Health Benefits, Antioxidant Activity, and Sensory Attributes of Selected Cold-Pressed Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Characteristics of Cold-Pressed Oils
2.1.1. Fatty Acid Compositions and Nutrient Values
2.1.2. Tocopherol Profiles
2.1.3. Sterol Profiles
2.1.4. Total Phenolic Content
2.1.5. Antioxidant Activity
2.2. Oxidative Stability and Quality of Cold-Pressed Oils
2.2.1. Oxidative Stability
2.2.2. Amounts of Primary and Secondary Oxidation Products and Free Fatty Acids
2.2.3. Water and Volatile Matter Contents
2.2.4. Polycyclic Aromatic Hydrocarbon Content
2.3. Relationships between Descriptive Attributes and Acceptance Test
2.4. Chemometrics Analysis
2.4.1. Principal Component Analysis
2.4.2. Hierarchical Cluster Analysis
2.4.3. Correlation Analysis
3. Materials and Methods
3.1. Reagents and Samples
3.2. Determination of Fatty Acid Compositions
3.3. Calculated Oxidisability (COX) Value and Nutritional Quality Indexes
3.4. Determination of Tocopherol Compositions
3.5. Determination of Sterol Compositions
3.6. Determination of Total Phenolic Content and Antioxidant Activity
3.7. Determination of Oxidative Stability
3.8. Determination of Water and Volatile Matter Contents
3.9. Determination of Polycyclic Aromatic Hydrocarbons
3.10. Hedonic Consumer Test
3.11. Sensory Profiling
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Codex Alimentarius. Codex Standard for Named Vegetable Oils. Codex-Stan 210-1999. Available online: https://tinyurl.com/46s68uzu (accessed on 25 April 2023).
- Bendini, A.; Barbieri, S.; Valli, E.; Buchecker, K.; Canavari, M.; Toschi, T.G. Quality Evaluation of Cold Pressed Sunflower Oils by Sensory and Chemical Analysis. Eur. J. Lipid Sci. Technol. 2011, 113, 1375–1384. [Google Scholar] [CrossRef]
- Redondo-Cuevas, L.; Castellano, G.; Torrens, F.; Raikos, V. Revealing the Relationship between Vegetable Oil Composition and Oxidative Stability: A Multifactorial Approach. J. Food Compos. Anal. 2018, 66, 221–229. [Google Scholar] [CrossRef]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Prescha, A.; Grajzer, M.; Dedyk, M.; Grajeta, H. The Antioxidant Activity and Oxidative Stability of Cold-Pressed Oils. J. Am. Oil Chem. Soc. 2014, 91, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Wroniak, M.; Raczyk, M.; Kruszewski, B.; Symoniuk, E.; Dach, D. Effect of Deep Frying of Potatoes and Tofu on Thermo-Oxidative Changes of Cold Pressed Rapeseed Oil, Cold Pressed High Oleic Rapeseed Oil and Palm Olein. Antioxidants 2021, 10, 1637. [Google Scholar] [CrossRef] [PubMed]
- Tauferova, A.; Dordevic, D.; Jancikova, S.; Tremlova, B.; Kulawik, P. Fortified Cold-Pressed Oils: The Effect on Sensory Quality and Functional Properties. Separations 2021, 8, 55. [Google Scholar] [CrossRef]
- Momot, M.; Stawicka, B.; Szydłowska-Czerniak, A. Physicochemical Properties and Sensory Attributes of Cold-Pressed Camelina Oils from the Polish Retail Market. Appl. Sci. 2023, 13, 1924. [Google Scholar] [CrossRef]
- Kachel, M.; Krajewska, M.; Stryjecka, M.; Ślusarczyk, L.; Matwijczuk, A.; Rudy, S.; Domin, M. Comparative Analysis of Phytochemicals and Antioxidant Properties of Borage Oil (Borago officinalis L.) and Milk Thistle (Silybum marianum Gaertn). Appl. Sci. 2023, 13, 2560. [Google Scholar] [CrossRef]
- Kasote, D.M.; Badhe, Y.S.; Hegde, M.V. Effect of Mechanical Press Oil Extraction Processing on Quality of Linseed Oil. Ind. Crops Prod. 2013, 42, 10–13. [Google Scholar] [CrossRef]
- Šamec, D.; Loizzo, M.R.; Gortzi, O.; Çankaya, İ.T.; Tundis, R.; Suntar, İ.; Shirooie, S.; Zengin, G.; Devkota, H.P.; Reboredo-Rodríguez, P.; et al. The Potential of Pumpkin Seed Oil as a Functional Food—A Comprehensive Review of Chemical Composition, Health Benefits, and Safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4422–4446. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed Crop Sunflower (Helianthus annuus) as a Source of Food: Nutritional and Health Benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- Chew, S.C. Cold-Pressed Rapeseed (Brassica napus) Oil: Chemistry and Functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef]
