Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review
Abstract
:1. Introduction
2. Nutritional Value and Bioactive Components
2.1. Polysaccharides
2.2. Proteins
2.3. Lipids
2.4. Sterols
2.5. Polyphenols
2.6. Terpenes and Terpenoids
2.7. Vitamins and Minerals
3. Possibilities of Using Medicinal Mushrooms for Functional Food Production
4. Conclusions or Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wani, A.; Bodha, R.H.; Wani, A.H. Nutritional and medicinal importance of mushrooms. J. Med. Plants Res. 2010, 4, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Feeney, M.J.; Miller, A.M.; Roupas, P. Mushrooms-Biologically Distinct and Nutritionally Unique: Exploring a ”Third Food Kingdom”. Nutr. Today 2014, 49, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.K.; Prakash, S. Status of Animal Phyla in Different Kingdom Systems of Biological Classification. Int. J. Biol. Innov. 2020, 2, 149–154. [Google Scholar] [CrossRef]
- Beulah, H.; Margret, A.A.; Nelson, J. Marvelous Medicinal Mushrooms. Int. J. Pharma Bio Sci. 2013, 3, 611–615. [Google Scholar]
- Hyde, K.D. The numbers of fungi. Fungal Divers. 2022, 114, 1. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Daba, G.M.; Thomas, P.W.; Wen, T.-C. Medicinal Mushrooms as a Source of Natural Therapeutic Bioactive Compounds. Egypt. Pharm. J. 2019, 18, 145–155. [Google Scholar] [CrossRef]
- Weaver, C.; Marr, E.T. White vegetables: A forgotten source of nutrients: Purdue roundtable executive summary. Adv. Nutr. 2013, 4, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Zhang, Z.; Liu, S.; Chen, J.; Cai, W. Effect of Cultured Substrates on the Chemical Composition and Biological Activities of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes). Int. J. Med. Mushrooms 2020, 22, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, W.A.; Daba, G.M. Medicinal mushroom: What should we know? Int. J. Pharm. Chem. Anal. 2022, 9, 1–9. [Google Scholar] [CrossRef]
- Cateni, F.; Gargano, M.L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in wild and cultivated mushrooms: Nutrition and health. Phytochem. Rev. 2022, 21, 339–383. [Google Scholar] [CrossRef]
- Barros, L.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Effect of Fruiting Body Maturity Stage on Chemical Composition and Antimicrobial Activity of Lactarius sp. Mushrooms. J. Agric. Food Chem. 2007, 55, 8766–8771. [Google Scholar] [CrossRef]
- Safin, R.R.; Gainullin, R.H.; Safina, A.V.; Gainullin, R.H. Methods for evaluating chaga extraction effectiveness based on its porosity change. J. Phys. Conf. Ser. 2022, 2373, 042007. [Google Scholar] [CrossRef]
- Huang, G.; Cai, W.; Xu, B. Vitamin D2, Ergosterol, and Vitamin B2 Content in Commercially Dried Mushrooms Marketed in China and Increased Vitamin D2 Content Following UV-C Irradiation. Int. J. Vitam. Nutr. Res. 2017, 87, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Glamočlija, J.; Ćirić, A.; Nikolić, M.; Fernandes, Â.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R.; Soković, M.; van Griensven, L.J.L.D. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J. Ethnopharmacol. 2015, 162, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Géry, A.; Dubreule, C.; André, V.; Rioult, J.P.; Bouchart, V.; Heutte, N.; Eldin de Pécoulas, P.; Krivomaz, T.; Garon, D. Chaga (Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B). Integr Cancer Ther. 2018, 17, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.Q.; Li, D.Q.; Feng, K.; Hu, D.J.; Li, S.P. Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing reversed-phase liquid chromatography-mass spectrometry. J. Chromatogr. A. 2010, 1217, 5501–5510. [Google Scholar] [CrossRef]
- Peng, H.; Shahidi, F. Qualitative Analysis of Secondary Metabolites of Chaga Mushroom (Inonotus obliquus): Phenolics, Fatty Acids, and Terpenoids. J. Food Bioact. 2022, 17, 56–57. [Google Scholar] [CrossRef]
