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Abstract: We report a computational study of the potential energy surface (PES) and vibrational
bound states for the ground electronic state of Li+2 Kr. The PES was calculated in Jacobi coordinates
at the Restricted Coupled Cluster method RCCSD(T) level of calculation and using aug-cc-pVnZ
(n = 4 and 5) basis sets. Afterward, this PES is extrapolated to the complete basis set (CBS) limit
for correction. The obtained interaction energies were, then, interpolated numerically using the
reproducing kernel Hilbert space polynomial (RKHS) approach to produce analytic expressions
for the 2D-PES. The analytical PES is used to solve the nuclear Schrodinger equation to determine
the bound states’ eigenvalues of Li+2 Kr for a J = 0 total angular momentum configuration and
to understand the effects of orientational anisotropy of the forces and the interplay between the
repulsive and attractive interaction within the potential surface. In addition, the radial and angular
distributions of some selected bound state levels, which lie below, around, and above the T-shaped
90◦ barrier well, are calculated and discussed. We note that the radial distributions clearly acquire
a more complicated nodal structure and correspond to bending and stretching vibrational motions
“mode” of the Kr atom along the radial coordinate, and the situation becomes very different at the
highest bound states levels with energies higher than the T-shaped 90◦ barrier well. The shape of the
distributions becomes even more complicated, with extended angular distributions and prominent
differences between even and odd states.

Keywords: RCCSD(T) method; RKHS interpolation; vibrational quantum bound states; radial and
angular distributions

1. Introduction

Over the past few decades, rare gas media and matrices have attracted great attention
as fascinating environments for investigating the spectroscopy, structure, and dynamics
embedded inside or deposited on their surfaces. Rare gas atoms are renowned as non-
reactive solvents [1–3] and provide a model system for both theoretical and experimental
investigations involving a large number of atoms, representing a high degree of freedom.
Furthermore, as their condensates exhibit transparency across a broad range of radiation
energies, inert gas matrices offer the advantage of selectively exciting chromophores em-
bedded within them. Considering the case of alkali atoms, these matrices have proven
useful in studying the spectroscopy, photo-association, and optical absorption spectra of
alkali atoms [2,4,5]. Matrix isolation spectroscopy (MIS) is a widely utilized technique
in various research fields, particularly for investigating alkali atoms in solid matrices of
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noble gases at cryogenic temperatures [6], as well as studying the high-spin states of alkali
molecules [7–10].

The exceptional characteristics of rare gas atoms, combined with the growing interest
in studying alkali atoms following the observation of the photo-association of cold alkali
atoms and their Bose–Einstein condensation [4], have made the interaction between alkali
atoms and rare gas atoms a prominent research theme in numerous studies. Notably,
both experimental and theoretical works [4,11–29] have been dedicated to exploring the
interaction between alkali neutral/ionic dimers and rare gas atoms. The primary focus of
these studies is calculating the potential energy surfaces (PES) of dimers with a single rare
gas atom. Subsequently, these surfaces are fitted with suitable analytical forms, which are
then utilized for dynamic studies such as bound state calculations, as well as for structural
investigations, such as the geometric minimization of large-sized clusters to examine the
micro-solvation of the embedded dimers.

From an experimental perspective, recent work by Kristensen et al. [21] introduced the
use of Coulomb explosion induced by an intense fs laser pulse as a means of studying alkali
dimers (Rb2, Li2, Na2 and K2) on He droplets. They demonstrated that Coulomb explosion
enables the determination, within a single measurement, of whether alkali dimers, Ak2,
on the surface of He nanodroplets, are formed in either the X1 ∑+

g ground state or in the
lowest-lying triplet state a3 ∑+

u . Fuchs et al. [19] experimentally investigated the collisional
cross-sections of lithium dimer Li2 in selected vibrational states with He and Kr atoms.
An der Lan et al. [13] presented high-resolution mass spectra of Na+Hen, K+Hen, Na+2 Hen
and K+

2 Hen, formed via the electronionization of doped helium droplets. They observed
two distinct anomalies in Na+2 Hen clusters at n = 2 and n = 6.

