Cellular Antioxidant, Anti-Inflammatory, and Antiproliferative Activities from the Flowers, Leaves and Fruits of Gallesia integrifolia Spreng Harms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Physical–Chemical Indices
2.2. Chemical Composition of Essential Oils
Peak | RT | Compounds | MF | MW | Relative Area (%) | Retention Index (RI) | Source RI Literature | |||
---|---|---|---|---|---|---|---|---|---|---|
Flowers | Leaves | Fruits | Calc. | Lit. | ||||||
1 | 3.337 | dimethyl disulfide | C2H6S2 | 94 | 3.47 | 4.21 | 2.91 | 707 | 718 | [21] |
2 | 4.150 | (E)-hex-2-enal | C6H10O | 98 | 0.14 | - | - | 866 | 865 | [22] |
3 | 4.153 | 2,4-dithiapentane | C3H8S2 | 108 | 0.04 | 2.08 | 0.19 | 867 | 892 | [23] |
4 | 6.933 | dimethyl trisulfide | C2H6S3 | 126 | 1.82 | 1.56 | 19.4 | 974 | 974 | [24] |
5 | 10.526 | linalol | C10H18O | 154 | 0.06 | - | 0.1 | 1015 | 1098 | [25] |
6 | 10.528 | 1,2,4-trithiolane | C2H4S3 | 124 | 2.31 | 3.59 | 3.86 | 1115 | 1127 | [26] |
7 | 10.704 | Nonanal | C9H18O | 142 | 0.07 | - | - | 1122 | 1112 | [27] |
8 | 11.272 | n.i | - | - | 0.18 | 1143 | ||||
9 | 11.284 | 2,3,5-Trithiahexane | C3H8S3 | 140 | 17.89 | 17.75 | 2.1 | 1143 | 1134 | [28] |
10 | 11.729 | 5,6-dihydro-2,4,6-trimethyl-4H-1,3,5-dithiazine | C6H13NS2 | 163 | 0.09 | - | - | 1158 | 1168 | [29] |
11 | 12.730 | Tetrasulfide, dimethyl | C2H6S4 | 158 | 0.19 | - | 0.19 | 1291 | 1240 | [30] |
12 | 12.753 | 1,3,5-Trithiane | C3H6S3 | 138 | 0.14 | 5.4 | - | 1292 | 1271 | [31] |
13 | 13.227 | n.i | 0.23 | - | 0.56 | 1308 | ||||
14 | 13.350 | 2,3,5,6-tetrathiaheptane | C3H8S4 | 172 | 0.56 | - | - | 1313 | 1327 | [32] |
15 | 13.628 | n.i | - | - | 0.29 | 1324 | ||||
16 | 14.030 | 1,2,4,5-Tetrathiane | C2H4S4 | 156 | 0.05 | - | 8.30 | 1339 | 1337 | [26] |
17 | 15.276 | Trithiomethoxymethane | C4H10S3 | 154 | 0.5 | 15.04 | 0.18 | 1383 | 1365 | [33] |
18 | 17.678 | n.i | 0.07 | - | - | 1473 | ||||
19 | 17.851 | n.i | 0.04 | - | - | 1479 | ||||
20 | 18.127 | n.i | 0.13 | - | - | 1489 | ||||
21 | 20.931 | 3,6-Dithia-1,8-octanediol | C6H14O2S2 | 182 | - | - | 0.31 | 1501 | 1503 | [34] |
22 | 20.946 | n.i | 0.16 | - | - | 1501 | ||||
23 | 22.461 | Lenthionine | C2H4S5 | 188 | 0.34 | 0.75 | 9.27 | 1567 | 1590 | [32] |
24 | 24.551 | 3,5-dithiahexanol-5,5-dioxide | C4H10O3S2 | 170 | 6.17 | - | 0.06 | 1658 | 1633 | [35] |
25 | 25.037 | n.i | 0.11 | 0.79 | 0.24 | 1680 | ||||
26 | 27.216 | 2,2′-Disulfanediyldiethanethiol | C4H10S4 | 186 | 47.00 | 41.82 | 44.39 | 1781 | 1760 | [10] |
27 | 27.326 | Ethanol, 2-(octylthio) | C10H22OS | 190 | - | 1.57 | - | 1786 | 1792 | [10] |
28 | 27.381 | n.i | 207 | 0.21 | - | - | 1789 | |||
29 | 28.071 | hexathiepane | CH2S6 | 206 | - | - | 6.82 | 1922 | 1697 | [36] |
30 | 30.522 | Phytol | C20H40O | 296 | 0.18 | 4.6 | - | 2046 | 2027 | [37] |
31 | 30.559 | N-ethyl-1,3-dithioisoindole | C10H9NS2 | 207 | 13.94 | - | 0.09 | 2047 | 2027 | [11] |
32 | 30.615 | 5 methyl-2 phenylindole | C15H13N | 207 | 0.12 | - | - | 2150 | 2176 | [11] |
33 | 32.677 | Propane, 1,1′-thiobis[3-(methylthio) | C8H18S3 | 210 | 3.75 | 0.54 | 0.17 | 2159 | 2193 | [10] |
34 | 37.887 | 11,13-Dihydroxy-tetradec-5-ynoic acid, methyl ester | C15H26O4 | 270 | 0.2 | - | - | 2359 | [38] | |
35 | 37.964 | n.i | 0.19 | 2464 | ||||||
36 | 62.623 | n.i | - | - | 0.19 | 3065 | ||||
Total Identified | 99.03 | 99.09 | 98.34 | |||||||
Organosulfur | 96.02 | 90.72 | 94.38 | |||||||
Oxygenated monoterpenes | 2.51 | 3.59 | 3.96 | |||||||