- Golianek, A.; Mazurkiewicz-Zapałowicz, K. Mushrooms in the human diet—Nutritional and pro-health value. Kosmos 2016, 65, 513–522. [Google Scholar]
- Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Appl. Sci. 2022, 12, 8074. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, Y.; Xue, Z.; Li, N.; Liu, J.; Chen, H. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers 2021, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Kyanko, M.V.; Canel, R.S.; Ludemann, V.; Pose, G.; Wagner, J.R. β-Glucan Content and Hydration Properties of Filamentous Fungi. Prikl Biokhim Mikrobiol. 2013, 49, 48–52. [Google Scholar] [CrossRef]
- Parepalli, Y.; Chavali, M.; Sami, R.; Khojah, E.; Elhakem, A.; El Askary, A.; Singh, M.; Sinha, S.; El-Chaghaby, G. Evaluation of Some Active Nutrients, Biological Compounds and Health Benefits of Reishi Mushroom (Ganoderma lucidum). Int. J. Pharmacol. 2021, 17, 243–250. [Google Scholar] [CrossRef]
- Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal Mushroom: Boon for Therapeutic Applications. 3 Biotech 2018, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Flores, H.E.; Maya-Cortés, D.C.; Figueroa-Cárdenas, J.D.; Garnica-Romo, M.G.; Ponce-Saavedra, J. Chemical composition and physicochemical properties of shiitake mushroom and high fiber products. J. Food 2009, 7, 7–14. [Google Scholar] [CrossRef]
- Riaz, S.; Ahmad, A.; Farooq, R.; Ahmed, M.; Shaheryar, M.; Hussain, M. Edible Mushrooms, a Sustainable Source of Nutrition, Biochemically Active Compounds and Its Effect on Human Health. In Current Topics in Functional Food; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Antunes, P.S.; Erpen-Dalla Corte, L.; Bueno, J.C.; Spinosa, W.A.; Resende, J.T.V.; Hata, F.T.; Cabrera, L.C.; Zeffa, D.M.; Gonçalves, L.S.; Constantino, L.V. Firmness and biochemical composition of Shitake and Shimeji commercialized in natura and consumers’ opinion survey. Hortic. Bras. 2021, 39, 425–431. [Google Scholar] [CrossRef]
- Reguła, J.; Siwulski, M. Dried Shiitake (Lentinula edodes) and Oyster (Pleurotus ostreatus) Mushrooms as a Good Source of Nutrient. Acta Sci. Pol. Technol. Aliment. 2007, 6, 135–142. [Google Scholar]
- Kıvrak, I.; Kivrak, S.; Karababa, E. Assessment of Bioactive Compounds and Antioxidant Activity of Turkey Tail Medicinal Mushroom Trametes versicolor (Agaricomycetes). Int. J. Med. Mushrooms 2020, 22, 559–571. [Google Scholar] [CrossRef]
- Vetter, J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023, 12, 1009. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible mushroom: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villares, A.; Mateo-Vivaracho, L.; Guillamón, E. Structural Features and Healthy Properties of Polysaccharides Occurring in Mushrooms. Agriculture 2012, 2, 452–471. [Google Scholar] [CrossRef] [Green Version]
- Cerletti, C.; Esposito, S.; Iacoviello, L. Edible Mushrooms and Beta-Glucans: Impact on Human Health. Nutrients 2021, 13, 2195. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Lyu, F.; Xu, X.; Zhang, L. Recent advances in chain conformation and bioactivities of triple-helix polysaccharides. Biomacromolecules 2020, 21, 1653–1677. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T. Beta-glucans in higher fungi and their health effects. Nutr. Rev. 2009, 67, 624–631. [Google Scholar] [CrossRef]
- Falch, B.H.; Espevik, T.; Ryan, L.; Stokke, B.T. The cytokine stimulating activity of (1→3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr. Res. 2000, 329, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Sletmoen, M.; Stokke, B.T. Higher order structure of (1,3)-beta-D-glucans and its influence on their biological activities and complexation abilities. Biopolymers 2008, 89, 310–321. [Google Scholar] [CrossRef]
- Brown, G.D.; Gordon, S. Fungal beta-glucans and mammalian immunity. Immunity 2003, 19, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, J.; Modick, H.; Busch, E.; von Rekowski, R.W.; Altenbach, H.J.; Mölleken, H. A New Colorimetric Method to Quantify β-1,3–1,6-Glucans in Comparison with Total β-1,3-Glucans in Edible Mushrooms. Food Chem. 2011, 127, 791–796. [Google Scholar] [CrossRef]