On the theoretical side, Guillon et al. [11] recently performed diffusion and path inte-
gral quantum Monte Carlo studies of the rubidium dimer in its ground triplet state in a
helium environment [11]. The focus of their work was the influence of helium atoms on
the rotational motion of the Rb2 dimer. Alharzali et al. [12,22], Bodo et al. [17,23,29], and
Marinetti et al. [26] focused on the structure and dynamic properties of cationic dimers
( Li+2 , Na+2 and K+

2
)

interacting with helium atoms using RCCSDT and Post Hartree–Fock
approaches. They found that for all three species, the helium atom preferred linear
attachment to the cationic dimer rather than a T-shaped configuration. In the case of
larger clusters, they observed the solvation of cationic dimers within the helium clusters.
Douady et al. [20] investigated the solvation of ionic sodium dimers in argon clusters. They
confirmed that the cationic dimer enters the clusters rather than resides at the surface. This
behavior is attributed to the relatively strong interaction between the closed-shell neon
atoms and the cationic dimer. Zanuttini et al. [15] employed a pseudopotential technique
and molecular dynamics with a surface hopping approach to investigate the structure and
optical absorption of Li+2 , Na+2 , and K+

2 alkali dimers in neon clusters. They concluded that
the modification of the PES by surrounding neon atoms indicated the strong confinement of
the lowest energy states of the three cationic dimers. Saidi et al. [18] explored the structure
and stability of the lithium dimer with xenon atoms, while Ghanmi et al. [25] performed a
structural, energetic, and spectroscopic study of the potassium cationic dimer interacting
with rare gas atoms, such as Ar, Kr, and Xe.

In this paper, we present a computational investigation of the structure and dynamics
of the lithium cationic Li+2 dimer interacting with a Kr atom. Section 3 provides an overview
of the computational method details employed in this study, including the basis sets and
extrapolation schemes used to calculate the interaction energies of the Li+2 Kr complex. This
potential energy surface is, then, employed in the calculation of bound state levels after
being reproduced via the RKHS method [30]. The results are presented and discussed in
Section 2. The used methodologies are detailed in Section 3.

2. Results and Discussion

The resulting interaction energies were employed to calculate the spectroscopic con-
stants Re and De for each configuration corresponding to angles ranging from 0◦ to 90◦.
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The found equilibrium distances (Re) and the well depths (De) for the Li+2 Kr using the
RCCSD(T) method and different basis are summarized in Table 1.

Table 1. Equilibrium distance (Re) and the well depth (De ) for the Li+2 Kr using the RCCSD(T)
method and different basis sets. Re are in Å and De in cm−1.

Basis Set AVQZ AV5Z CBS[Q5]

θ (◦) Re De Re De Re De

0 4.22 1730 4.17 1737 4.17 1745

10 4.14 1715 4.13 1722 4.13 1730

20 4.01 1698 4.01 1706 4.01 1715

30 3.88 1564 3.87 1572 3.87 1580

40 3.69 1391 3.68 1400 3.68 1408

50 3.52 1122 3.51 1130 3.51 1139

60 3.45 775 3.45 783 3.44 791

70 3.61 479 3.60 485 3.59 492

80 3.85 340 3.83 346 3.82 353

90 3.93 304 3.92 310 3.90 317

From Table 1, it can be observed that the well depth of the Li+2 Kr complex at all geome-
tries increases when moving from AVQZ to CBS[Q5]. Taken the example of their collinear
arrangement ( θ = 0◦) De varies from 1730 cm−1 to 1737 cm−1 for the RCCSD(T)/AVQZ
and RCCSD(T)/AV5Z calculations, respectively. However, upon computing the RCCSD(T)/
CBS[Q5] using the RCCSD(T)/AVQZ/AV5Z results, the energies increase to 1745 cm−1.
This indicates that the RCCSD(T)/CBS[Q5] energies are lower than those obtained from
the RCCSD(T)/AVQZ and RCCSD(T)/AV5Z estimations.

A comparison of the RCCSD(T)/AVQZ, RCCSD(T)/AV5Z, and RCCSD(T)/CBS[Q5]
extrapolations is depicted in Figure 1, considering all angular orientations. It can be
observed that despite a slight shift between the three curves, the energies obtained from the
RCCSD(T)/AVQZ/AV5Z calculations are lower than those from the RCCSD(T)/CBS[Q5]
extrapolation. Therefore, the RCCSD(T)/CBS[Q5] energies will be considered as reference
data in the subsequent sections.

It is worth noting that as the angle increases from θ = 0◦ to θ = 90◦, the well depth
decreases from De = 1745 cm−1 to De = 317 cm−1. This implies that the linear configuration
is the most stable. This arrangement can be explained by considering that the Li+2 dimer
in its ground state can be approximated as two closed-shell Li+ cores with an electron
cloud located between them. Consequently, the short-range repulsion between the electron
and the krypton atom, combined with the attraction between the two Li+ cores and the
closed-shell Kr atom, favors the positioning of the krypton atom at the ends of the dimer.

