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Abstract: Streptococcus mutans, a gram-positive oral pathogen, is the primary causative agent of
dental caries. Biofilm formation, a critical characteristic of S. mutans, is regulated by quorum sensing
(QS). This study aimed to utilize pharmacoinformatics techniques to screen and identify effective
phytochemicals that can target specific proteins involved in the quorum sensing pathway of S. mutans.
A computational approach involving homology modeling, model validation, molecular docking,
and molecular dynamics (MD) simulation was employed. The 3D structures of the quorum sensing
target proteins, namely SecA, SMU1784c, OppC, YidC2, CiaR, SpaR, and LepC, were modeled using
SWISS-MODEL and validated using a Ramachandran plot. Metabolites from Azadirachta indica
(Neem), Morinda citrifolia (Noni), and Salvadora persica (Miswak) were docked against these proteins
using AutoDockTools. MD simulations were conducted to assess stable interactions between the
highest-scoring ligands and the target proteins. Additionally, the ADMET properties of the ligands
were evaluated using SwissADME and pkCSM tools. The results demonstrated that campesterol,
meliantrol, stigmasterol, isofucosterol, and ursolic acid exhibited the strongest binding affinity for
CiaR, LepC, OppC, SpaR, and Yidc2, respectively. Furthermore, citrostadienol showed the highest
binding affinity for both SMU1784c and SecA. Notably, specific amino acid residues, including ASP86,
ARG182, ILE179, GLU143, ASP237, PRO101, and VAL84 from CiaR, LepC, OppC, SecA, SMU1784c,
SpaR, and YidC2, respectively, exhibited significant interactions with their respective ligands. While
the docking study indicated favorable binding energies, the MD simulations and ADMET studies
underscored the substantial binding affinity and stability of the ligands with the target proteins.
However, further in vitro studies are necessary to validate the efficacy of these top hits against
S. mutans.

Keywords: Streptococcus mutans; dental caries; homology modeling; molecular docking; molecular
dynamics simulation

1. Introduction

Streptococcus mutans is a gram-positive bacterium commonly found in the human
oral cavity. While it is considered part of the normal microbial flora in the oral cavity, it
is also the primary causative agent of dental caries [1,2]. Despite numerous studies that
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have been reported and implemented in the past to mitigate dental caries, none of them
have succeeded in completely eradicating the disease. Additionally, S. mutans is known to
be associated with extra-oral pathological conditions such as infective endocarditis, IgA
nephropathy, cerebral microbleeds, and atherosclerosis [3,4]. Therefore, there is a pressing
need to develop a practical approach for effectively eliminating S. mutans. The Darwinian
theory postulates that organisms develop resistance to factors that threaten their survival.
This phenomenon is a primary driver behind the development of antibiotic resistance in
several pathogens [5]. Hence, it is imperative to develop a treatment that can selectively
inhibit the pathogen’s virulence without endangering its overall survival.

One such strategy is controlling the quorum sensing of bacteria. Quorum sensing is a
density-dependent bacterial communication mechanism that regulates biofilm formation
and the expression of virulent characteristics. Therefore, targeting this mechanism may
control their virulence without affecting their survival. Several virulence factors of S. mutans
are involved in quorum sensing mechanisms, and targeting these factors may impair cell
communication [6,7].

In the sequenced oral pathogen, S. mutans UA159, the CiaRH two-component signal
transduction system (TCS) acts as a global regulator for multiple stress responses, includ-
ing biofilm formation, acid tolerance, bacteriocin production, genetic competence, stress
resistance, and pathogenesis [8]. Bacterial oligopeptide transport systems (Opp) play a role
in regulating ATP hydrolysis and energy generation required for solute transport [9]. The
Sec translocase and yidC are translocase systems that assist in the transport of proteins
across the cell membrane [10]. Another virulent protein of S. mutans is encoded by the gene
smu1784c, which is involved in stress management and biofilm formation [11].

Regularly used chemical substances such as fluoride, quaternary ammonium salts,
and other commonly used antimicrobial agents can lead to undesirable side effects [12,13].
Prolonged use of antimicrobial medications has also contributed to the emergence of
antimicrobial resistance, which is now recognized as a significant health problem [14,15].
Consequently, there has been a growing interest in exploring the potential of natural
herbal plants as quorum-quenching agents to combat pathogens [16–18]. These natural
products offer many advantages, such as reduced costs, fewer side effects, and increased
efficacy [19]. For example, green tea extract has been found to suppress the growth of
Porphyromonas gingivalis, and its potential in preventing and treating periodontitis is being
investigated [15]. Furthermore, aqueous extracts of Azadirachta indica (Neem) sticks have
been shown to inhibit bacterial aggregation, proliferation, adherence to hydroxyapatite,
and synthesis of insoluble glucan, thus altering in vitro plaque development [20]. To
expedite the process of identifying molecules with desired antibacterial activity from plant
extracts, a time-saving approach is needed. Therefore, computational methods are utilized
to accelerate the drug development process. Pharmacoinformatics tools play a crucial role
in the rapid discovery of drugs for various diseases, offering a cost-effective approach to
drug discovery. Several computer-based tools can be employed to search for potential drug
targets in pathogens such as S. mutans and others.