- Czwartkowski, K.; Wierzbic, A.; Golimowski, W. Quality, Key Production Factors, and Consumption Volume of Niche Edible Oils Marketed in the European Union. Sustainability 2022, 14, 1846. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Momot, M.; Stawicka, B.; Rabiej-Kozioł, D. Effects of the Chemical Composition on the Antioxidant and Sensory Characteristics and Oxidative Stability of Cold-Pressed Black Cumin Oils. Antioxidants 2022, 11, 1556. [Google Scholar] [CrossRef] [PubMed]
- McDowell, D.; Elliott, C.T.; Koidis, A. Characterization and Comparison of UK, Irish, and French Cold Pressed Rapeseed Oils with Refined Rapeseed Oils and Extra Virgin Olive Oils. Eur. J. Lipid Sci. Technol. 2017, 119, 1600327. [Google Scholar] [CrossRef]
- Bou Fakhreddine, L.; Sánchez, M. The Interplay between Health Claims and Sensory Attributes in Determining Consumers’ Purchase Intentions for Extra Virgin Olive Oil. Food Qual. Prefer. 2023, 106, 104819. [Google Scholar] [CrossRef]
- Brühl, L.; Matthäus, B.; Scheipers, A.; Hofmann, T. Bitter Off-Taste in Stored Cold-Pressed Linseed Oil Obtained from Different Varieties. Eur. J. Lipid Sci. Technol. 2008, 110, 625–631. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Olmo-García, L.; Fernández-Sánchez, J.F.; Carrasco-Pancorbo, A. Polycyclic Aromatic Hydrocarbons in Edible Oils: An Overview on Sample Preparation, Determination Strategies, and Relative Abundance of Prevalent Compounds. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3528–3573. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Ostrowska-Ligęza, E.; Krygier, K. Impact of Selected Chemical Characteristics of Cold-Pressed Oils on Their Oxidative Stability Determined Using the Rancimat and Pressure Differential Scanning Calorimetry Method. Food Anal. Methods 2018, 11, 1095–1104. [Google Scholar] [CrossRef]
- Gharby, S.; Oubannin, S.; Ait Bouzid, H.; Bijla, L.; Ibourki, M.; Gagour, J.; Koubachi, J.; Sakar, E.H.; Majourhat, K.; Lee, L.-H.; et al. An Overview on the Use of Extracts from Medicinal and Aromatic Plants to Improve Nutritional Value and Oxidative Stability of Vegetable Oils. Foods 2022, 11, 3258. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M.; et al. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Symoniuk, E.; Wroniak, M.; Napiórkowska, K.; Brzezińska, R.; Ratusz, K. Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils and Oils Mixtures. Foods 2022, 11, 1597. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Krygier, K. Comparison of the Oxidative Stability of Cold-Pressed Rapeseed Oil Using Pressure Differential Scanning Calorimetry and Rancimat Methods. Eur. J. Lipid Sci. Technol. 2017, 119, 1600182. [Google Scholar] [CrossRef]
- Choo, W.-S.; Birch, J.; Dufour, J.-P. Physicochemical and Quality Characteristics of Cold-Pressed Flaxseed Oils. J. Food Compos. Anal. 2007, 20, 202–211. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Krygier, K. Oxidative Stability and the Chemical Composition of Market Cold-pressed Linseed Oil. Eur. J. Lipid Sci. Technol. 2017, 119, 1700055. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Khalili Tilami, S.; Kouřimská, L. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 2022, 14, 3795. [Google Scholar] [CrossRef] [PubMed]
- Rokosik, E.; Dwiecki, K.; Siger, A. Nutritional Quality and Phytochemical Contents of Cold Pressed Oil Obtained from Chia, Milk Thistle, Nigella, and White and Black Poppy Seeds. Grasas Aceites 2020, 71, 368. [Google Scholar] [CrossRef]
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-Pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef]
- Franke, S.; Fröhlich, K.; Werner, S.; Böhm, V.; Schöne, F. Analysis of Carotenoids and Vitamin E in Selected Oilseeds, Press Cakes and Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1122–1129. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Sikorska, E.; Khmelinskii, I.; Sikorski, M. Tocopherol Content in Edible Plant Oils. Pol. J. Food Nutr. Sci. 2007, 57, 157–161. [Google Scholar]