Diterpenes | 0.50 | 4.60 | - | |||||||
Not identified | 0.95 | 0.79 | 1.65 |
2.3. Chemical Composition of Crude Extracts
2.4. Cellular Antioxidant Activity (CAA)
2.5. Antiproliferative and Anti-Inflammatory Activity
Localization | Extraction Method/Time | Rainfall Index | Collection Period | Plant Part | Source | ||
---|---|---|---|---|---|---|---|
Flowers | Leaves | Fruits | |||||
Umuarama, Brazil S 23°46′16″ WO 53°19′38″ 442 m altitude | Hydrodistillation (3 h) | 132 mm flowers (March) 94 mm fruits (July) 195 mm leaves (October) | Flowers (March 2021) Fruits (July 2021) Leaves (October 2021) | 2,2′-Disulfanediyldiethanethiol (47.00%) 2,3,5-Trithiahexane (17.89%) n-ethyl-1,3-dithioisoindole (13.94%) | 2,2′-Disulfanediyldiethanethiol (41.82%) 2,3,5-Trithiahexane (17.75%) trithiomethoxymethane (15.04%) | 2,2′-Disulfanediyldiethanethiol (44.39%) dimethyl trisulfide (19.40%) lenthionine (9.27%) | Current study |
Umuarama, Brazil S 23°46′16″ WO 53°19′38″ 442 m altitude | Hydrodistillation (3 h) | 500–600 mm leaves and flowers (December) 143.3 mm fruits (June) | Flowers (December 2015) Leaves (December 2015) Fruits (May/June 2015) | disulfide, dimethyl (43.72%) methanethiol (44.91%) | butanal, 3-metil (40.43%) disulfide, dimethyl (40.42%) α-Terpinolene (8.63%) | 2,3,5-Trithiahexane (35.29%) 3,6-dithiaoctan-1,8-diol (20.89%) Methanethiol (16.26%) | [12] |
Umuarama, Brazil S 23°46′16″ WO 53°19′38″ 442 m altitude | Hydrodistillation (3 h) | 143.3 mm fruits (June) | Fruits (May/June 2015) | dimethyl trisulfide (15.49%) 2,8-dithianonane (52.63%) lenthionine (14.69%) | [11] | ||
Umuarama, Brazil S 23°46′16″ WO 53°19′38″ 442 m altitude | Hydrodistillation (3 h) | 500–600 mm flowers and leaves (December) 143.3 mm fruits (June) | Flowers (December 2015) Leaves (December 2015) Fruits (May/June 2015) | methionine, ethyl ester (45.28%) methyl p-tolyl sulfide (17.08%) n-ethyl-1,3-dithioisoindole (13.40%) | 3,5-dithiahexanol-5,5-dioxide (38.93%) 1,3,5-trithiane (13.74%) n-ethyl-1,3-dithioisoindole (12.58%) | dimethyl trisulfide (15.28%) 2,8dithianonane (52.63%) Lenthionine (14.69%) | [14] |
Umuarama, Brazil S 23o46′16″ WO 53°19′38″ 442 m altitude | Hydrodistillation (3 h) | 143.3 mm fruits (June) | Fruits (May/June 2015) | dimethyl trisulfide (15.15%) 2,8 dithianonane (52.86%) lenthionine (14.75%) | [61] |
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Extraction and Preparation of Crude Extract from the Flowers, Leaves, and Fruits of Gallesia integrifolia
3.3. Obtaining the Crude Extract of the Leaves, Flowers, and Fruits of Gallesia integrifolia
3.4. Physicochemical Index of Essential oils
3.4.1. Refractive Index
3.4.2. Specific Optical Rotation
3.4.3. Absolute Density
3.5. Chemical Identification of Essential Oils by Gas Chromatography Coupled to Mass Spectrometry (GC–MS)
3.6. Chemical Identification of Crude Extracts by Ultra-High-Performance Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (UHPLC-ESI–QTOF-MS/MS)
3.7. Cellular Antioxidant Activity
3.8. Antiproliferative Activity in Human Tumor and Non-Tumor Cell Lines
3.9. Anti-Inflammatory Activity of Gallesia Integrifolia Flowers’, Fruits’, and Leave’s Essential Oils and Crude Extracts
