS |
9 | Camphor | 1145 | 1146 | 0.47 | - | RI, MS |
10 | Citronellal | 1156 | 1153 | 0.34 | - | RI, MS |
11 | Isoneral | 1171 | 1170 | 1.35 | 0.85 | RI, MS |
12 | Rose furan oxide | 1180 | 1177 | 0.65 | 0.36 | RI, MS |
13 | Isogeranial | 1189 | 1185 | 2.07 | 1.44 | RI, MS |
14 | Decanal | 1204 | 1201 | - | 1.57 | RI, MS |
15 | Citronellol | 1228 | 1225 | 2.10 | 1.42 | RI, MS, STD |
16 | Neral | 1240 | 1238 | 26.91 | 28.95 | RI, MS, STD |
17 | Geraniol | 1258 | 1255 | 9.69 | 7.97 | RI, MS, STD |
18 | Geranial | 1270 | 1267 | 30.73 | 35.48 | RI, MS, STD |
19 | Dihydrolinalool acetate | 1279 | 1275 | 1.41 | 1.88 | RI, MS |
20 | Carvacrol | 1298 | 1299 | 2.61 | 3.95 | RI, MS, STD |
21 | Nerolic acid | 1337 | 1340 | 0.97 | - | RI, MS |
22 | Geranic acid | 1351 | 1355 | 1.14 | 0.51 | RI, MS |
23 | Neryl acetate | 1365 | 1361 | 2.19 | 1.36 | RI, MS |
24 | Geranyl acetate | 1384 | 1383 | 5.06 | 4.55 | RI, MS |
25 | Bergamotene (α-trans-) | 1438 | 1434 | 0.33 | - | RI, MS |
26 | α-Farnesene | 1508 | 1505 | 0.43 | - | RI, MS |
27 | Caryophyllene oxide | 1582 | 1583 | 0.47 | - | RI, MS |
28 | Selin-6-en-4α-ol | 1633 | 1636 | 0.65 | 0.46 | RI, MS |
Total | - | - | 97.73 | 97.53 | - |
Cell Line | LGEO (IC50 μg/mL) | MF-LGEO (IC50 μg/mL) | Cisplatin (Control) (IC50 μg/mL) | |||
---|---|---|---|---|---|---|
MTT | WST-1 | MTT | WST-1 | MTT | WST-1 | |
HepG2 | 1.78 ± 0.08 | 28.54 ± 2.26 | 230.77 ± 3.12 | 249.08 ± 2.77 | 20.71 ± 1.15 | 40.95 ± 1.88 |
WI-38 | - | - | 618.65 ± 5.61 | 957.41 ± 7.11 | 277.6 ± 4.5 | 401.2 ± 3.66 |
Vero | 236.91 ± 5.2 | 111.04 ± 6.76 | - | - | 142.33 ± 4.12 | 287.6 ± 3.43 |
Treatment | Mycelia Weight | Growth (%) | MFC (mg/mL) | Total AFs (ng/mL) | Reduction (%) | OCA (ng/mL) | Reduction (%) |
---|---|---|---|---|---|---|---|
A. flavus fungi | |||||||
Control | 6.1848 ± 0.424 | 100 | - | 922.71 ± 20.32 | - | - | - |
LGEO | 3.6949 ± 0.588 | 59.74 | 1.76 | 509.11 ± 20.02 | 44.82 | - | - |
MF-LGEO | 1.6418 ± 0.418 | 26.54 | 0.81 | 421.67 ± 18.66 | 54.3 | - | - |
Nystatin | 0.9945 ± 0.117 | 16.07 | 0.05 | 106.81 ± 12.41 | 88.42 | - | - |
(100 µg/mL) | |||||||
A. carbonarius fungi | |||||||
Control | 5.3477 ± 0.477 | 100 | - | - | - | 414.33 ± 7.32 | - |
LGEO | 2.9971 ± 0.686 | 56.04 | 1.45 | - | - | 221.52 ± 8.29 | 46.53 |
MF-LGEO | 1.2616 ± 0.284 | 23.59 | 0.65 | - | - | 105.37 ± 5.54 | 74.57 |
Nystatin | 1.0057 ± 0.225 | 18.81 | 0.03 | - | - | 67.81 ± 5.08 | 83.63 |
(100 µg/mL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudechicha, A.; Aouf, A.; Farouk, A.; Ali, H.S.; Elkhadragy, M.F.; Yehia, H.M.; Badr, A.N. Microfluidizing Technique Application for Algerian Cymbopogon citratus (DC.) Stapf Effects Enhanced Volatile Content, Antimicrobial, and Anti-Mycotoxigenic Properties. Molecules 2023, 28, 5367. https://doi.org/10.3390/molecules28145367
Boudechicha A, Aouf A, Farouk A, Ali HS, Elkhadragy MF, Yehia HM, Badr AN. Microfluidizing Technique Application for Algerian Cymbopogon citratus (DC.) Stapf Effects Enhanced Volatile Content, Antimicrobial, and Anti-Mycotoxigenic Properties. Molecules. 2023; 28(14):5367. https://doi.org/10.3390/molecules28145367
Chicago/Turabian StyleBoudechicha, Amel, Abdelhakim Aouf, Amr Farouk, Hatem S. Ali, Manal F. Elkhadragy, Hany M. Yehia, and Ahmed Noah Badr. 2023. "Microfluidizing Technique Application for Algerian Cymbopogon citratus (DC.) Stapf Effects Enhanced Volatile Content, Antimicrobial, and Anti-Mycotoxigenic Properties" Molecules 28, no. 14: 5367. https://doi.org/10.3390/molecules28145367
APA StyleBoudechicha, A., Aouf, A., Farouk, A., Ali, H. S., Elkhadragy, M. F., Yehia, H. M., & Badr, A. N. (2023). Microfluidizing Technique Application for Algerian Cymbopogon citratus (DC.) Stapf Effects Enhanced Volatile Content, Antimicrobial, and Anti-Mycotoxigenic Properties. Molecules, 28(14), 5367. https://doi.org/10.3390/molecules28145367