It is important to mention that the interaction of the lithium dimer with noble gas
atoms has been extensively studied recently due to its simplicity and significance. Studies
conducted by Zanuttini et al. [15] and Alharzali et al. [22] have contributed to this research
area. In Table 2, we have grouped the findings from these studies with the current results
obtained for Li+2 Kr. It is evident that the repulsive interactions decrease in their impact
compared to the attractive long-range interaction forces when moving from Li+2 He to
Li+2 Kr. In fact, the well depths in their linear configuration increase from 380 cm−1 for
Li+2 He to 700 cm−1 for Li+2 Ne and further to 1745 cm−1 for Li+2 Kr. Hence, the interactions
of the three rare gas atoms (He, Ne, Kr) with the lithium dimer become increasingly more
attractive, exhibiting larger attractive cores as one moves from helium to krypton.
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Figure 1. Minimum energy values obtained from RCCSD(T) level of theory using the AVQZ and
AV5Z basis sets and CBS extrapolation as a function of θ (deg).

Table 2. Trends of equilibrium distances (Re) and the well depths (De) for Li+2 ( X2 ∑+
g

)
alkali dimer

in interaction with He, Ne and Kr rare gas atoms. Re are in Å and De in cm−1.

Complex Re De Method/References

Li+2 ( X2 ∑+
g

)
He 3.53 342 RCCSD(T)/CBS[Q5] [24]

Li+2 ( X2 ∑+
g

)
Ne - 700 Pseudopotential [15]

Li+2 ( X2 ∑+
g

)
Kr 4.01 1745 RCCSD(T)/CBS[Q5]

The RKHS potential curves together with the ab-initio RCCSD(T)/CBS[Q5] interaction
energies along the R coordinate for each θ angle from 0◦ to 90◦ are illustrated in Figure 2.
A good agreement is observed between the RKHS potential and the RCCSD(T)/CBS[Q5]
calculations for all orientations.

To further verify the quality of the fit we compute the relative error ∆E(%) between
the original ab initio RCCSD(T)/CBS[Q5] and the values of the RKHS potential for all
orientations. The results are presented in Table 3. We note that the relative error does not
exceed 0.175%.

The angular minimum energy path for all configurations of the Li+2 Kr complex, ob-
tained from the RKHS and the RCCSD(T)/CBS[Q5] potentials, are depicted in Figure 3.
Several observations could be concluded from the behavior of the angular minimum en-
ergy path. Firstly, the RKHS fitting method demonstrates good performance in describing
the ab-initio RCCSD(T)/CBS[Q5] PES for all orientations. Secondly, as the configuration
changes from linear to T-shaped, the attractive effect decreases compared to the increasing
potential values. Furthermore, there is a non-equally spaced energy between successive
orientations, and the differences become more pronounced at angles between 30◦ and 60◦.
This phenomenon can be attributed to the emergence of repulsive effects, which become
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more important than the attractive ones as the Kr atom approaches the center of mass of
the ionic dimer Li+2 .
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Figure 2. Comparison between the 2D-PES RKHS analytical fitting and the RCCSD(T)/CBS(Q5)
ab-initio surfaces of Li+2 Kr.

Table 3. The equilibrium distance (Re) and the well depth (De) of Li+2 Kr complex obtained with the
RCCSD(T)/CBS[Q5] and the RKHS method for θ ranging from 0◦ to 90◦.

RCCSD(T)/CBS[Q5] RKHS ∆E (%)

θ (◦) Re (Å) De (cm−1) Re (Å) De (cm−1)

0◦ 4.17 1745 4.17 1746 0.057

10◦ 4.13 1730 4.13 1730 0.000

20◦ 4.01 1715 4.03 1715 0.000

30◦ 3.87 1580 3.87 1581 0.063

40◦ 3.68 1408 3.68 1407 0.071

50◦ 3.51 1139 3.50 1141 0.175

60◦ 3.44 791 3.44 790 0.126

70◦ 3.59 492 3.59 492 0.000

80◦ 3.82 353 4.82 353 0.000

90◦ 3.90 317 4.90 317 0.000
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Figure 3. Minimum energy values obtained from the RKHS analytical interpolation with the corre-
sponding RCCSD(T)/CBS[Q5] interaction energies as a function of angular orientations θ.