Furthermore, these tools also aid in the study of drug–target interactions. In the
current study, drug targets involved in the quorum sensing of S. mutans have been selected
based on our previous study [21]. An in silico approach has been undertaken to screen
potential phytochemicals from selected plants and to analyze their binding potential with
the target proteins.

2. Results
2.1. Homology Modeling and Model Validation of the Target Proteins

SWISS-MODEL performs BLAST for each target protein against PDB and provides a
list of templates. In the present study, for all the seven target proteins, model structures
were built using SWISS-MODEL since none of them had a crystal structure available. For
each of the selected target proteins, five templates were selected based on the identity and
sequence coverage, and the 3D models were built.
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The modeled structures that were built were assessed and validated using a Ramachan-
dran plot using the SWISS-MODEL structure assessment tool, and one out of five models
was selected for further studies (Supplementary Figure S1). The predicted structures of all
the target proteins are depicted in Supplementary Figure S2.

2.2. Molecular Docking

Among the 110 ligands tested, 17 compounds were found to bind effectively with
all the target proteins (Table 1). Among the 17 compounds that exhibited higher binding
towards the selected targets of S. mutans, 15 compounds were from A. indica, and 1 each
from M. citrifolia and S. persica. Among the 17 lead compounds, the top hits that exhibited
lower binding energy and, hence, high binding affinity against each target were then
selected for further simulation analysis (Table 2).

Table 1. List of top hits from different plant sources against each target protein, along with their
binding energy (kcal/mol).

Ligands CIAR LEPC SMU1784C OPPC SPAR SECA YIDC2 Plant
Source

5α-Androstan-16-one,
cyclic ethylene
mercaptole

−7.47 −9.5 −7.46 −6.23 −8.29 −9.26 −8.24 S. persica

Azadiradione −7.91 −9.18 −8.32 −6.22 −8.1 −8.45 −8.23 A. indica
Azadirone −7.81 −8.85 −8.34 −5.83 −8.34 −8.16 −8.85 A. indica
Campesterol −8.76 −9.91 −8.08 −6.41 −8.56 −9.29 −8.86 A. indica
Citrostadienol −7.55 −9.81 −8.45 −6.43 −8.9 −9.88 −9.4 A. indica
Isofucosterol −8.44 −9.31 −8.14 −6.68 −9.1 −9.58 −8.94 A. indica
Margocin −7.24 −8.85 −7.58 −5.94 −8.11 −7.81 −8.07 A. indica
Meliantrol −8.44 −10.16 −7.43 −5.95 −8.14 −8.66 −8.61 A. indica
Nimbinene −7.41 −7.45 −7.88 −5.38 −7.39 −7.99 −7.39 A. indica
Nimbione −7.09 −7.61 −7.63 −5.91 −7.65 −7.7 −7.46 A. indica
Nimbolide −7.62 −8.14 −7.57 −5.8 −8.45 −7.56 −8.3 A. indica
Nimbolin b −7.9 −9.09 −7.58 −6.09 −9.07 −9.77 −7.41 A. indica
Nimocinol −7.95 −8.55 −8.27 −5.98 −8.59 −7.84 −8.41 A. indica
Stigmasterol −7.78 −9.87 −8.35 −6.75 −8.76 −9.12 −9.04 A. indica
Ursolic acid −7.98 −9.42 −8.31 −6.12 −8.14 −7.54 −9.73 M. citrifolia
Vepinin −7.81 −10.06 −7.69 −5.51 −7.85 −9 −8.38 A. indica
Zafaral −7.71 −9.12 −7.3 −5.88 −7.8 −8.09 −8.1 A. indica

Table 2. List of top hits from different plant sources against each target protein, along with their
binding energy.

Top Binders Binding Energy (kcal/mol) Target

Campesterol −8.76 CIAR
Meliantrol −10.16 LEPC

Citrostadienol −8.45 SMU1784C
Stigmasterol −6.75 OPPC
Isofucosterol −9.1 SPAR

Citrostadienol −9.88 SECA
Ursolic acid −9.73 YIDC2

The 3D and 2D interactions between amino acid residues of the target proteins and
their respective top hit compounds were also plotted using Discovery Studio. The list of
amino acids present in each of the targets that interact with the ligands is presented in
Table 3. The 3D and 2D plots depicting the interactions between target proteins and their
ligands are presented in Figures 1 and 2, respectively.
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Table 3. List of amino acid residues interacting with the ligand. The residues which interact with
ligands through conventional hydrogen bonds during the docking process are bold-faced.

Amino Acid Residues Interacting through Hydrogen Bond

CiaR ASP86; LYS87; ASN144; GLY145; GLU147

LepC ASN66; ASN68; ILE69; VAL70; LYS71; ARG72; VAL73; ILE74; LYS93; THR98; TYR151; LYS174; VAL176; GLY177;
GLU178; VAL179; LYS180; PHE181; ARG182

OppC VAL148; ALA149; THR151; LEU155; TYR17; GLN177; SER184; SER185; VAL186; PRO187; ASN188
SecA GLU143; ASN464; ALA469; GLN470
SMU1784c ASN230; LYS231; ASP237; ASN240
SpaR LYS100; PRO101; GLY103; GLN105; GLU106
Yidc2 ARG73; LEU77; LEU81; GLN90; GLY137; GLN204; THR208; HIS250

Figure 1. 3D interaction of target proteins with their respective top hit ligands: (a) CiaR–campesterol;
(b) LepC–meliantrol; (c) OppC–stigmasterol; (d) SecA–citrostadienol; (e) SMU1784c–citrostadienol;
(f) SpaR–isofucosterol; (g) Yidc2–ursolic acid.