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Michalak, M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Goncharuk, E.A.; Zagoskina, N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ali, S.; Al Azzawi, T.N.I.; Saqib, S.; Ullah, F.; Ayaz, A.; Zaman, W. The key roles of ROS and RNS as a signaling molecule in plant–microbe interactions. Antioxidants 2023, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Dobros, N.; Zawada, K.D.; Paradowska, K. Phytochemical profiling, antioxidant and anti-inflammatory activity of plants belonging to the Lavandula Genus. Molecules 2022, 28, 256. [Google Scholar] [CrossRef] [PubMed]
- Nwozo, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Prop. 2023, 26, 359–388. [Google Scholar] [CrossRef]
- Smolyaninov, I.V.; Pitikova, O.V.; Rychagova, E.S.; Korchagina, E.O.; Poddel’sky, A.I.; Smolyaninova, S.A.; Berberova, N.T. Synthesis and antioxidant activity of sterically hindered bis-pyrocatechol thioethers. Russ. Chem. Bull. 2016, 65, 2861–2867. [Google Scholar] [CrossRef]
- Zuñe-da-Silva, F.; Rodrigues, P.J.F.P.; Rojas-Idrogo, C.; Delgado-Paredes, G.E.; Enrich-Prast, A.; Sakuragui, C.M. Tree structure and composition of a coastal remnant of the Atlantic Forest in Rio de Janeiro. Adv. For. Sci. 2023, 10, 1929–1940. [Google Scholar] [CrossRef]
- Souza, A.N.V.; Faria, M.G.I.; Rocha, C.E.; Philippsen, G.S.; Silva, G.C.C.; Silva, G.R.; Inumaro, R.S.; Gonçalves, J.E.; Gazim, Z.C.; Wietzikoski, S.; et al. Bioactive compounds with antifungal activity against pathogens isolated from pregnant woman: Gallesia integrifolia (garlic wood) is a promising treatment for vulvovaginal candidiasis. J. Ethnopharmacol. 2022, 295, 115403. [Google Scholar] [CrossRef]
- Montaholi, D.C.; Valverde, T.L.; Sampiron, E.G.; Bortoluci, W.C.; Gazim, Z.C.; Caleffi-Ferracioli, K.R.; Scodro, R.B.L.; Siqueira, V.L.D.; Cardoso, R.F. Essential oil of Gallesia integrifolia is active against mycobacteria. Future Microbiol. 2023, 18, 107–116. [Google Scholar] [CrossRef]
- Bortolucci, W.C.; Raimundo, K.F.; Fernandez, C.M.M.; Calhelha, R.C.; Ferreira, I.C.F.R.; Barros, L.; Gonçalves, J.E.; Linde, G.A.; Colauto, N.B.; Gazim, Z.C. Cytotoxicity and anti-inflammatory activities of Gallesia integrifolia (Phytolaccaceae) fruit essential oil. Nat. Prod. Res. 2022, 36, 2878–2883. [Google Scholar] [CrossRef]
- Raimundo, K.F.; Bortolucci, W.C.; Glamočlija, J.; Soković, M.; Gonçalves, J.E.; Linde, G.A.; Colauto, N.B.; Gazim, Z.C. Antifungal activity of Gallesia integrifolia fruit essential oil. Braz. J. Microbiol. 2018, 49, 229–235. [Google Scholar] [CrossRef]
- Raimundo, K.F.; Bortolucci, W.C.; Silva, E.S.; Balisk, A.F.P.; Sakai, O.A.; Junior, P.R.; Gonçalves, J.E.; Linde, G.A.; Gazim, Z.C. Chemical composition of garlic wood (‘Gallesia integrifolia’) (Phytolaccaceae) volatile compounds and their activity on cattle tick. Aust. J. Crop Sci. 2017, 11, 1058–1067. [Google Scholar] [CrossRef]
- Bortolucci, W.C.; Oliveira, H.L.M.; Oliva, L.R.; Gonçalves, J.E.; Júnior, R.P.; Colauto, N.B.; Linde, G.A.; Gazim, Z.C. Crude ethanolic extracts of different parts of Gallesia integrifolia (Phytolaccaceae) for the control of Rhipicephalus microplus. Int. J. Acarol. 2020, 46, 414–423. [Google Scholar] [CrossRef]
- Raimundo, K.F.; Bortolucci, W.C.; Rahal, I.L.; Oliveira, H.L.M.; Júnior, R.P.; Campo, C.F.A.A.; Gonçalves, J.E.; Linde, G.A.; Colauto, N.B.; Gazim, Z.C. Insecticidal activity of Gallesia integrifolia (Phytolaccaceae) essential oil. Bol. Latinoam. Caribe Plantas Med. Aromat. 2021, 20, 38–50. [Google Scholar] [CrossRef]