Figure 4 displays a two-dimensional contour plot in the (θ, R) plane, representing the
fitted RCCSD(T)/CBS[Q5] potential of Li+2 Kr. In this plot, we observe the presence of two
symmetrical minima, which correspond to the linear orientations. These minima have a
well depth of 1746 cm-1 located at an internuclear distance R = 4.17 Å.
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Based on the parity of the quantum number j and the total wave function, with
respect to the exchange of the two identical Li+ atoms, the results will be divided into two
types (even/odd). It is expected to obtain a significant number of bound states when we
consider the energy of the linear arrangement, 1746 cm−1. In our calculations, we obtained
272/260 states for even and odd symmetry, respectively. In Table 4, we list only the energies
of the lowest bound states and some selected states that lie below, around, and above the
T-shaped 90◦ barrier well for both even and odd symmetry. The other values are reported
in the Supplementary Materials.

Table 4. Vibrational energies (in cm−1). of the lowest and some selected bound states (J = 0) that lie
below, around, and above the T-shaped 90◦ barrier well of the Li+2 Kr complex.

n j = even/odd

0 −1633.440613/−1633.440613
1 −1562.620803/−1562.620803
2 −1492.719188/−1492.719188
3 −1481.617393/−1481.617393
4 −1422.606448/−1422.606448
5 −1405.444466/−1405.444466
6 −1352.065571/−1352.065571
7 −1339.178576/−1339.178576
8 −1331.488421/−1331.488421
9 −1281.201931/−1281.201931
10 −1263.686846/−1263.686846

114 −335.655266/−335.655351
115 −335.190171/−335.190064
116 −326.764948/−326.764891
117 −322.031270/−322.031221
118 −318.591568/−318.591555
119 −316.216834/−316.216848
240 −25.004181/−18.144948
250 −14.747134/−8.049236
260 −6.805258/−0.477206
272 −0.298997/-

From the full table, we observe that up to n = 78, the even and odd vibrational states are
fully degenerated. However, the higher-lying even and odd parity states exhibit different
energies, and the energy difference becomes more pronounced for levels above the potential
barrier in the T-shaped configuration. Furthermore, Table 4 shows that the energy of the
lowest vibrational level is −1666 cm−1, with a zero-point energy (ZPE) of about 88 cm−1,
which corresponds to only 5% of the well depth.

Figures 5–7 illustrate the radial and angular distributions for selected states lying below,
around, and above the T-shaped 90◦ barrier for both even and odd symmetries, respectively.

For the lowest bound states wave functions, such as n = 0–5, there is a minimal an-
gular population in the region of the 90◦ barrier well, indicating a strong localization of
the Kr atom in the collinear geometric configuration. The ground state wave function
exhibits nodal structures, with angular distributions symmetrically positioned at θ = 0◦

and 180◦, while the radial distribution peaks at R = 4.3 Å, which is close to the equilib-
rium intermolecular distance of the linear geometry. The low-lying excited states can be
attributed to the stretching and bending motions of the Kr atom. The bending motions
correspond to the n = 1 and n = 2 levels, as evidenced by the presence of nodes in their
angular distributions. The n = 3 state clearly displays nodes in its radial distribution,
indicating stretching motions.
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For the bound states that lie around the 90◦ barrier well (just below and above it), such
as n = 114–119, Figure 6 illustrates more complex nodal patterns in both the radial and
angular distributions. These distributions extend to larger R distances and configurations,
and some population appears in the region of the T-shaped barrier. This behavior can be
associated with the mixed stretch-bending vibrational “mode” of the Kr atom along the
radial and angular coordinates. Additionally, noticeable differences between even and
odd states become apparent in both radial and angular probability distributions for levels
n = 114 and above.

For the highest bound states, as depicted in Figure 7, the shape of the distributions
becomes even more complicated, with extended angular distributions and prominent
differences between even and odd parity states.
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3. Computational Methods
3.1. Potential Energy Surface
3.1.1. Ab Initio Calculations

To describe the intermolecular interactions between the krypton atom and the diatomic
molecule Li+2 , Jacobi coordinates (r, R, θ) were employed, as illustrated in Figure 8. Here,
r represents the equilibrium distance of Li+2 , R denotes the distance between the center of
mass of Li+2 and the krypton atom, and θ represents the Jacobi angle between the vectors r
and R.