Figure 2. 2D interaction of target proteins with their respective top hit ligands: (a) CiaR–campesterol;
(b) LepC–meliantrol; (c) OppC–stigmasterol; (d) SecA–citrostadienol; (e) SMU1784c–citrostadienol;
(f) SpaR–isofucosterol; (g) Yidc2–ursolic acid.
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2.3. Molecular Dynamics (MD) Simulation

MD simulation assessed the inter-molecular protein–ligand interactions under an
artificial environment with specified thermodynamical conditions such as temperature,
volume, density, and pressure for 100 ns time duration. Further, a final production step
aided in the exploration of the structural modification of the complex. The analysis of
unique parameters such as root mean square deviation (RMSD) (Figure 3), simulation inter-
actions diagram (Figure 4), protein–ligand contact (Figure 5), and timeline representation of
interaction and contacts (Figure 6) between the target protein and their respective ligands,
aided in the analysis of structural changes at each level.

Figure 3. RMSD plot of protein–ligand complexes: (a) CiaR–campesterol; (b) LepC–meliantrol;
(c) OppC–stigmasterol; (d) SecA–citrostadienol; (e) SMU1784c–citrostadienol; (f) SpaR–isofucosterol;
(g) Yidc2–ursolic acid.

Figure 4. Hydrogen and hydrophobic interactions of protein–ligand complexes: (a) CiaR–campesterol;
(b) LepC–meliantrol; (c) OppC–stigmasterol; (d) SecA–citrostadienol; (e) SMU1784c–citrostadienol;
(f) SpaR–isofucosterol; (g) Yidc2–ursolic acid.
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Figure 5. Protein–ligand contacts between target proteins and their respective ligands: (a) CiaR–
campesterol; (b) LepC–meliantrol; (c) OppC–stigmasterol; (d) SecA–citrostadienol; (e) SMU1784c–
citrostadienol; (f) SpaR–isofucosterol; (g) Yidc2–ursolic acid.

Figure 6. Timeline representation of interaction and contacts between target proteins and
their respective ligands: (a) CiaR–campesterol; (b) LepC–meliantrol; (c) OppC–stigmasterol;
(d) SecA–citrostadienol; (e) SMU1784c–citrostadienol; (f) SpaR–isofucosterol; (g) Yidc2–ursolic acid.

The hydrogen bonding interaction between amino acid residues of the target protein
and their respective ligand analyzed in MD simulation was found to correlate with that of
AutoDock results (Table 3). The simulation study provided insight into the stability of the
interaction between the top hits and their respective target proteins.

In order to perform the post-MM-GBSA (molecular mechanics with generalized Born
and surface area solvation) analysis of the free binding energy calculation, 0-2002 frames
with a sampling size of roughly 10 steps were produced. During the MM-GBSA calcula-
tion of the 100 ns MD data of the target proteins with their respective ligands, a total of
201 frames were processed and analyzed. All the complexes showed good binding affinity,
thereby validating the docking and MD results (Table 4).
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Table 4. MMGBSA Score of Protein–Ligand Complexes.

Protein–Ligand Complex MMGBSA Score (kcal/mol)

CiaR–campesterol −59.03099478
LepC–meliantrol −49.87694241
OppC–stigmasterol −65.96184631
SecA–citrostadienol −60.69835805
SMU1784c–citrostadienol −57.96969001
SpaR–isofucosterol −58.58904881
Yidc2–ursolic acid −79.57923832

2.4. ADMET Analysis

Analysis of ADMET properties of the top hits was performed using the SwissADME
online tool and the pkCSM tool, and the results are presented in Tables 5 and 6, respectively.
All six compounds had molecular weights greater than 400 g/mol. Except for meliantrol,
which was predicted to be moderately soluble in water, all other selected bioactive com-
pounds were predicted to be poorly soluble in water. Solubility of ligands aid in the proper
solvation and absorption into the host body. This also aids in the formulation of a solvent
or carrier for delivery. Due to their poor solubility, all the hits violated one out of five of
Lipinski’s rules. The RADAR plot (Figure 7) shows the overall drug-likeness of the top hit
ligands. Meliantrol passes all the criteria for drug-likeness; however, other ligands violate
the drug-likeness due to their poor solubility in water. The BOILED-Egg plot (Figure 8)
shows all the compounds, except citrostadienol, in the area of intestinal absorption. How-
ever, only meliantrol was predicted to exhibit good GI absorption. None of the hits cross
the blood–brain barrier. The results were correlated with that of pkCSM.

Table 5. ADME properties of top hits assessed in SWISS-ADME.