- Silva Júnior, A.J.; Buzzi, F.C.; Romanos, M.T.V.; Wagner, T.M.; Guimarães, A.P.C.; Cechinel Filho, V.; Batista, R. Chemical composition and antinociceptive, anti-inflammatory and antiviral activities of Gallesia gorazema (Phytolaccaceae), potential candidate for new antiherpetic phytomedicines. J. Ethnopharmacol. 2013, 2, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, K.; Balogun, S.O.; Pavan, E.; Almeida, G.V.B.; Oliveira, R.G.; Wagner, T.; Filho, V.C.; Martins, D.T.D.O. Chemical characterization, toxicology and mechanism of gastric antiulcer action of essential oil from Gallesia integrifolia (Spreng.) Harms in the in vitro and in vivo experimental models. Biomed. Pharmacother. 2017, 94, 292–306. [Google Scholar] [CrossRef]
- Arunachalam, K.; Ascêncio, S.D.; Soares, I.M.; Aguiar, R.W.S.; da Silva, L.I.; de Oliveira, R.G.; Balogun, S.O.; de Oliveira Martins, D.T. Gallesia integrifolia (Spreng.) Harms: In vitro and in vivo antibacterial activities and mode of action. J. Ethnopharmacol. 2016, 184, 128–137. [Google Scholar] [CrossRef]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of essential oils. Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Climate Data. Available online: https://pt.climate-data.org/america-do sul/brasil/parana/umuarama-43501/ (accessed on 29 May 2023).
- Latocha, P.; Łata, B.; Jankowski, P. Variation of chemical composition and antioxidant properties of kiwiberry (Actinidia arguta) in a three-year study. Molecules 2023, 28, 455. [Google Scholar] [CrossRef]
- Wang, Y.; Finn, C.; Qian, M.C. Impact of growing environment on Chickasaw blackberry (Rubus L.) aroma evaluated by gas chromatography olfactometry dilution analysis. J. Agric. Food Chem. 2005, 9, 3563–3571. [Google Scholar] [CrossRef]
- Fadel, H.H.M.; Maged, M.A.A.; Lofty, S.N. Quality and flavour stability of coffee substitute prepared by extrusion of wheat germ and chicory roots. Amino Acids 2006, 34, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Mahattanatawee, K.; Cacho, P.R.P.; Davenport, T.; Roussef, R. Comparison of three lychee cultivar odor profiles using gas chromatography− olfactometry and gas chromatography—Sulfur detection. J. Agric. Food Chem. 2007, 55, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wintersteen, C.L.; Cadwallader, K.R. Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. J. Agric. Food Chem. 2002, 50, 2016–2021. [Google Scholar] [CrossRef]
- Adams, R.P.; Elizondo, M.S.G.; Elizondo, M.G.; Slinkman, E. DNA fingerprinting and terpenoid analysis of Juniperus blancoi var. huehuentensis (Cupressaceae), a new subalpine variety from Durango, Mexico. Bioquim. Sist. Eco. 2006, 34, 205–211. [Google Scholar]
- Madruga, M.S.; Mottram, D.S. The effect of pH on the formation of volatile compounds produced by heating a model system containing 5′-Imp and cysteine. J. Braz. Chem. Soc. 1998, 9, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Bylaite, E.; Meyer, A.S. Characterisation of volatile aroma compounds of orange juices by three dynamic and static headspace gas chromatography techniques. Eur. Food Res. Technol. 2006, 222, 176–184. [Google Scholar] [CrossRef]
- Andriamaharavo, N.R. Retention Data; NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014; p. 17. [Google Scholar]
- Zhang, Y.; Ho, C.T. Volatile compounds formed from thermal interaction of 2, 4-decadienal with cysteine and glutathione. J. Agric. Food Chem. 1989, 37, 1016–1020. [Google Scholar] [CrossRef]
- Solina, M.; Baumgartner, P.; Johnson, R.; Whitfield, F.B. Volatile aroma components of soy protein isolate and acid-hydrolysed vegetable protein. Food Chem. 2005, 4, 861–873. [Google Scholar] [CrossRef]