The calculations were carried out by keeping the diatomic Li+2 frozen at its experimen-
tal equilibrium distance, re = 3.11 Å, obtained via pulsed optical–optical double resonance
spectroscopy [16]. The internuclear distance R was varied from 2 Å to 20 Å with an irregular
step, while the Jacobi angle θ was varied from 0◦ to 90◦ with a step of 10◦.

In this present work, the Molpro 2010 Package [31] was used to perform all ab initio cal-
culations. The potential energy surface of Li+2 Kr was calculated using the restricted Hartree–
Fock calculation followed by a single-reference restricted open-shell coupled cluster method
with single, double, and no-iterative triple excitations RCCSD(T) method [32,33]. This
method is known for its high level of accuracy in describing electronic correlation effects.
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To assess the validity of the RCCSD(T) method employed, correlation factors D1 and
T1 were calculated for all investigated geometries. The T1 and D1 diagnostics, as defined in

reference [34], were used for this purpose. The T1 diagnostic is given by T1 =

√
∑occ

i ∑vir
a (ta

i )
2

n ,
where n is the number of electrons, and

(
ta
i
)

represents the single excitation amplitudes.
The D1 diagnostic is defined as D1(CCS) = ‖T‖2, where ‖T‖2 is the Euclidean norm of
the matrix T calculated from the CCSD wave function. The results of the calculations are
summarized in Table 5.

Table 5. T1 and D1 diagnostics for Li+2 Kr complex around the equilibrium positions.

θ (◦) T1 D1

0◦ 0.00337867 0.00727516
10◦ 0.00346117 0.00761505
20◦ 0.00973038 0.0087485
30◦ 0.00407142 0.00994863
40◦ 0.00455682 0.01166247
50◦ 0.00510274 0.01350919
60◦ 0.00546915 0.01473819
70◦ 0.00508529 0.01356188
80◦ 0.00430078 0.01101894
90◦ 0.00399547 0.00998581

The obtained results indicate that both, T1 and D1 factors, are below the threshold
values of 0.02 and 0.025, respectively, as suggested by Lee and Taylor [34]. This confirms
the suitability of the mono-configurational approach RCCSD(T) chosen for this study.

For both Li and Kr atoms, the aug-cc-pVn (n = 4, 5) Z basis sets [35] were utilized. The
energies obtained were then extrapolated to the complete basis set (CBS) limit using a two-
parameter expression [36] applied to the correlation energies as follows: En = ECBS +

A
n3 .

Here, n = 4 and 5 correspond to AVQZ and AV5Z basis sets, respectively, En is the computed
total energy corresponding to that basis set, ECBS is the CBS extrapolated energy, and A
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is a fitting parameter. The energies from the AVQZ and AV5Z basis set calculations were
employed for the extrapolation.

In the calculations of the internuclear interaction energies V(re, R, θ) between Kr
and Li+2 , the standard counterpoise method of Boys and Bernardi [37] was used to correct
the basis set superposition error (BSSE) at all configurations. This correction is applied
according to the equation: V(re, R, θ) = ELi+2 Kr(re, R, θ)−

[
ELi+2

(re, R, θ) + EKr(re, R, θ)
]
,

where ELi+2 Kr(re, R, θ) represents the total energy of the complex, and ELi+2
(re, R, θ) and

EKr(r e, R, θ) are the energies of the Li+2 and Kr monomers, respectively, calculated in the
full basis set of the system.

3.1.2. Analytical Representation of the Ab Initio Surface

In order to conduct dynamic investigations, an analytical representation of the ab-
initio potential energy surface (PES) is necessary. In this study, the 2D-PES of Li+2 Kr was
interpolated using the reproducing kernel Hilbert space (RKHS) procedure developed by
Ho and Rabitz [30]. The two-dimensional potential function is given by the following:

V(re, R, θ) = ∑NR
i=1 ∑Nθ

j=1 vijq
2,3
1 (Ri, R)q2

(
yj, y

)
(1)

VRKHS(re, R, θ) = ∑NR
i=1 ∑Nθ

j=1 Vijq
n,m
1 (Ri, R)q2

(
yj, y

)
(2)

In the above equations, y = cosθ, and NR and Nθ represent the number of calculated
ab initio energies in the R and θ coordinates, respectively. The vij coefficients are determined
by solving Equation (1), where V

(
re, Ri, θj

)
represents the ab initio RCCSD(T)/CBS[Q5]

energy at each (Ri, θj, re) grid point.
The one-dimensional distance-like qn,m

1 and angle-like q2 reproducing kernels are
expressed as follows:

qn,m
1
(

x, x′
)
= n2x−(m+1)

> B(m + 1, n)2F1

(
−n + 1, m + 1; n + m + 1;

x<
x>

)
(3)

q2
(
y, y′

)
= ∑l

(2l + 1)
2

Pl(y)Pl(y′) (4)

where x> and x< refer to the maximum and minimum values of x and x′, respectively.
B and 2F1 represent the Beta and Gauss hypergeometric functions [38], respectively. Pl
denotes the Legendre polynomials with l = 0, 2, 4, 6, 8, 10, 12.