- Rasmy, G.E.; Botros, W.A.; Kabeil, S.; Daba, A.S. Preparation of Glucan from Lentinula edodes Edible Mushroom and Elucidation of Its Medicinal Value. Aust. J. Basic Appl. Sci. 2010, 4, 5717–5726. [Google Scholar]
- Mirończuk-Chodakowska, I.; Witkowska, A.M. Evaluation of Polish Wild Mushrooms as Beta-Glucan Sources. Int. J. Environ. Res. Public Health 2020, 17, 7299. [Google Scholar] [CrossRef]
- Trivedi, S.; Patel, K.; Belgamwar, V.; Wadher, K. Functional polysaccharide lentinan: Role in anti-cancer therapies and management of carcinomas. Pharmacol. Res. Mod. Chin. Med. 2022, 2, 100045. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Siu, K.-C.; Geng, P. Bioactive Ingredients and Medicinal Values of Grifola frondosa (Maitake). Foods 2021, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Del Cornò, M.; Gessani, S.; Conti, L. Shaping the Innate Immune Response by Dietary Glucans: Any Role in the Control of Cancer? Cancers 2020, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-N. Functional Cordyceps Coffee Containing Cordycepin and β-Glucan Hyo-Nam Song. Prev. Nutr. Food Sci. 2020, 25, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Sari, M.; Prange, A.; Lelley, J.I.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef]
- Yuan, M.; Li, C.; Xiao, X.; Wan, D.; Xi, B.; Jiang, X.; Zhang, J. Effect of lentinan on proliferation and apoptosis of human astrocytoma U251 cells. Pol J Pathol. 2023, 3, 47758. [Google Scholar] [CrossRef] [PubMed]
- Ataollahi, H.; Larypoor, M. Fabrication and investigation potential effect of lentinan and docetaxel nanofibers for synergistic treatment of breast cancer in vitro. Polym. Adv. Technol. 2022, 33, 1468–1480. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, K.; Zhou, L.; Ren, L.; Ren, B.; Meng, F.; Yu, W.; Wang, H.; Fan, H. Apaf1 NanoLuc biosensors identified lentinan as a potent synergizer of cisplatin in targeting hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 2021, 577, 45–51. [Google Scholar] [CrossRef]
- Abascal, K.Y.; Yarnell, E. A turkey tail polysaccharide as an immunochemotherapy agent in cancer. Altern. Complement. Ther. 2007, 13, 178–182. [Google Scholar] [CrossRef]
- Thuy, D.T.P.; Anh, T.T.N.; Thuy, N.T.T.; Intaparn, P.; Tapingkae, T.; Mai, N.T. Simple and Efficient Method for the Detection and Quantification of Cordycepin Content in Cordyceps. Chiang Mai J. Sci. 2021, 48, 420–428. [Google Scholar]
- Karishma, R.; Rachana, M. Potential Secondary Bioactive Compounds of Ganoderma lucidum (Reishi Mushroom) against Various Pathogenic Activity. Pharmacologyonline 2021, 3, 1923–1944. [Google Scholar]
- Ahmad, M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Turło, J. Large-flowered mushrooms—An underestimated source of medicinal substances. Stud. I Mater. CEPL 2015, 17, 138–151. [Google Scholar]
- Thongbai, B.; Rapior, S.; Hyde, K.D.; Wittstein, K.; Stadler, M. Hericium erinaceus, an Amazing Medicinal Mushroom. Mycol. Prog. 2015, 14, 91. [Google Scholar] [CrossRef]
- Doi, N.; Araki, K.; Fukuta, Y.; Kuwagaito, Y.; Yamauchi, Y.; Sasai, Y.; Kondo, S.; Kuzuya, M. Anti-glycation and antioxidant effects of Chaga mushroom decoction extracted with a fermentation medium. Food Sci. Technol. Res. 2023, 29, 155–161. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wang, W.; Zhang, H.; Zhang, X.; Han, C. The Chemical Constituents and Pharmacological Actions of Cordyceps sinensis. Evid. Based Complement. Altern. Med. 2015, 2015, 575063. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Meng, X.Y.; Yang, R.L.; Qin, T.; Wang, X.Y.; Zhang, K.Y.; Fei, C.Z.; Li, Y.; Hu, Y.L.; Xue, F.Q. Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydr. Polym. 2012, 89, 461–466. [Google Scholar] [CrossRef]