- Abramovič, H.; Butinar, B.; Nikolič, V. Changes Occurring in Phenolic Content, Tocopherol Composition and Oxidative Stability of Camelina Sativa Oil during Storage. Food Chem. 2007, 104, 903–909. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, H.O.; Min, D.B. Effects and Prooxidant Mechanisms of Oxidized α-Tocopherol on the Oxidative Stability of Soybean Oil. J. Food Sci. 2007, 72, C223–C230. [Google Scholar] [CrossRef] [PubMed]
- Aksoz, E.; Korkut, O.; Aksit, D.; Gokbulut, C. Vitamin E (α-, β + γ- and δ-tocopherol) Levels in Plant Oils. Flavour Fragr. J. 2020, 35, 504–510. [Google Scholar] [CrossRef]
- Office of Dietary Supplements—Vitamin, E. Available online: https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/ (accessed on 30 April 2023).
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.-L.; Wang, T.; Inglett, G.E. Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed]
- Murkovic, M.; Pfannhauser, W. Stability of Pumpkin Seed Oil. Eur. J. Lipid Sci. Technol. 2000, 102, 607–611. [Google Scholar] [CrossRef]
- Evans, J.C.; Kodali, D.R.; Addis, P.B. Optimal Tocopherol Concentrations to Inhibit Soybean Oil Oxidation. J. Am. Oil Chem. Soc. 2002, 79, 47–51. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Aksoylu Özbek, Z.; Günç Ergönül, P. Cold Pressed Pumpkin Seed Oil. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 219–229. [Google Scholar]
- Szterk, A.; Roszko, M.; Sosińska, E.; Derewiaka, D.; Lewicki, P.P. Chemical Composition and Oxidative Stability of Selected Plant Oils. J. Am. Oil Chem. Soc. 2010, 87, 637–645. [Google Scholar] [CrossRef]
- Sakar, E.H.; Khtira, A.; Aalam, Z.; Zeroual, A.; Gagour, J.; Gharby, S. Variations in Physicochemical Characteristics of Olive Oil (cv ‘Moroccan Picholine’) According to Extraction Technology as Revealed by Multivariate Analysis. AgriEngineering 2022, 4, 922–938. [Google Scholar] [CrossRef]
- Krygier, K.; Wroniak, M.; Dobczyński, K.; Kiełt, I.; Grześkiewicz, S.; Obiedziński, M. Characteristic of Commercial Cold Pressed Vegetable Oils. Rośliny Oleiste 1998, 19, 573–582. [Google Scholar]
- Mikołajczak, N.; Tańska, M. Effect of Initial Quality and Bioactive Compounds Content in Cold-Pressed Flaxseed Oils on Oxidative Stability and Oxidation Products Formation during One-Month Storage with Light Exposure. NFS J. 2022, 26, 10–21. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent Effects on the Antioxidant Capacity of Lipophilic and Hydrophilic Antioxidants Measured by CUPRAC, ABTS/Persulphate and FRAP Methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Upadhyay, R.; Mahato, D.K.; Mishra, H.N. Kinetics of Lipid Oxidation in Omega Fatty Acids Rich Blends of Sunflower and Sesame Oils Using Rancimat. Food Chem. 2019, 272, 471–477. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Quality of Cold-Pressed Edible Rapeseed Oil in Germany. Nahrung/Food 2003, 47, 413–419. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of Fatty Acids and Tocopherols on the Oxidative Stability of Vegetable Oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar] [CrossRef]
- Meddeb, W.; Rezig, L.; Abderrabba, M.; Lizard, G.; Mejri, M. Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils. Int. J. Mol. Sci. 2017, 18, 2582. [Google Scholar] [CrossRef]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Che Man, Y.B. Physicochemical Properties and Bioactive Compounds of Selected Seed Oils. LWT—Food Sci. Technol. 2009, 42, 1396–1403. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Vieira, S.A.; Zhang, G.; Decker, E.A. Biological Implications of Lipid Oxidation Products. J. Am. Oil Chem. Soc. 2017, 94, 339–351. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 835/2011 of 19 August 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in FoodstuffsText with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R0835 (accessed on 30 April 2023).