- Ames, J.M.; Guy, R.C.; Kipping, G.J. Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking. J. Agric. Food Chem. 2001, 49, 1885–1894. [Google Scholar] [CrossRef]
- Chen, C.C.; Ho, C.T. Identification of sulfurous compounds of shiitake mushroom (Lentinus edodes Sing.). J. Agric. Food Chem. 1986, 34, 830–833. [Google Scholar] [CrossRef]
- Díaz, A.B.; Vera, J.R.; Fermin, L.R.; Méndez, A.M.; Zambrano, R.A.; Contreras, L.R. Composition of the essential oil of leaves and roots of Allium schoenoprasum L.(Alliaceae). Bol. Latinoam. Caribe Plantas Med. 2011, 10, 218–221. [Google Scholar]
- Frerot, E.; Velluz, A.; Bagnoud, A.; Delort, E. Analysis of the volatile constituents of cooked petai beans (Parkia speciosa) using high-resolution GC/TOF-MS. Flavour Fragr. J. 2008, 23, 434–440. [Google Scholar] [CrossRef]
- Muslim, N.S.; Ng, K.W.; Itam, A.; Nassar, Z.D.; Ismail, Z.; Abdul Majid, A.M.S. Evaluation of cytotoxic, anti-angiogenic and antioxidant properties of standardized extracts of Strobilanthes crispus leaves. Int. J. Pharmacol. 2010, 6, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Kostiainen, O. Gas Chromatography in Screening of Chemicals Related to the Chemical Weapons Convention. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley Sons Ltd.: Chichester, UK, 2000; pp. 963–979. [Google Scholar]
- Kelemen, C.D.; Houdkova, M.; Urbanova, K.; Badarau, S.; Gurean, D.; Pamfil, D.; Kokoska, L. Chemical composition of the essential oils of aerial parts of Aconitum, Anemone and Ranunculus (Ranunculaceae) species from Romania. J. Essent. Oil Bear. Plants 2019, 22, 728–745. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, L.; Antil, R.; Kumari, S.; Dahiya, P. GC-MS analysis and phytochemical screening of the methanolic extract of the fruit of Citrullus colocynthis (L.) Schrad. J. Pharmacogn. Phytochem. 2019, 8, 3360–3363. [Google Scholar]
- Lei, Y.; Wang, W.; Zhang, C.; Wang, D.; Zhuang, W.; Zheng, B.; Tian, Y. Evaluation of the chemical qualities and microstructural changes of Lentinula edodes caused by airborne ultrasonic treatment combined with microwave vacuum drying. J. Food Sci. 2021, 86, 667–676. [Google Scholar] [CrossRef]
- Epping, R.; Bliesener, L.; Weiss, T.; Koch, M. Marker substances in the aroma of truffles. Molecules 2022, 27, 5169. [Google Scholar] [CrossRef]
- Li, M.; Zhao, X.; Xu, M. Chemical composition, antimicrobial and antioxidant activity of essential oil from Allium tenuissimum L. flowers. Foods 2022, 11, 3876. [Google Scholar] [CrossRef]
- Mahmoud, N.M.; Rahma, E.H.; Osheba, A.S.; El-Bedawey, A.A.; Saad, M.M. Chemical components, antioxidant and antimicrobial activities of garlic, cumin and parsley volatile oils. Menoufia J. Food Dairy Sci. 2020, 5, 53–63. [Google Scholar]
- Morales-López, J.; Centeno-Álvarez, M.; Nieto-Camacho, A.; López, M.G.; Pérez-Hernández, E.; Pérez-Hernández, N.; Fernández-Martínez, E. Evaluation of antioxidant and hepatoprotective effects of white cabbage essential oil. Pharm. Biol. 2017, 55, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Danyliuk, I.; Kovalenko, N.; Tolmachova, V.; Kovtun, O.; Saliyeva, L.; Slyvka, N.; Vovk, M. Synthesis and antioxidant activity evaluation of some new 4-thiomethyl functionalised 1, 3-thiazoles. Curr. Chem. Lett. 2023, 12, 667–676. [Google Scholar] [CrossRef]