- Zhao, C.S.; Yin, W.T.; Wang, J.Y.; Zhang, Y.; Yu, H.; Cooper, R.; Smidt, C.; Zhu, J.S. CordyMax Cs-4 improves glucose metabolism and increases insulin sensitivity in normal rats. J. Altern. Complement. Med. 2002, 8, 309–314. [Google Scholar] [CrossRef]
- Yan, X.-F.; Zhang, Z.-M.; Yao, H.-Y.; Guan, Y.; Zhu, J.-P.; Zhang, L.-H.; Jia, Y.-L.; Wang, R.-W. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phytother. Res. 2013, 27, 1597–1604. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J. Immune-Enhancing Effects of Maitake (Grifola frondosa) and Shiitake (Lentinula edodes) Extracts. Ann. Transl. Med. 2014, 2, 14. [Google Scholar] [CrossRef]
- Miletić, D.; Turło, J.; Podsadni, P.; Sknepnek, A.; Szczepańska, A.; Lević, S.; Nedović, V.; Nikšić, M. Turkey Tail Medicinal Mushroom, Trametes versicolor (Agaricomycetes), Crude Exopolysaccharides with Antioxidative Activity. Int. J. Med. Mushrooms 2020, 22, 885–895. [Google Scholar] [CrossRef]
- Benson, K.F.; Stamets, P.; Davis, R.; Nally, R.; Taylor, A.; Slater, S.; Jensen, G.S. The mycelium of the Trametes versicolor (Turkey tail) mushroom and its fermented substrate each show potent and complementary immune activating properties in vitro. BMC Complement. Altern. Med. 2019, 19, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, N.; Clemente, A.; Pedone, P.V.; Ragucci, S.; Di Maro, A. An Updated Review of Bioactive Peptides from Mushrooms in a Well-Defined Molecular Weight Range. Toxins 2022, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.; Araújo-Rodrigues, H.; Pintado, M.E. The health-promoting potential of edible mushroom proteins. Current Pharm. Des. 2023, 29, 804–823. [Google Scholar] [CrossRef]
- El-Maradny, Y.A.; El-Fakharany, E.M.; Abu-Serie, M.M.; Hashish, M.H.; Selim, H.S. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int. J. Biol. Macromol. 2021, 179, 239–258. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur Preet, H.; Kanwar, J.R. Mushroom lectins as promising anticancer substances. Curr. Protein Pept. Sci. 2016, 17, 797–807. [Google Scholar] [CrossRef]
- Li, F.; Wen, H.; Zhang, Y.; Aa, M.; Liu, X. Purification and characterization of a novel immunomodulatory protein from the medicinal mushroom Trametes versicolor. Sci. China Life Sci. 2011, 54, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Zhang, Y.; Yan, Y.B.; Lei, W.; Wu, Z.X.; Liu, N.; Liu, S.; Shi, L.; Fan, Y. The Protective Effect of Cordymin, a Peptide Purified from the Medicinal Mushroom Cordyceps sinensis, on Diabetic Osteopenia in Alloxan-Induced Diabetic Rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 985636. [Google Scholar] [CrossRef] [Green Version]
- Thatoi, H.; Singdevsachan, S.K. Diversity, Nutritional Composition and Medicinal Potential of Indian Mushrooms: A Review. Afr. J. Biotechnol. 2014, 13, 523–545. [Google Scholar] [CrossRef]
- Pop, R.M.; Puia, I.C.; Puia, A.; Chedea, V.S.; Leopold, N.; Bocsan, I.C.; Buzoianu, A.D. Characterization of Trametes versicolor: Medicinal Mushroom with Important Health Benefits. Not. Bot. Horti Agrobo. 2018, 46, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Tagkouli, D.; Kaliora, A.; Bekiaris, G.; Koutrotsios, G.; Christea, M.; Zervakis, G.I.; Kalogeropoulos, N. Free Amino Acids in Three Pleurotus Species Cultivated on Agricultural and Agro-Industrial By-Products. Molecules 2020, 25, 4015. [Google Scholar] [CrossRef]
- Guo, L.-X.; Xu, X.-M.; Wu, C.-F.; Lin, L.; Zou, S.-C.; Luan, T.-G.; Yuan, J.-P.; Wang, J.-H. Fatty acid composition of lipids in wild Cordyceps sinensis from major habitats in China. Biomed. Prev. Nutr. 2012, 2, 42–50. [Google Scholar] [CrossRef]
- Kim, J.-H.; Hubbard, N.E.; Ziboh, V.; Kelly, L. Erickson. Conjugated Linoleic Acid Reduction of Murine Mammary Tumor Cell Growth through 5-Hydroxyeicosatetraenoic. Acid. Biochim. Biophys. Acta 2005, 1687, 103–109. [Google Scholar] [CrossRef]