- Wroniak, M.; Rękas, A. A Preliminary Study of PCBs, PAHs, Pesticides and Trace Metals Contamination in Cold-Pressed Rapeseed Oils from Conventional and Ecological Cultivations. J. Food Sci. Technol. 2017, 54, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Roszko, M.; Szterk, A.; Szymczyk, K.; Waszkiewicz-Robak, B. PAHs, PCBs, PBDEs and Pesticides in Cold-Pressed Vegetable Oils. J. Am. Oil Chem. Soc. 2012, 89, 389–400. [Google Scholar] [CrossRef]
- ISO 5508:1996; Animal and Vegetable Fats and Oils-Analysis by Gas Chromatography of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland,, 1996.
- ISO 5509:2000; Animal and Vegetable Fats and Oils-Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2000.
- Fatemi, S.H.; Hammond, E.G. Analysis of Oleate, Linoleate and Linolenate Hydroperoxides in Oxidized Ester Mixtures. Lipids 1980, 15, 379–385. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Mendes, I.A.; Portugal, P.V.; Bessa, R.J.B. Effect of Particle Size and Soybean Oil Supplementation on Growth Performance, Carcass and Meat Quality and Fatty Acid Composition of Intramuscular Lipids of Lambs. Livest. Prod. Sci. 2004, 90, 79–88. [Google Scholar] [CrossRef]
- ISO 9936:2016; Animal and Vegetable Fats and Oils-Determination of Tocopherol and Tocotrienol Contents by High Performance Liquid Chromatography. ISO: Geneva, Switzerland, 2016.
- ISO 12228-1:2014; Animal and Vegetable Fats and Oils-Determination of Individual and Total Sterols Contents-Gas Chromatographic Method-Part 1. ISO: Geneva, Switzerland, 2014.
- Szydłowska-Czerniak, A.; Łaszewska, A. Effect of Refining Process on Antioxidant Capacity, Total Phenolics and Prooxidants Contents in Rapeseed Oils. LWT—Food Sci. Technol. 2015, 64, 853–859. [Google Scholar] [CrossRef]
- AOCS. Official Method Cd 12b-92: Oil stability index. In Official Method and Recommended Practices of the American Oil Chemist’s Society; AOCS Publishing: Champaing, IL, USA, 2017. [Google Scholar]
- ISO 27107:2010; Animal and Vegetable Fats and Oils-Determination of Peroxide Value-Potentiometric End-Point Determination. ISO: Geneva, Switzerland, 2010.