- Tarudji, A.W.; Gee, C.C.; Romereim, S.M.; Convertine, A.J.; Kievit, F.M. Antioxidant thioether core-crosslinked nanoparticles prevent the bilateral spread of secondary injury to protect spatial learning and memory in a controlled cortical impact mouse model of traumatic brain injury. Biomaterials 2021, 272, 120766. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.B.; Coelho, P.L.C.; das Neves Oliveira, M.; Oliveira, J.L.; Amparo, J.A.O.; da Silva, K.C.; Costa, S.L. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav. Immun. 2020, 85, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, A.A.; Başaran, E.; Şenel, B.; Demirel, M.; Sarıca, Ş. Synthesis, characterization, antioxidant activity of Quercetin, Rutin and Quercetin-Rutin incorporated β-cyclodextrin inclusion complexes and determination of their activity in NIH-3T3, MDA-MB-231 and A549 cell lines. J. Mol. Struct. 2023, 1282, 135169. [Google Scholar] [CrossRef]
- Tabolacci, E.; Tringali, G.; Nobile, V.; Duca, S.; Pizzoferrato, M.; Bottoni, P.; Clementi, M.E. Rutin Protects fibroblasts from UVA radiation through stimulation of Nrf2 pathway. Antioxidants 2023, 12, 820. [Google Scholar] [CrossRef]
- Shahbaz, M.; Imran, M.; Alsagaby, S.A.; Naeem, H.; Al Abdulmonem, W.; Hussain, M.; Awuchi, C.G. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int. J. Food Prop. 2023, 26, 1140–1166. [Google Scholar] [CrossRef]
- Kluska, M.; Juszczak, M.; Żuchowski, J.; Stochmal, A.; Woźniak, K. Effect of kaempferol and its glycoside derivatives on the antioxidant status of HL-60 cells treated with etoposide. Molecules 2022, 27, 333. [Google Scholar] [CrossRef]
- Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102117. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem. 2008, 56, 8404–8411. [Google Scholar] [CrossRef]
- Liu, R.H.; Finley, J. Potential cell culture models for antioxidant research. J. Agric. Food Chem. 2005, 53, 4311–4314. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, Q.; Zhou, X.; Wang, X.; Li, H.; Zhang, W.; Sun, C. Flavonoids regulate tumor-associated macrophages—From structure-activity relationship to clinical potential. Pharmacol. Res. 2022, 184, 106419. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Arias-santé, M.F.; Fuentes, J. the oxidation of quercetin and kaempferol markedly amplifies their antioxidant, cytoprotective and anti-inflammatory properties. Antioxidants 2023, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.U.; Gillberg, L.; Lykkesfeldt, J.; Grønbæk, K. The role of vitamin C in epigenetic cancer therapy. Free Radic. Biol. Med. 2021, 170, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Kupcova, K.; Stefanova, I.; Plavcova, S.; Hosek, J.; Hrouzek, P.; Kubec, R. Antimicrobial, cytotoxic, anti-inflammatory, and antioxidant activity of culinary processed Shiitake medicinal mushroom (Lentinus edodes, Agaricomycetes) and its major sulfur sensory-active compound − Lenthionine. Int. J. Med. Mushrooms 2018, 20, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Dombi, Á.; Santa, C.; Bátai, I.Z.; Kormos, V.; Kecskés, Â.; Tékus, V.; Pohóczky, K.; Bölcskei, K.; Pintér, E.; Pozsgai, G. Dimethyl trisulfide diminishes traumatic neuropathic pain acting on TRPA1 receptors in mice. Int. J. Mol. Sci. 2021, 22, 3363. [Google Scholar] [CrossRef]
- Fideles, S.O.M.; de Cássia Ortiz, A.; Buchaim, D.V.; de Souza Bastos Mazuqueli Pereira, E.; Parreira, M.J.B.M.; de Oliveira Rossi, J.; Cunha, M.R.; Souza, A.T.; Soares, W.C.; Buchaim, R.L. Influence of the neuroprotective properties of quercetin on regeneration and functional recovery of the nervous system. Antioxidants 2023, 12, 149. [Google Scholar] [CrossRef]