- Urbain, P.; Singler, F.; Ihorst, G.; Biesalski, H.K.; Bertz, H. Bioavailability of vitamin D2 from UV-B-irradiated button mushrooms in healthy adults deficient in serum 25-hydroxyvitamin D: A randomized controlled trial. Eur. J. Clin. Nutr. 2011, 65, 965–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Wang, Y.; Wang, J.; Liu, P.; Li, J.; Zhu, W. Antimicrobial Ergosteroids and Pyrrole Derivatives from Halotolerant Aspergillus flocculosus PT05-1 Cultured in a Hypersaline Medium. Extremophiles 2013, 17, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-Y.; Huang, W.-J.; Hsieh, H.-G.; Lin, C.-Y. H1-A Extracted from Cordyceps sinensis, Suppresses the Proliferation of Human Mesangial Cells and Promotes Apoptosis, Probably by Inhibiting the Tyrosine Phosphorylation of Bcl-2 and Bcl-XL. J. Lab. Clin. Med. 2003, 141, 74–83. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Mahmoud, G.A.-E.; Hefzy, M.; Liu, Z.; Ma, C. Overview on the edible mushrooms in Egypt. J. Future Foods 2023, 3, 8–15. [Google Scholar] [CrossRef]
- Sharpe, E.; Farragher-Gnadt, A.; Igbanugo, M.; Huber, T.; Michelotti, J.C.; Milenkowic, A.; Ludlam, S.; Walker, M.; Hanes, D.; Bradley, R.; et al. Comparison of Antioxidant Activity and Extraction Techniques for Commercially and Laboratory Prepared Extracts from Six Mushroom Species. J. Agric. Food Res. 2021, 4, 100130. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021, 26, 2463. [Google Scholar] [CrossRef]
- Podkowa, A.; Kryczyk-Poprawa, A.; Opoka, W.; Kozarski, M.; Wróbel, M.S. Culinary–Medicinal Mushrooms: A Review of Organic Compounds and Bioelements with Antioxidant Activity. Eur. Food Res. Technol. 2021, 247, 513–533. [Google Scholar] [CrossRef]
- Ma, G.; Yang, W.; Zhao, L.; Pei, F.; Fang, D.; Hu, Q. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci. Hum. Wellness 2018, 7, 125–133. [Google Scholar] [CrossRef]
- Taşkın, H.; Süfer, Ö.; Attar, S.H.; Kılıç, Ö.; Güzel, M.; Atakol, O. Total Phenolics, Antioxidant Activities and Fatty Acid Profiles of Six Morchella Species. J. Food Sci. Technol. 2021, 58, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Saltarelli, R.; Palma, F.; Gioacchini, A.M.; Bucchini, A.; Chiarini, A.; Pellegrini, A.; Rocchi, M.B.L.; Stocchi, V. Phytochemical Composition, Antioxidant and Antiproliferative Activities and Effects on Nuclear DNA of Ethanolic Extract from an Italian Mycelial Isolate of Ganoderma lucidum. J. Ethnopharmacol. 2019, 231, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Van, Q.; Nayak, B.N.; Reimer, M.; Jones, P.J.H.; Fulcher, R.G.; Rempel, C.B. Anti-inflammatory effect of Inonotus obliquus, Polygala senega L.; and Viburnum trilobum in a cell screening assay. J. Ethnopharmacol. 2009, 125, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Akihisa, T.; Nakamura, Y.; Tagata, M.; Tokuda, H.; Yasukawa, K.; Uchiyama, E.; Suzuki, T.; Kimura, Y. Anti-Inflammatory and Anti-Tumor-Promoting Effects of Triterpene Acids and Sterols from the Fungus Ganoderma lucidum. Chem. Biodivers. 2007, 4, 105–255. [Google Scholar] [CrossRef]
- Wang, S.; Bao, L.; Zhao, F.; Wang, Q.; Li, S.; Ren, J.; Li, L.; Wen, H.; Guo, L. Isolation, Identification, and Bioactivity of Monoterpenoids and Sesquiterpenoids from the Mycelia of Edible Mushroom Pleurotus cornucopiae. J. Agric. Food Chem. 2013, 61, 5122–5129. [Google Scholar] [CrossRef]
- Dasgupta, A.; Acharya, K. Mushrooms: An Emerging Resource for Therapeutic Terpenoids. 3 Biotech. 2019, 9, 369. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, Y.; Wang, D.; Gao, H. Natural barrigenol-like triterpenoids: A comprehensive review of their contributions to medicinal chemistry. Phytochemistry 2019, 161, 41–74. [Google Scholar] [CrossRef]
- Teichmann, A.; Dutta, P.C.; Staffas, A.; Jägerstad, M. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT Food Sci. Technol. 2007, 40, 815–822. [Google Scholar] [CrossRef]