- ISO 6885:2016; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO: 662:2016; Animal and Vegetable Fats and Oils—Determination of Moisture and Volatile Matter Content. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 8589:2007; Sensory analysis—General guidance for the design of test rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
Fatty Acid (%) | Oil Sample | |||||
---|---|---|---|---|---|---|
CPLO | CPPO | CPMTO | CPRO | CPCO | CPSO | |
C16:0 | 5.93 ± 0.19 c | 12.41 ± 0.13 f | 8.37 ± 0.08 e | 4.63 ± 0.03 a | 5.41 ± 0.13 b | 6.58 ± 0.06 d |
C18:0 | 5.44 ± 0.19 d | 5.90 ± 0.11 e | 5.45 ± 0.21 d | 1.61 ± 0.06 a | 2.38 ± 0.07 b | 3.52 ± 0.17 c |
C20:0 | 0.22 ± 0.01 a | 0.41 ± 0.01 b | 2.90 ± 0.04 e | 0.57 ± 0.01 c | 1.62 ± 0.02 d | 0.20 ± 0.00 a |
C22:0 | 0.04 ± 0.00 a | 0.10 ± 0.00 b,c | 1.91 ± 0.33 e | 0.31 ± 0.00 c | 0.31 ± 0.00 c | 0.70 ± 0.00 d |
C24:0 | <DL | 0.10 ± 0.00 a | 0.90 ± 0.00 c | <DL | <DL | 0.20 ± 0.00 b |
ΣSFA | 11.63 | 18.92 | 19.53 | 7.12 | 9.72 | 11.20 |
C16:1 | 0.07 ± 0.00 a | 0.10 ± 0.00 b | 0.10 ± 0.00 b | 0.18 ± 0.01 c | 0.10 ± 0.00 b | 0.10 ± 0.00 b |
C18:1 | 19.85 ± 0.18 b | 30.40 ± 0.26 d | 24.69 ± 0.13 c | 63.26 ± 0.06 e | 18.11 ± 0.21 a | 30.64 ± 0.54 d |
C20:1 | 0.13 ± 0.00 a | 0.10 ± 0.00 a | 0.90 ± 0.00 b | 1.28 ± 0.02 c | 14.43 ± 0.19 d | 0.10 ± 0.00 a |
C22:1 | <DL | 0.10 ± 0.00 a | <DL | 0.11 ± 0.00 a | 2.69 ± 0.13 b | <DL |
ΣMUFA | 20.05 | 30.70 | 25.69 | 64.83 | 35.33 | 30.84 |
C18:2 | 16.30 ± 0.11 a | 50.39 ± 0.36 d | 56.46 ± 0.06 e | 19.82 ± 0.09 c | 19.38 ± 0.20 b | 57.64 ± 0.08 f |
C18:3 | 52.12 ± 0.28 d | 0.20 ± 0.00 a | 0.30 ± 0.00 a | 8.12 ± 0.14 b | 30.29 ± 0.21 c | 0.10 ± 0.00 a |
ΣPUFA | 68.42 | 50.59 | 56.76 | 27.94 | 49.67 | 57.74 |
COX | 13.14 | 5.54 | 6.13 | 4.43 | 8.72 | 6.26 |
AI | 0.06 | 0.08 | 0.07 | 0.02 | 0.03 | 0.04 |
TI | 0.06 | 0.45 | 0.33 | 0.09 | 0.07 | 0.23 |
HH | 14.79 | 6.47 | 9.62 | 19.53 | 12.30 | 13.23 |
Tocopherol Content (mg/100 g) | Oil Sample | |||||
---|---|---|---|---|---|---|
CPLO | CPPO | CPMTO | CPRO | CPCO | CPSO | |
α-Tocopherol | 1.78 ± 0.02 a | 7.49 ± 0.34 b | 38.91 ± 0.67 d | 27.00 ± 1.18 c | 1.20 ± 0.04 a | 73.37 ± 2.61 e |
β-Tocopherol | <DL | <DL | 2.84 ± 0.08 b | <DL | <DL | 2.56 ± 0.04 a |
γ-Tocopherol | 42.26 ± 1.02 b | 56.96 ± 0.55 c | 4.34 ± 0.20 a | 42.11 ± 0.74 b | 74.27 ± 1.85 d | <DL |
δ-Tocopherol | <DL | <DL | <DL | 1.10 ± 0.05 a | 1.51 ± 0.03 b | <DL |
TTC | 44.04 ± 1.04 a | 64.45 ± 0.50 b | 46.09 ± 0.57 a | 70.21 ± 1.04 c | 76.98 ± 1.78 d | 75.93 ± 2.57 d |