- Ozyel, B.; Le Gall, G.; Needs, P.W.; Kroon, P.A. Anti-inflammatory effects of quercetin on high-glucose and pro-inflammatory cytokine challenged vascular endothelial cell metabolism. Mol. Nutr. Food Res. 2021, 65, 2000777. [Google Scholar] [CrossRef]
- Bortolucci, W.C.; Oliveira, H.L.M.; Oliva, L.R.; Gonçalves, J.E.; Junior, R.P.; Fernandez, C.M.M.; Colauto, N.B.; Linde, G.A.; Gazim, Z.C. Crude extract of the tropical tree Gallesia integrifolia (Phytolaccaceae) for the control of Aedes aegypti (Diptera: Culicidae) larvae. Rev. Biol. Trop. 2021, 69, 153–169. [Google Scholar]
- BRASIL Brazilian Pharmacopoeia, 6th ed.; Brazilian Health Regulatory Agency SIA Ward 5: Anvisa, Brasil, 2019.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2017; pp. 544–545. [Google Scholar]
- De la Fuente, B.; Pinela, J.; Mandim, F.; Heleno, S.; Ferreira, I.C.; Barba, F.J.; Berrada, H.; Caleja, C.; Barros, L. Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chem. 2022, 386, 132778. [Google Scholar] [CrossRef]
- Souza, A.H.P.; Corrêa, R.C.G.; Barros, L.; Calhelha, R.C.; Santos-Buelga, C.; Peralta, R.M.; Bracht, A.; Matsushita, M.; Ferreira, I.C.F.R. Phytochemicals and bioactive properties of Ilex paraguariensis: An in-vitro comparative study between the whole plant, leaves and stems. Food Res. Int. 2015, 78, 286–294. [Google Scholar] [CrossRef]
Samples | Refractive Index | Specific Optical Rotation | Absolute Density (g/mL) | Yield (%) |
---|---|---|---|---|
Flowers | 1.6169 ± 0.0006 a | +8.28° ± 0.06 c | 1.30 ± 0.05 a | 0.452 ± 0.062 a |
Fruits | 1.6190 ± 0.01 a | +11.16° ± 0.1 b | 1.15 ± 0.13 a | 0.190 ± 0.023 b |
Leaves | 1.6075 ± 0.001 a | +12.65° ± 0.07 a | 1.12 ± 0.02 a | 0.049 ± 0.003 c |
Compounds | Theoretical Mass m/z | Experimental Mass m/z | RT (min) | Error (ppm) | Sample |
---|---|---|---|---|---|
Proline | 116.1011 [M+H] | 116.0703 | 0.78 | 2.58 | Flowers |
Isoleucine | 132.1019 [M+H] | 132.1015 | 0.94 | 3.03 | Flowers |
132.1014 | 0.93 | 3.04 | Fruits | ||
Esculentoside D | 695.4001 [M+H] | 695.3998 | 5.45 | 0.43 | Flowers |
695.3992 | 5.40 | 1.29 | Fruits | ||
695.3989 | 5.50 | 1.72 | Leaves | ||
Phytolaccoside E | 865.3982 [M+K] | 865.3608 | 4.04 | 43.21 | Flowers |
865.3616 | 4.08 | 43.19 | Fruits | ||
Phytolaccoside B | 703.3454 [M+K] | 703.3292 | 3.66 | 23.03 | Flowers |
703.3305 | 3.70 | 23.00 | Fruits | ||
Dipropyl disulfide | 149.0453 [M−H] | 149.0450 | 0.86 | 2.01 | Flowers |
149.0452 | 0.87 | 0.67 | Fruits | ||
Dibenzyl disulfide | 245.0453 [M−H] | 245.0514 | 1.51 | 24.89 | Flowers |
245.0514 | 1.49 | 24.89 | Fruits | ||
Rutin | 609.1455 [M−H] | 609.1440 | 4.28 | 2.46 | Flowers |
609.1433 | 4.27 | 3.61 | Fruits | ||
609.1439 | 4.37 | 2.63 | Leaves | ||
Quercimetrin | 463.0876 [M−H] | 463.0863 | 4.44 | 2.81 | Flowers |
Kaempferol 5-glucoside | 447.0927 [M−H] | 447.0916 | 4.61 | 2.46 | Flowers |
447.0915 | 4.54 | 2.68 | Fruits | ||
Isorhamnetin 7-glucoside | 477.1033 [M−H] | 477.1014 | 4.61 | 3.98 | Flowers |
477.1011 | 4.59 | 4.61 | Fruits | ||
Kaempferol-3-O-glucoside-7-O-rhamnoside | 593.1506 [M−H] | 593.1503 | 4.37 | 0.51 | Flowers |
593.1482 | 4.42 | 4.05 | Fruits | ||
Kaempferol | 285.0399 [M−H] | 285.0395 | 5.49 | 1.40 | Flowers |
285.0392 | 5.45 | 2.46 | Fruits | ||
Quercetin | 301.0348 [M−H] | 301.0347 | 5.17 | 0.33 | Flowers |