- Feeney, M.J.; Dwyer, J.; Hasler-Lewis, C.M.; Milner, J.A.; Noakes, M.; Rowe, S.; Wach, M.; Beelman, R.B.; Caldwell, J.; Cantorna, M.T.; et al. Mushrooms and Health Summit Proceedings. J. Nutr. 2014, 144, 1128S–1136S. [Google Scholar] [CrossRef] [Green Version]
- Gründemann, C.; Reinhardt, J.K.; Lindequist, U. European medicinal mushrooms: Do they have potential for modern medicine?–An update. Phytomedicine 2020, 66, 153131. [Google Scholar] [CrossRef]
- Waktola, G.; Temesgen, T. Application of Mushroom as Food and Medicine. Adv. Biotechnol. Microbiol. 2018, 11, 555817. [Google Scholar] [CrossRef]
- Sachdeva, V.; Roy, A.; Bharadvaja, N. Current Prospects of Nutraceuticals: A Review. Curr. Pharm. Biotechnol. 2020, 21, 884–896. [Google Scholar] [CrossRef] [PubMed]
- Benkeblia, N. Polysaccharides Natural Fibres in Food and Nutrition; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom Nutraceuticals for Improved Nutrition and Better Human Health: A Review. PharmaNutrition 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Krzystyniak, K.L.; Klonowska, J. New Trends in Dietetics; University of Engineering and Health: Warsaw, Poland, 2019; p. 27. ISBN 978-83-942432-4-1. [Google Scholar]
- Lu, X.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Incorporation of Mushroom Powder into Bread Dough—Effects on Dough Rheology and Bread Properties. Cereal Chem. 2018, 95, 418–427. [Google Scholar] [CrossRef]
- Wannasupchue, W.; Siriamornpun, S.; Huaisan, K.; Huaisan, J.; Meeso, N. Effect of Adding Ling-zhi (Ganoderma lucidum) on Oxidative Stability, Textural and Sensory Properties of Smoked Fish Sausage. Thai J. Agric. Sci. 2011, 44, 505–512. [Google Scholar]
- Leskosek-Cukalovic, I.; Despotovic, S.; Lakic, N.; Niksic, M.; Nedovic, V.; Tesevic, V. Ganoderma lucidum—Medical Mushroom as a Raw Material for Beer with Enhanced Functional Properties. Food Res. Int. 2010, 43, 2262–2269. [Google Scholar] [CrossRef]
- Ghobadi, R.; Mohammadi, R.; Chabavizade, J.; Sami, M. Effect of Ganoderma lucidum Powder on Oxidative Stability, Microbial and Sensory Properties of Emulsion Type Sausage. Adv. Biomed. Res. 2018, 7, 135. [Google Scholar] [CrossRef]
- Chung, H.C.; Lee, J.T.; Kwon, O.J. Bread Properties Utilizing Extracts of Ganoderma lucidum (GL). J. Korean Soc. Food Sci. Nutr. 2004, 33, 1201–1205. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, M.; Vojvodić, P.; Petrović, M.; Radić, D.; Mitić-Ćulafić, D.; Kostić, M.; Veljović, S. Yogurt Fortified with GABA-Producing Strain and Ganoderma lucidum Industrial Waste. Czech J. Food Sci. 2022, 40, 456–464. [Google Scholar] [CrossRef]
- Szydłowska-Tutaj, M.; Szymanowska, U.; Tutaj, K.; Domagała, D.; Złotek, U. The Addition of Reishi and Lion’s Mane Mushroom Powder to Pasta Influences the Content of Bioactive Compounds and the Antioxidant, Potential Anti-Inflammatory, and Anticancer Properties of Pasta. Antioxidants 2023, 12, 738. [Google Scholar] [CrossRef]
- Singh, J.; Sindhu, S.C.; Sindhu, A.; Yadav, A. Development and Evaluation of Value Added Biscuits from Dehydrated Shiitake (Lentinus edodes) Mushroom. Int. J. Curr. Res. 2016, 8, 27155–27159. [Google Scholar]
- Chun, S.; Chambers, E., IV.; Chambers, D. Perception of Pork Patties with Shiitake (Lentinus edodes) Mushroom Powder and Sodium Tripolyphosphate as Measured by Korean and United States Consumers. J. Sens. Stud. 2005, 20, 156–166. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Serventi, L.; Mason, S.; Brennan, C.S. How the Inclusion of Mushroom Powder Can Affect the Physicochemical Characteristics of Pasta. Int. J. Food Sci. Technol. 2016, 51, 2433–2439. [Google Scholar] [CrossRef]
Common Name | Latin Name | Moisture | Protein | Carbohydrates | Lipids | Dietary Fibre | Ash | The Literature Source |
---|---|---|---|---|---|---|---|---|
Reishi | Ganoderma lucidum (Curtis) P. Karst. | 7.5–12.99 | 13.3–23.6 | 42.8–82.3 | 3–5.8 | 14.81 | 4 | [19,22,23] |
Lion’s Mane | Hericium erinaceus (Bull.) Pers. | 7.03 * | 22.3 | 57.0 | 3.5 | 3.3–7.8 | 7.1 | [19,23] |