Molecule Campesterol Citrostadienol Isofucosterol Meliantrol Stigmasterol Ursolic Acid

Physicochemical Properties

Formula C28H48O C30H50O C29H48O C28H46O5 C29H48O C30H48O3
Molecular Weight 400.68 426.72 412.69 462.66 412.69 456.7
#Heavy atoms 29 31 30 33 30 33
#Aromatic heavy
atoms 0 0 0 0 0 0

Fraction Csp3 0.93 0.87 0.86 0.93 0.86 0.9
#Rotatable bonds 5 5 5 3 5 1
#H-bond
acceptors 1 1 1 5 1 3

#H-bond donors 1 1 1 4 1 2
MR 128.42 137.56 132.75 130.66 132.75 136.91
TPSA 20.23 20.23 20.23 90.15 20.23 57.53

Lipophilicity

iLOGP 4.92 5.41 5.15 3.76 5.01 3.71
XLOGP3 8.8 9.03 8.85 4.18 8.56 7.34
WLOGP 7.63 8.19 7.94 4.17 7.8 7.09
MLOGP 6.54 6.82 6.62 3.45 6.62 5.82
Silicos-IT Log P 6.63 7 6.88 3.46 6.86 5.46
Consensus Log P 6.9 7.29 7.09 3.8 6.97 5.88

Water Solubility

ESOL Log S −7.54 −7.84 −7.64 −5.14 −7.46 −7.23
ESOL Solubility
(mg/mL) 0.0000116 0.0000061 0.00000936 0.00332 0.0000143 0.0000269

ESOL Solubility
(mol/l) 0.000000029 0.0000000143 0.0000000227 0.00000718 0.0000000346 0.0000000589

ESOL Class Poorly soluble Poorly soluble Poorly soluble Moderately
soluble Poorly soluble Poorly soluble

Ali Log S −9.11 −9.35 −9.16 −5.78 −8.86 −8.38
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Table 5. Cont.

Molecule Campesterol Citrostadienol Isofucosterol Meliantrol Stigmasterol Ursolic Acid

Ali Solubility
(mg/mL) 0.000000313 0.000000192 0.000000286 0.000764 0.000000571 0.00000192

Ali Solubility
(mol/L) 0.00000000078 0.00000000045 0.000000000692 0.00000165 0.00000000138 0.00000000421

Ali Class Poorly soluble Poorly soluble Poorly soluble Moderately
soluble Poorly soluble Poorly soluble

Silicos-IT LogSw −5.79 −5.97 −5.83 −3.14 −5.47 −5.67
Silicos-IT
Solubility
(mg/mL)

0.000642 0.000457 0.000616 0.332 0.0014 0.000972

Silicos-IT
Solubility
(mol/L)

0.0000016 0.00000107 0.00000149 0.000718 0.00000339 0.00000213

Silicos-IT class Moderately
soluble

Moderately
soluble

Moderately
soluble Soluble Moderately

soluble
Moderately

soluble

Pharmacokinetics

GI absorption Low Low Low High Low Low
BBB permeant No No No No No No
Pgp substrate No No No Yes No No
CYP1A2 inhibitor No No No No No No
CYP2C19
inhibitor No No No No No No

CYP2C9 inhibitor No No No No Yes No
CYP2D6 inhibitor No No No No No No
CYP3A4 inhibitor No No No No No No
log Kp (cm/s) −2.5 −2.49 −2.53 −6.15 −2.74 −3.87

Druglikeness

Lipinski
#violations 1; MLOGP > 4.15 1; MLOGP > 4.15 1; MLOGP > 4.15 0 1; MLOGP > 4.15 1; MLOGP > 4.15

Ghose #violations 2; WLOGP > 5.6,
#atoms > 70

3; WLOGP > 5.6,
MR > 130,

#atoms > 70

3; WLOGP > 5.6,
MR > 130,

#atoms > 70

2; MR > 130,
#atoms > 70

3; WLOGP > 5.6,
MR > 130,

#atoms > 70

3; WLOGP > 5.6,
MR > 130,

#atoms > 70
Veber #violations 0 0 0 0 0 0
Egan #violations 1; WLOGP > 5.88 1; WLOGP > 5.88 1; WLOGP > 5.88 0 1; WLOGP > 5.88 1; WLOGP > 5.88
Muegge
#violations

2; XLOGP3 > 5,
Heteroatoms < 2

2; XLOGP3 > 5,
Heteroatoms < 2

2; XLOGP3 > 5,
Heteroatoms < 2 0 2; XLOGP3 > 5,

Heteroatoms < 2 1; XLOGP3 > 5

Bioavailability
Score 0.55 0.55 0.55 0.55 0.55 0.85

Medicinal Chemistry
PAINS #alerts 0 0 0 0 0 0
Brenk #alerts 1; isolated_alkene 1; isolated_alkene 1; isolated_alkene 1; isolated_alkene 1; isolated_alkene 1; isolated_alkene
Leadlikeness
#violations

2; MW > 350,
XLOGP3 > 3.5

2; MW > 350,
XLOGP3 > 3.5

2; MW > 350,
XLOGP3 > 3.5

2; MW > 350,
XLOGP3 > 3.5

2; MW > 350,
XLOGP3 > 3.5

2; MW > 350,
XLOGP3 > 3.5

Synthetic
Accessibility 6.17 6.22 6.15 6.71 6.21 6.21

# denotes number.

Table 6. ADMET properties of top hit ligands assessed in pkCSM.