Based on the previous work by Alharzali et al. [12,24] for similar interactions (Li+2 He,
Na+2 He and K+

2 He), it is assumed that the 2D-PES V(R, θ) of Li+2 Kr is a smooth function
with derivatives up to the second order, n = 2, in both R and θ. Additionally, to account
for the dominant dispersion interaction between the Kr atom and the ionic dimer Li+2 , a
weighting factor w(x) = x−m with m = 3 is introduced.

3.2. Bound States Calculation

The calculations of bound states energies and wave functions are crucial steps for
studying dynamics, such as vibrational predissociation and photoionization. In this study,
variational quantum bound states calculations were performed using the fitted RKHS po-
tential energies. The bound states energies were obtained by diagonalizing the Hamiltonian
expressed in Jacobi coordinates, as follows:

Ĥ = − h̄2

2µ1

∂2

∂2R
+

ĵ2

2µ2r2
e
+

l̂2

2µ1R2 + V(re, R, θ) (5)

In the above equation, 1
µ1

= 1
mKr

+ 1
2mLi+2

and 1
µ2

= 1
mLi

+ 1
mLi

are the reduced masses

of the Li+2 Kr complex and the Li+2 dimer, respectively, where mLi and mKr are the atomic
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masses of Li and Kr atoms. ĵ and l̂ represent the angular momenta associated with the vec-
tors r (rotational momentum of the dimer) and R (orbital angular momentum), respectively.
The sum of these angular momenta gives the total angular momentum Ĵ, which was taken
as zero in these calculations. V(re, R, θ) represents the fitted 2D-RKHS potential, where re
is the fixed equilibrium bond length of the diatomic Li+2 .

In the framework of zero total angular momentum J = 0, a product of radial and
angular basis functions is used to represent the Hamiltonian. For the angular coordinate,
the employed basis function is an orthonormalized Legendre polynomial Pjcos(θ), where j
ranges up to 40 for even and odd symmetry, respectively. For the radial coordinate, a dis-
crete variable representation (DVR) basis set, based on particle in a box eigenfunctions [39],
was employed. A 300 points DVR was used over a range from R = 2.5 to 20 Å, and a
convergence criterion of 10−6 was established.

4. Conclusions

In this study, we conducted structural and dynamic investigations of the lithium
cationic dimer, Li+2 , interacting with the Kr atom. The two-dimensional potential energy
surface was computed using the RCCSD(T) method and the aug-cc-pVnZ (n = 4, 5) basis
sets, and then extrapolated to its CBS[Q5] limit. Subsequently, the RKHS method was
employed for numerical interpolation to generate the RCCSD(T)/CBS[Q5] analytical po-
tentials. Remarkably, this interpolation method accurately matched the numerical curves
for all orientations used to determine the two main spectroscopic constants, Re and De, for
each configuration. The analysis of the results revealed that the linear configuration, where
the krypton atom is linearly attached to the lithium dimer Li+2 is found to be more stable
than the T-shaped configuration.

The fitted 2D-RKHS potential was employed to calculate the vibrational bound state
energies, resulting in a significant number of bound states as expected. It is worth noting
the limited contribution of the zero-point energy (ZPE), which accounts for only 5% of
the well depth. Additionally, the system exhibits very large amplitude motions, both as
stretching and bending modes in its lower states, but rapidly transformed into non-regular
features of their wave function in the excited states.

The obtained bound states, along with the potential energy surfaces, have various
applications. They can be utilized to investigate vibrational predissociation or photoioniza-
tion processes of Li2Kr complex. Furthermore, an analytical fitting of the obtained 2D-PES
can be employed to explore the micro-solvation process of the lithium cationic dimer in a
krypton matrix. These valuable results could assist in experimental settings and help in the
interpretation of observations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28145512/s1, Table S1: Vibrational energies (in cm−1) of
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