Sterol (mg/100 g) | Oil Sample | |||||
---|---|---|---|---|---|---|
CPLO | CPPO | CPMTO | CPRO | CPCO | CPSO | |
Cholesterol | 1 ± 0 a,b | 1 ± 0 a,b | 46 ± 1 d | 2 ± 0 b | 26 ± 1 c | <DL |
Brassicasterol | 3 ± 0 b | <DL | 1 ± 0 a,b | 73 ± 3 d | 22 ± 1 c | <DL |
∆-5-Avenasterol | 44 ± 2 e | 8 ± 0 a | 10 ± 0 b | 10 ± 0 b | 35 ± 1 d | 15 ± 1 c |
β-Sitosterol | 166 ± 5 a | 182 ± 10 b | 192 ± 3 b | 336 ± 19 e | 265 ± 5 d | 218 ± 4 c |
∆-7-Avenasterol | 1 ± 0 a | 57 ± 2 d | 21 ± 1 c | <DL | <DL | 16 ± 1 b |
∆-7-Stigmasterol | 5 ± 0 a | 21 ± 2 b | 141 ± 4 d | 2 ± 0 a | 4 ± 0 a | 61 ± 3 c |
Stigmasterol | 27 ± 1 c | 2 ± 0 a | 37 ± 1 d | 3 ± 0 a | 9 ± 0 b | 26 ± 1 c |
Campesterol | 80 ± 2 c | 7 ± 0 a | 30 ± 1 b | 249 ± 2 e | 110 ± 3 d | 32 ± 1 b |
Unidentified steroles | 8 ± 1 a | 22 ± 1 d | 31 ± 1 e | 9 ± 0 b | 8 ± 1 a | 15 ± 1 c |
TSC | 335 ± 7 b | 300 ± 10 a | 509 ± 4 e | 684 ± 13 f | 479 ± 6 d | 383 ± 6 c |
Oil Sample | Total Phenolic Content (mg GA/100 g) | Antioxidant Activity (μmol TE/100 g) | ||
---|---|---|---|---|
TPC | DPPH | ABTS | FRAP | |
CPLO | 2.93 ± 0.20 a | 185.36 ± 7.62 a | 1040.86 ± 41.69 b | 78.63 ± 1.64 b |
CPPO | 8.32 ± 0.12 e | 396.63 ± 12.69 d | 1638.58 ± 16.94 d | 119.21 ± 3.49 d |
CPMTO | 5.42 ± 0.12 d | 234.65 ± 9.85 b | 958.59 ± 44.52 a | 61.93 ± 2.56 a |
CPRO | 4.93 ± 0.11 c | 293.10 ± 10.67 c | 1328.00 ± 59.57 c | 99.67 ± 1.48 c |
CPCO | 4.17 ± 0.23 b | 396.04 ± 11.45 d | 1367.50 ± 16.94 c | 75.80 ± 1.95 b |
CPSO | 5.25 ± 0.15 c,d | 241.06 ± 12.86 b | 1085.10 ± 17.83 b | 62.22 ± 2.59 a |
Parameter | Oil Sample | |||||
---|---|---|---|---|---|---|
CPLO | CPPO | CPMTO | CPRO | CPCO | CPSO | |
IP (h) | 4.87 ± 0.21 a | 9.47 ± 0.25 c | 9.03 ± 0.42 c | 12.93 ± 0.15 d | 5.37 ± 0.23 b | 9.23 ± 0.25 c |
PV (meq O2/kg) | 0.61 ± 0.02 c | 2.44 ± 0.06 d | 2.88 ± 0.14 e | 0.42 ± 0.02 b | 0.24 ± 0.01 a | 4.61 ± 0.11 f |
pAnV (-) | 0.39 ± 0.02 a | 4.77 ± 0.09 f | 0.66 ± 0.07 b | 0.88 ± 0.06 d | 1.88 ± 0.16 e | 0.79 ± 0.07 c |
TOTOX | 1.61 | 9.65 | 6.42 | 1.72 | 2.36 | 10.01 |
AV (mg KOH/g) | 0.37 ± 0.01 a | 1.55 ± 0.02 d | 2.83 ± 0.03 e | 0.42 ± 0.02 b | 0.31 ± 0.08 a | 1.16 ± 0.02 c |
FFA (%) | 0.18 ± 0.01 a | 0.77 ± 0.01 d | 1.42 ± 0.02 e | 0.23 ± 0.01 b | 0.15 ± 0.04 a | 0.58 ± 0.01 c |
WVC (%) | 0.085 ± 0.002 e | 0.030 ± 0.000 b | 0.090 ± 0.000 f | 0.045 ± 0.001 c | 0.059 ± 0.002 d | 0.020 ± 0.000 a |
B(a)P (µg/kg) | 0.41 ± 0.01 c | 0.82 ± 0.02 e | 0.32 ± 0.01 b | 0.81 ± 0.02 e | 0.20 ± 0.01 a | 0.48 ± 0.02 d |