Descriptor Predicted Value Unit

Campesterol Citrostadienol Isofucosterol Meliantrol Stigmasterol Ursolic acid

Molecular Weight 400.691 426.729 412.702 462.671 412.702 456.711 g/mol
LogP 7.6347 8.1909 7.9449 4.1717 7.8008 7.0895

#Rotatable Bonds 5 5 5 3 5 1
#Acceptors 1 1 1 5 1 2

#Donors 1 1 1 4 1 2
Surface Area 180.674 192.714 186.349 199.164 186.349 201.354

Property Model Name

Absorption Water solubility −7.194 −6.74 −6.917 −4.096 −6.882 −3.193 Numeric (log mol/L)

Absorption CaCO2
permeability 1.284 1.285 1.279 1.526 1.28 1.286 Numeric (log Papp in

10−6 cm/s)

Absorption
Intestinal

absorption
(human)

95.749 95.907 96.061 97.238 96.39 100 Numeric (% Absorbed)
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Table 6. Cont.

Descriptor Predicted Value Unit

Absorption Skin Permeability −2.756 −2.691 −2.7 −2.726 −2.702 −2.732 Numeric (log Kp)

Absorption P-glycoprotein
substrate No Yes No Yes No No Categorical (Yes/No)

Absorption P-glycoprotein I
inhibitor Yes Yes Yes Yes Yes No Categorical (Yes/No)

Absorption P-glycoprotein II
inhibitor Yes Yes Yes Yes Yes No Categorical (Yes/No)

Distribution VDss (human) 0.351 −0.028 0.104 −0.074 0.102 −1.104 Numeric (log L/kg)

Distribution Fraction unbound
(human) 0 0 0 0 0 0 Numeric (Fu)

Distribution BBB permeability 0.804 0.816 0.807 −0.848 0.814 −0.182 Numeric (log BB)
Distribution CNS permeability −1.43 −1.232 −1.326 −1.84 −1.326 −1.118 Numeric (log PS)
Metabolism CYP2D6 substrate No No No No No No Categorical (Yes/No)
Metabolism CYP3A4 substrate Yes Yes Yes Yes Yes Yes Categorical (Yes/No)
Metabolism CYP1A2 inhibitor No No No No No No Categorical (Yes/No)
Metabolism CYP2C19 inhibitor No No No No No No Categorical (Yes/No)
Metabolism CYP2C9 inhibitor No No No No No No Categorical (Yes/No)
Metabolism CYP2D6 inhibitor No No No No No No Categorical (Yes/No)
Metabolism CYP3A4 inhibitor No No No No No No Categorical (Yes/No)

Excretion Total Clearance 0.572 0.585 0.619 0.446 0.618 0.083 Numeric (log
mL/min/kg)

Excretion Renal OCT2
substrate No No No No No No Categorical (Yes/No)

Toxicity AMES toxicity No No No No No No Categorical (Yes/No)

Toxicity Max. tolerated
dose (human) −0.193 −0.394 −0.374 −0.726 −0.385 0.239 Numeric (log

mg/kg/day)
Toxicity hERG I inhibitor No No No No No No Categorical (Yes/No)
Toxicity hERG II inhibitor Yes Yes Yes No Yes No Categorical (Yes/No)

Toxicity Oral Rat Acute
Toxicity (LD50) 2.355 2.96 2.847 4.488 2.836 2.81 Numeric (mol/kg)

Toxicity Oral Rat Chronic
Toxicity (LOAEL) 1.125 1.096 1.119 2.249 1.102 2.128 Numeric (log

mg/kg_bw/day)
Toxicity Hepatotoxicity No No No No No Yes Categorical (Yes/No)
Toxicity Skin Sensitisation No No No No No No Categorical (Yes/No)

Toxicity T. pyriformis
toxicity 0.676 0.405 0.48 0.288 0.481 0.285 Numeric (log ug/L)

Toxicity Minnow toxicity −2.071 −2.047 −1.988 2.749 −1.952 −1.204 Numeric (log mM)

# denotes number.

Figure 7. Bioavailability RADAR Plot analysis of the selected top hit ligands: (a) campesterol;
(b) citrostadienol; (c) isofucosterol; (d) meliantrol; (e) stigmasterol; (f) ursolic acid.
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Figure 8. BOILED-Egg plot of selected high-binding ligands as predicted using SwissADME.

3. Discussion

Streptococcus mutans is one of the oral commensals that opportunistically cause dental
caries. One of the pathogenic mechanisms adopted by S. mutans to cause dental caries
is the formation of biofilm on the tooth surface which results in the erosion of tooth
enamel through acid production. Biofilm formation requires quorum sensing, a density-
dependent communication mechanism. The development of antimicrobial resistance in
these pathogens can be avoided by using newer approaches rather than conventional
antibiotics. These approaches should control the virulence of the pathogen instead of
killing them. Hence, the objective of this study was to develop a compound that can
control the quorum sensing in S. mutans rather than killing it. Pharmacoinformatics-based
approaches such as drug target identification, molecular docking, and molecular dynamics
simulations have accelerated the process of drug discovery. In the present study, we used
bioinformatics tools and software to screen phytochemicals from A. indica, M. citrifolia,
and S. persica for their potential as anti-quorum sensing agents against the selected target
proteins of S. mutans.