301.0339 | 5.14 | 2.98 | Fruits | ||
Ascorbic acid | 175.0237 [M−H] | 175.0240 | 2.28 | 1.71 | Flowers |
175.0236 | 2.26 | 0.57 | Fruits | ||
4-hydroxybenzoic acid | 137.0233 [M−H] | 137.0239 | 5.55 | 4.37 | Flowers |
137.0237 | 5.54 | 2.91 | Fruits |
Samples | Inhibition at the Maximum Concentration Tested (%) |
---|---|
Leaves EO | 82 b |
Fruits EO | 82 b |
Flowers EO | 69 e |
Leaves CE | 77 d |
Fruits CE | 81 c |
Flowers CE | 81 c |
Quercetin | 93 a |
Samples | AGS | IS | Caco-2 | IS | MCF-7 | IS | NCI-H460 | IS | Vero |
---|---|---|---|---|---|---|---|---|---|
Leaves EO | 204.00 ± 4.00 bE | 1.01 | 82.00 ± 3.00 aC | 2.52 | 200.00 ± 17.00 bC | 1.03 | 218.00 ± 12.00 bC | 0.94 | 207.00 ± 11.00 bC |
Fruits EO | 113.00 ± 11.00 aC | 2.00 | 88.00 ± 5.00 aC | 2.57 | 209.00 ± 16.00 bC | 1.08 | 221.00 ± 13.00 bC | 1.02 | 226.00 ± 21.00 bC |
Flowers EO | 178.0 ± 18.0 bD | 1.19 | 76.00 ± 5.00 aC | 2.79 | 230.0 ± 23.0 cC | 0.92 | 209.00 ± 11.00 bcC | 1.01 | 212.00 ± 9.00 bcC |
Leaves CE | 68.00 ± 4.00 aB | 2.53 | 51.00 ± 1.00 aB | 3.37 | 138.00 ± 9.00 bB | 1.24 | 222.00 ± 4.00 dC | 0.77 | 172.00 ± 15.00 cB |
Fruits CE | 70.00 ± 4.00 aB | 2.93 | 83.00 ± 2.00 aC | 2.46 | 193.00 ± 5.00 bC | 1.06 | 210.00 ± 8.00 cC | 1.25 | 202.00 ± 3.00 bcBC |
Flowers CE | 81.33 ± 2.31 aB | 2.52 | 144.00 ± 14.00 bD | 1.42 | 209.00 ± 8.00 cC | 0.98 | 164.00 ± 14.00 bB | 1.25 | 205.00 ± 14.00 cBC |
Ellipticine | 1.23 ± 0.030 bA | 1.15 | 1.21 ± 0.200 bA | 1.16 | 1.02 ± 0.02 aA | 1.38 | 1.010 ± 0.010 aA | 1.39 | 1.41 ± 0.06 aA |
Samples | IC50 (µg/mL) |
---|---|
Leaves EO | 54.00 ± 1.0 cb |
Fruits EO | 36.00 ± 3.00 b |
Flowers EO | 59.00 ± 4.00 c |
Leaves CE | 268.0 ± 21.00 d |
Fruits CE | 48.00 ± 2.00 cb |
Flowers CE | 51.00 ± 1.0 cb |
Dexamethasone | 6.300 ± 0.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.C.C.; Machado, M.d.A.; Sakumoto, K.; Inumaro, R.S.; Gonçalves, J.E.; Mandim, F.; Vaz, J.; do Valle, J.S.; Faria, M.G.I.; Ruiz, S.P.; et al. Cellular Antioxidant, Anti-Inflammatory, and Antiproliferative Activities from the Flowers, Leaves and Fruits of Gallesia integrifolia Spreng Harms. Molecules 2023, 28, 5406. https://doi.org/10.3390/molecules28145406
Silva GCC, Machado MdA, Sakumoto K, Inumaro RS, Gonçalves JE, Mandim F, Vaz J, do Valle JS, Faria MGI, Ruiz SP, et al. Cellular Antioxidant, Anti-Inflammatory, and Antiproliferative Activities from the Flowers, Leaves and Fruits of Gallesia integrifolia Spreng Harms. Molecules. 2023; 28(14):5406. https://doi.org/10.3390/molecules28145406
Chicago/Turabian StyleSilva, Gabriela Catuzo Canônico, Mariane de Almeida Machado, Karina Sakumoto, Rodrigo Sadao Inumaro, José Eduardo Gonçalves, Filipa Mandim, Josiana Vaz, Juliana Silveira do Valle, Maria Graciela Iecher Faria, Suelen Pereira Ruiz, and et al. 2023. "Cellular Antioxidant, Anti-Inflammatory, and Antiproliferative Activities from the Flowers, Leaves and Fruits of Gallesia integrifolia Spreng Harms" Molecules 28, no. 14: 5406. https://doi.org/10.3390/molecules28145406
APA StyleSilva, G. C. C., Machado, M. d. A., Sakumoto, K., Inumaro, R. S., Gonçalves, J. E., Mandim, F., Vaz, J., do Valle, J. S., Faria, M. G. I., Ruiz, S. P., Piau Junior, R., Gonçalves, D. D., & Gazim, Z. C. (2023). Cellular Antioxidant, Anti-Inflammatory, and Antiproliferative Activities from the Flowers, Leaves and Fruits of Gallesia integrifolia Spreng Harms. Molecules, 28(14), 5406. https://doi.org/10.3390/molecules28145406