Chaga | Inonotus obliquus (Ach. ex Pers.) Pilát | 3.5 | 2.4 | 10.3 | 1.7 | 67.5 | n.d. | [20] |
Cordyceps | Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones and Spataforaprior name Cordyceps sinensis | 3.5 * | 21.9–23.1 | 24.2–49.3 | 5.5–8.2 | 7.7 | 13.13 | [19,23] |
Shiitake | Lentinula edodes (Berk.) Pegler | 7.14 | 17.2–27.09 | 38.1–66.0 | 1.26–2.95 | 46.19–49.09 (IDF: 40.7–44.2 and SDF: 1.95–8.4) | 6.05–6.73 | [24,25,26,27] |
Turkey Tail It also known as:, Cloud mushroom, Yun Zhi, Kawaritake | Trametes versicolor (L.) Lloyd | - | 11.07 | - | 1.35 | - | - | [28] |
Common Name | Latin Name | Content of β-Glucans (g/100 g d.b.) |
---|---|---|
Reishi | Ganoderma lucidum (Curtis) P. Karst. | 4.3–23.6 |
Lion’s Mane | Hericium erinaceus (Bull.) Pers. | 35.3 |
Chaga | Inonotus obliquus (Ach. ex Pers.) Pilát | 8.5 |
Shiitake cap/steam | Lentinula edodes (Berk.) Pegler | 20.0/25.3 |
Turkey tail | Trametes versicolor (L.) Lloyd | 60.79 |
Cordyceps | Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones and Spatafora prior name Cordyceps sinensis | 3.79 |
Common Name | Latin Name | Compounds with Bioactive Potential | Health-Promoting Effects | References |
---|---|---|---|---|
Reishi | Ganoderma lucidum (Curtis) P. Karst. | Polysaccharides Glycoproteins (lectins) Phenols Steroids Triterpenoids Nucleotides Fatty acids Vitamins Minerals | Anti-inflammatory Anticancer Antiviral (including HIV) Antimicrobial Hypotensive effect Cardiotonic Immunomodelling Nephrotonic Hepatoprotective Neurotonic Anti-asthmatic | [21] a, [51], [52] a,b, [53] |
Lion’s Mane | Hericium erinaceus (Bull.) Pers. | Hericerins, Erinacins, Glycoprotein, Polysaccharides Beta-glucans, Sterols, Lactone, Fatty acids Volatile compounds (e.g., hexadecanoic acid, linoleic acid, phenylacetaldehyde, benzaldehyde) | Anticancer, Antioxidant, Anti-ageing, Imunomodelling, Neurotonic, Anti-asmatic, Hypoglycemic effects Hypocholesterolemic effects | [46] a,b, [53], [54] a,b |
Chaga | Inonotus obliquus (Ach. ex Pers.) Pilát | Polysaccharides Fatty acids Hydroxy acids Poliphenols (phenolic acids, flavonoids, coumarins, quinones, and styrylpyrones) Triterpenoids (lanosterol) Steroids (ergosterol and ergosterol peroxide) | Antioxidant, Anti-ageing, Antimicrobial activity, Antitumor activity, Anti-inflammatory hypoglycemic effect, Antilipidemic effect, Antiglication effect, Immunoregulatory Cardioprotective effects | [14] b, [17,54,55] |
Cordyceps | Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora prior name Cordyceps sinensis | Cordycepin (purine alkaloid) Cordymin (peptide) Adenosine Cordycepic acid (d-mannitol) Trehalose Polysaccharide Beta-glucans Saponins Polyunsaturated fatty acids, Ergosterol δ-tocopherol Hydroxybenzoic acid | Antitumor, Hypoglycemic effect Hypocholesterolemic effect, Anti-inflammatory, Antioxidant, Antiaging activity, Antimicrobial activity, Anticonvulsant activity, Cardiovascular protection (reduces cardiac arrhythmia and chronic heart failure) | [49], [56] ab, [57] a, [58] a, [59] a |
Shiitake | Lentinula edodes (Berk.) Pegler | Polysaccharides, Beta-glucans (lentinan) Glycoproteins, Phenols, Steroids, Terpenoids, Nucleotides | Immune-enhancing effects, Antitumor, Antioxidant, Antiaging activity, Antimicrobial activity, Hypocholesterolemic effect, Reduction in blood pressure | [26], [27] a, [60] |
Turkey Tail It also known as: Cloud mushroom, Yun Zhi, Kawaritake | Trametes versicolor (L.) Lloyd | Polysaccharopeptide (PSP) and polysaccharide K (PSK) (1,3)(1,6)-β-d-glucans, Poliphenols (phenolic acids: p-hydroxy benzoic, protocatechuic, vanillic, and homogentisic), Vitamin B, Fatty acids (linoleic, oleic, stearic, linolenic) | Antitumor Immunoregulatory, Antioxidant activity Prevent obesity, Antimicrobial, Antidiabetic AChE inhibitorY | [28,61], [62] b |
Common Name | Latin Name | Product/ Size of Additive | Impact on Chemical Composition (~) Lack of Impact (↓) Decrease (↑) Increase | Impact on Quality Parameters | References |