The target proteins involved in quorum sensing were selected from our previous
study [21]. These seven targets included CiaR (putative response regulator CiaR), LepC
(signal peptidase I), OppC (putative transmembrane protein, permease OppC), SecA (pro-
tein translocase subunit SecA), SMU1784c (putative Eep protein-like protein), SMU_659
(putative response regulator SpaR), and YidC2 (membrane protein insertase YidC2). The tar-
get protein, CiaR, is a response regulator in a two-component signal transport system that
controls several virulent characteristics of S. mutans. These virulent characteristics include
mutacin I activity, oxidative stress tolerance, acid tolerance, and biofilm formation [22,23].
Studies on S. sanguinis showed the development of a fragile biofilm as a result of the CiaR
mutation, which resulted in decreased polysaccharide synthesis [24]. The product of the
lepC target gene is a signal peptidase that aids in the export of several virulent proteins. It
has also been used as a housekeeping gene for several studies [10,25]. The target protein,
OppC, is an oligopeptide permease of the ABC transporter family. It helps the bacteria to
regulate XIP (sig X inducing peptide) production and in competence development [9,26].
SecA is a membrane protein translocase that helps the bacteria export proteins, leading to
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an increase in the virulence of the organism [10,27,28]. Another target, SMU1784c, plays an
important role in the management of oxidative and acid stress, EPS production, and biofilm
formation [11]. The SpaR protein is a response regulator of the spa (surface protein antigen)
family, which is one of the virulence factors of S. mutans [28,29]. The membrane protein
insertase of S. mutans, Yidc2, helps in EPS production and biofilm formation [10,30,31].

The resolved structures of the target proteins were not available in PDB or any other
structural databases. Hence, the SWISS-MODEL online tool was used to predict the 3D
structure of target molecules. Once the protein sequence is submitted as a query, SWISS-
MODEL performs BLAST against PDB and gives a list of templates. Based on high identity
and sequence coverage, five templates were selected for each protein, and the 3D models
were built. A similar approach has been followed by researchers who have used SWISS-
MODEL to model NOX 2 of S. mutans by using the crystal structure of NADH oxidase
from S. pyogenes as a template [32,33]. Various proteins of S. mutans that were modeled
using SWISS-MODEL include domain V of glucosyltransferase (GTF-SI) [34]; SMU.63, an
amyloid-like secretory protein of S. mutans [35]; the Spase I protein and β-sheet-rich N-
terminal collagen-binding domain (CBD) of Cnm, a collagen- and laminin-binding surface
adhesin protein of S. mutans [36,37]. Since the models are predicted in silico, it requires
validation before further processing. Hence, the Ramachandran plot from the structure
assessment tool of SWISS-MODEL was used for validation of the predicted structures.
All five models had more than 90% residues in the allowed region. The models from
other templates with less than 90% residues in the allowed region were rejected. The
remaining selected models were taken for further docking studies. The modeled structures
of fibronectin/fibrinogen binding protein (FBP) from S. mutans, phospholipase D (F13)
protein of monkeypox virus, 3-chymotrypsin and papain-like proteases of SARS-CoV2, and
U box domain-containing protein gene (GsPUB8) from Glycine soja were all validated using
the Ramachandran plot [38–41].

Computational drug discovery studies evaluate the binding of ligands with the target
protein, but the agonist or antagonistic effect of ligands on the target protein is only vali-
dated through in vitro and in vivo experiments [42,43]. In the current study, based on an
initial screening of 110 compounds using AutoDock, 17 high binders were selected that
were found to bind with all the target proteins efficiently. Among the 17 compounds, 15
were from A. indica, and 1 each from M. citrifolia and S. persica. Campesterol, meliantrol,
stigmasterol, isofucosterol, and ursolic acid were the top binders specific for the target
proteins, CiaR, LepC, OppC, SpaR, and Yidc2, with a binding energy of −8.76, −10.16,
−6.75, −9.1, and −9.73 kcal/mol, respectively. Citrostadienol was the high binder against
two of the selected targets, SMU1784c and SecA, with a binding score of −8.45 and −9.88
kcal/mol, respectively. The source of ursolic acid is M. citrifolia, whereas all other leads are
constituents of A. indica. Molecular docking is a versatile tool that is very useful in screening
hundreds of compounds before testing the effective ones using in vitro studies. Molecular
docking using AutoDock tools has been used previously to study both agonist and antago-
nist activity of various natural and synthetic ligands. In silico and in vitro agonistic activity
of ligands have been studied for the treatment of diabetes [44,45], Parkinson’s disease [46],
and cardiac diseases [47]. The antagonistic activity of ligands against S. mutans [48,49],
Leishmania donovani [50], Helicobacter pylori [51], and SARS-CoV-2 [52] has also been studied.
All these research works corroborate the necessity of in vitro experiments in the validation
of computational analysis. However, they also demonstrate that phytocompounds and
synthetic compounds can cause competitive or non-competitive inhibition of target proteins
involved in microbial diseases.