Chry (µg/kg) | 0.76 ± 0.02 d | 0.54 ± 0.03 c | 0.83 ± 0.03 e | 0.28 ± 0.01 b | 0.21 ± 0.01 a | 0.54 ± 0.03 c |
B(a)A (µg/kg) | 7.16 ± 0.05 f | 0.84 ± 0.01 c | 0.75 ± 0.03 b | 2.12 ± 0.03 e | 0.51 ± 0.02 a | 1.28 ± 0.06 d |
B(b)F (µg/kg | 0.43 ± 0.02 d | 0.19 ± 0.01 a | 0.22 ± 0.01 b | 0.60 ± 0.02 e | 0.24 ± 0.01 b | 0.28 ± 0.01 c |
∑4PAHs (µg/kg) | 8.76 | 2.39 | 2.12 | 3.81 | 1.16 | 2.58 |
Sensory Attributes | Description |
---|---|
OFI | The intensity of all flavour and taste attributes taken together |
Sweet taste | The basic taste simulated by sugar |
Bitter taste | The basic taste elicited by quinine and caffeine |
Herbs-like flavour | The flavour reminiscent of herbs |
Cabbage-like flavour | The flavour associated with asparagus, cabbage, or fresh green vegetables |
Seed-like flavour | The flavour associated with fresh seeds |
Mustard-like flavour | The flavour associated with mustard, onion, and spiciness |
Nutty flavour | The flavour associated with fresh nuts |
Roasted flavour | The flavour associated with roasted oils |
Wood-like flavour | The flavour associated with fresh, dry, cut wood |
Medicine-like flavour | The flavour reminiscent of medicine, hospital, and pharmacy |
Persistence | How long do flavour sensations remain as aftertaste |
Astringency | The shrinking or drying effect on the tongue surface elicited by tannins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiej-Kozioł, D.; Momot-Ruppert, M.; Stawicka, B.; Szydłowska-Czerniak, A. Health Benefits, Antioxidant Activity, and Sensory Attributes of Selected Cold-Pressed Oils. Molecules 2023, 28, 5484. https://doi.org/10.3390/molecules28145484
Rabiej-Kozioł D, Momot-Ruppert M, Stawicka B, Szydłowska-Czerniak A. Health Benefits, Antioxidant Activity, and Sensory Attributes of Selected Cold-Pressed Oils. Molecules. 2023; 28(14):5484. https://doi.org/10.3390/molecules28145484
Chicago/Turabian StyleRabiej-Kozioł, Dobrochna, Monika Momot-Ruppert, Barbara Stawicka, and Aleksandra Szydłowska-Czerniak. 2023. "Health Benefits, Antioxidant Activity, and Sensory Attributes of Selected Cold-Pressed Oils" Molecules 28, no. 14: 5484. https://doi.org/10.3390/molecules28145484
APA StyleRabiej-Kozioł, D., Momot-Ruppert, M., Stawicka, B., & Szydłowska-Czerniak, A. (2023). Health Benefits, Antioxidant Activity, and Sensory Attributes of Selected Cold-Pressed Oils. Molecules, 28(14), 5484. https://doi.org/10.3390/molecules28145484