---|---|---|---|---|---|
Reishi | Ganoderma lucidum (Curtis) P. Karst. | Smoked fish sausage 1% of crushed mushroom | (↑) Antioxidant properties (↑) Total phenol content: + (↓)Moisture: − (↑) Ash: + (↑) Protein: + (↓)Fat: − Fiber: + | (↑) Shelf life (↓) Texture Sensory evaluation: (↓) flavour, (↓) colour, (↓) taste, (↓) texture, (↓) appearance, (↓) overall | [98] |
1% of water extract | (↑) Antioxidant properties (↑) Total phenol content (↓) Moisture: − (↑) Ash (↓) Protein: − (~) Fat (↑) Fiber: + | (↑) Shelf life (↑) Texture - Sensory evaluation: (↑) flavour, (↑) colour, (↑) taste, (↑) texture, (~) appearance, (↑) overall | |||
0.25% of spore | (↑) Antioxidant properties (↑) Total phenol content (↓) Moisture: − (↑) Ash (↑) Protein (↑) Fat (↓) Fiber | (↑) Shelf life (~) Texture Sensory evaluation: (↓) flavour, (↓) colour, (↓) taste, (↓) texture, (~) appearance, (↓) overall | |||
Reishi | Ganoderma lucidum (Curtis) P. Karst. | Pilzner beer 0.1–1.5 mL/L of alcohol extract | Sensory evaluation: (~) aroma (↑) taste (↑) body (↑) bitterness (↑) liveliness (↑) overall impression | [99] | |
Reishi | Ganoderma lucidum (Curtis) P. Karst. | Emulsion Type Sausage 1% of dried fruiting bodies | (↑) Antioxidant properties | Sensory evaluation: (~) texture − (↓) taste (↓) Colour − (↓) Smell (↓) Acceptability (~) Peroxide value (↑) Microbiological analysis + | [100] |
Reishi | Ganoderma lucidum (Curtis) P. Karst. | Bread 2/4/6/8% water extract | (↑) Baking loss (↓) Bitterness Sensory evaluation: (↑) 2–4%, (↓) 6–8% Texture: (~) 2–4% (↓) 6–8% − | [101] | |
Reishi | Ganoderma lucidum (Curtis) P. Karst. | Yoghurt 2% Industrial waste (residues from aqueous extraction) | (↑) anti-coli effect, (↑) against E. coli | (↓) Texture (↓) Taste | [102] |
Reishi | Ganoderma lucidum (Curtis) P. Karst. | Semolina pasta enriched with 2.5 and 5% of mushroom powder | (~) Phenolic compounds (↑) ABTS antiradical properties (↑) Syringic acid (~) β-glucan content (~) Anticancer properties | Not analyzed | [103] |
Lion’s Mane | Hericium erinaceus (Bull.) Pers. | Semolina pasta enriched with 2.5 and 5% of mushroom powder | (~) Phenolic compounds (~) Antioxidant properties (~) ABTS antiradical properties (↑) Vanilin (~) β-glucan content (~) Anticancer properties | Not analyzed | [103] |
Shiitake | Lentinula edodes (Berk.) Pegler | Biscuits with mushroom powder 10% | (↑) Protein (↑) Mineral (Fe, P, Zn, Ca) (↑) Total and insoluble dietary fibre | Sensory evaluation: (~) aroma, (~) colour, (~) texture, (~) shelf life | [104] |
Shiitake | Lentinula edodes (Berk.) Pegler | Bread enriched with 5–15% addition of mushroom powder | (↑) Dietary fiber | Bread dough: (↑) water absorption; (↓) development time; (↓) stability; >5% decreased the dough strength Bread quality physical: (↓) loaf height; (↑) moisture content; (↓) specific volume; >5% (↑) bread’s gumminess; >5% bread’s (↑) hardness; (↓) porosity | [97] |
Pork patties 0–6% addition to mushroom powder | Not analyzed | (↑) texture +; (↑) juiciness +; (↑) moisture + | [105] | ||
Semolina pasta enriched with 5–15% addition of mushroom powder | Not analyzed | (↑) Cooking loss (~) Water absorption; (~) Moisture content; (~) Tensile strength; (↑) Firmness | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules 2023, 28, 5393. https://doi.org/10.3390/molecules28145393
Łysakowska P, Sobota A, Wirkijowska A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules. 2023; 28(14):5393. https://doi.org/10.3390/molecules28145393
Chicago/Turabian StyleŁysakowska, Paulina, Aldona Sobota, and Anna Wirkijowska. 2023. "Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review" Molecules 28, no. 14: 5393. https://doi.org/10.3390/molecules28145393
APA StyleŁysakowska, P., Sobota, A., & Wirkijowska, A. (2023). Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules, 28(14), 5393. https://doi.org/10.3390/molecules28145393