The RMSD of the protein–ligand complex is plotted to evaluate the stability of the
interaction between the protein and the ligand. The RMSD plot of target protein CiaR in
complex with its top binding ligand, campesterol, displayed a fluctuation in RMSD up to
7 Å to 13 Å (Figure 5a). Ligand RMSD was stable, and fluctuations were between 9 and
10.5 Å. The complex of LepC and its top hit ligand meliantrol shows RMSD fluctuation
up to 8 and 12 Å (Figure 5b). Ligand RMSD was stable, and fluctuations were between 4
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and 10.6 Å. The simulation of target protein OppC in complex with stigmasterol shows the
stability of protein at 9 to 16 Å (Figure 5c). Ligand RMSD was stable, and fluctuations were
between 9 and 1.6 Å. In the SecA–citrostadienol complex, the protein remains stable at 3
to 4 Å (Figure 5d), whereas the ligand fluctuation is at 14–16 Å and, hence, shows stable
interaction between the protein and the ligand. The SMU1784c–citrostadienol complex
shows fluctuation up to 2 to 4 Å (Figure 5e), whereas the ligand fluctuation is at 3–6 Å and,
hence, shows stable interaction between the protein and the ligand. The Yidc2 and ursolic
acid complex shows good RMSD results. The protein fluctuation is up to 6 Å and the ligand
up to 9 Å. The RMSD plot converges from 20 ns till the end of the simulation at 100 ns, thus
showing a stable interaction between the protein and the ligand. The hydrogen bond and
other interactions plotted in the simulation interactions diagram correlate with the docking
results. The hydrogen bond interaction between residues ASP86, LEU155, and PRO101 in
CiaR, OppC, and SpaR with their respective ligands was observed both in AutoDock and
MD simulations. Similarly, in the LepC protein, amino acid residues ILE69 and GLU178
were observed. In SecA, SMU1784c, and Yidc2 though there were no common residues
binding through a hydrogen bond, the same residues bind with ligands through other
types of bonds. The highly interacting amino acids were ASP86 of CiaR, ARG182 of LepC,
ILE179 of OppC, GLU143 of SecA, ASP237 of SMU_1784c, PRO101 of SpaR, and VAL84
of YidC2. Similarly, molecular dynamic simulations and an energy calculation method
have been used by researchers to study the LPXTG sequence in the C-terminus of surface
proteins, the substrate of the cysteine transpeptidase sortase A (SrtA) enzyme, to better
understand how leucine residue affects the dynamics of the enzyme-substrate complex
structure. According to the findings, the substrate’s ‘Leu’ residue appears to be essential for
anchoring and guiding the conformational shift of the enzyme SrtA [53]. Molecular docking
and dynamics simulation studies have been exploited to study the inhibition of glucan
sucrase-mediated biofilm formation of S. mutans by thiosemicarbazide derivatives [54].
Similar techniques have also been used to investigate the stability of phosphodiesterase
type 5 (PDE5) in complexes with bioactive compounds from Mimosa pudica to understand
their aphrodisiac performance [55]. Similarly, a pharmacoinformatics-based molecular
docking and dynamics simulation analysis of bioactive components from Indian cuisine,
rasam, was conducted against MAPK6 (mitogen-activated protein kinase 6), a family of
serine/threonine protein kinases that is crucial in regulating extracellular signaling into a
variety of cellular functions, including ROS production [56].

MM-GBSA also validates the molecular docking and MD simulation studies as it shows
binding energy ranging from −49 to −79 kcal/mol in all the protein–ligand complexes
studied. MM-GBSA has previously been used to study and validate in silico interaction
of ligands with SARS-CoV-2 protease [57]. A similar MD simulation approach has also
been utilized for screening substrate analog inhibitors of L-Ornithine-N5-monooxygenase
(PvdA) to control Pseudomonas aeruginosa infections [58].

Analysis of ligands for ADMET properties using SwissADME and pkCSM shows that
the molecular weight of all six hits was larger than 400g/mol. Only meliantrol was expected
to have moderate water solubility. All other hits had low water solubility. The right
solvation and absorption into the host body are made possible by the ligands’ solubility.
Additionally, it helps with the formulation of the solvent or delivery vehicle. Except for
meliantrol, none of the selected compounds exhibited good GI absorption. All the hits
broke one out of five of Lipinski’s rules because of their poor solubility. The Bioavailability
RADAR plot depicts the overall drug-likeness of the top binding ligands. Meliantrol fulfills
all criteria for drug-likeness, while other ligands fail due to their low solubility in water.
The BOILED-Egg plot displays all of the hits in the area of intestinal absorption except
citrostadienol. None of the ligands were predicted to penetrate the blood–brain barrier.
Analysis of ADMET properties of an array of ligands using Swiss ADME and pkCSM tools
has been previously followed by many researchers to control S. mutans biofilm [59,60].
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4. Materials and Methods
4.1. Target Proteins in S. mutans

The target proteins were selected based on our earlier study, which demonstrated an
in silico subtractive proteomics approach for screening drug targets in S. mutans UA159.
Among the 13 novel drug targets that were identified, 7 proteins were found to be involved
in quorum sensing [21]. Hence, these target proteins have been subsequently used in
the current study. The target proteins include two putative response regulators, a signal
peptidase, a putative EEP protein-like protein, a putative transmembrane protein-permease,
a protein translocase subunit, and a membrane protein insertase (Table 7).

Table 7. List of selected target proteins involved in quorum sensing.

UniProt Id. Gene Name Protein Name

Q8DU28 CiaR Putative response regulator CiaR
Q8DSC7 LepC Signal peptidase I
Q8DW23 OppC Putative transmembrane protein, permease OppC
Q8DSF0 SecA Protein translocase subunit SecA
Q8DSJ8 SMU1784c Putative Eep protein-like protein
Q8DV49 SMU659 Putative response regulator SpaR
Q8DSP8 YidC2 Membrane protein insertase YidC 2

4.2. Selection of Ligands

The bioactive compounds from three Indian medicinal plants, Azadirachta indica,
Morinda citrifolia, and Salvodora persica, were selected as ligands from the literature, as well as
various databases such as Dr. Duke’s Phytochemical and Ethnobotanical Databases (https:
//phytochem.nal.usda.gov/; accessed on 11 April 2022), IMPPAT (https://cb.imsc.res.
in/imppat/; accessed on 13 April 2022), PubChem (https://pubchem.ncbi.nlm.nih.gov/;
accessed on 15 April 2022), and Drug Bank (https://go.drugbank.com/; accessed on
18 April 2022). However, among the hundreds of compounds, the ones with a background
of antimicrobial activity in the literature were selected. The screening process involved
manually searching each compound in the PubMed database for its antimicrobial activity
against S. mutans or other oral pathogens. Finally, 110 compounds were shortlisted for
analysis. The 3D structures of these ligands were either collected from PubChem or drawn
using ChemSketch Version 12.00 (Table 8).

4.3. Computational Analysis

Computational analysis was performed using Debian Linux Operating System running
on a 3.10 GHz Intel® Core™ i5-4440 CPU (Acer, Bengaluru, India) with 8 GB RAM. For the
analysis of docking results, the Accelrys® Discovery Studio Visualizer (Accelrys Software
Inc., San Diego, CA, USA) that runs on the Windows operating system was used.

4.4. Homology Modeling and Model Validation

The 3D structures of target proteins were modeled using the SWISS-MODEL on-
line tool (https://swissmodel.expasy.org/ accessed on 20 April 2022) [61]. The modeled
structures were assessed and validated using the Ramachandran plot analysis.

4.5. Molecular Docking

The target proteins were prepared by removing the water molecules using Discovery
Studio. The parameters for docking were set up by using the graphical user interface (GUI)
of AutoDock Tools [62]. The preparation of the target protein structure involves the addition
of hydrogen atoms and formal charges. The number of rotatable bonds and determination
of root for the ligand were set to default. Later, molecular docking was performed using
AutoDock 4.2. The AutoGrid4 program of AutoDock allowed the generation of grid maps
for target proteins embedded in a three-dimensional grid of manually set parameters
(Table 9).

https://phytochem.nal.usda.gov/
https://phytochem.nal.usda.gov/
https://cb.imsc.res.in/imppat/
https://cb.imsc.res.in/imppat/
https://pubchem.ncbi.nlm.nih.gov/
https://go.drugbank.com/
https://swissmodel.expasy.org/
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Table 8. List of ligands selected from three plants, A. indica, M. citrifolia, and S. persica.

Azadirachta indica

6-desacetyllnimbinene Margocin Oleic acid
Arachidic acid Meliacinanhydride Palmitic acid
Azadirachtin A Meliantrol Palmitoleic acid
Azadirachtin B Nimbandiol Quercetin
Azadiradione Nimbidiol Salanin
Azadirone Nimbin Stearic acid
Behenic acid Nimbinene Stigmasterol
Beta-sitosterol Nimbinone Vepinin
Campesterol Nimbione Vilasinin
Citrostadienol Nimbolicin Zafaral
Fraxinellone Nimbolide α-tocopherol
Gadoleic acid Nimbolin A β-tocopherol
Isomeldenin Nimbolin B γ-tocopherol
Linoleic acid Nimocinol Isofucosterol
Linolenic acid Nimocinolide δ-tocopherol

Morinda citrifolia

2-methoxy-1,3,6-trihydroxyanthraquinone Deacetylasperuloside Nordamnacanthal
6R-hydroxyadoxoside Dehydromethoxygaertneroside Octanoic acid (caprylic acid)
Americanin A Epi-dihydrocornin Retinol
Ascorbic acid L-asperuloside Rubiadin

Asperulosidic acid Methyl
alpha-d-fructofuranoside Rubiadin-1-methyl ether

Borreriagenin Methyl beta-d-fructofuranoside Rutin
Caproic acid Morindacin Scopoletin
Citrifolinin B epimer a Morindone Ursolic acid
Citrifolinin B epimer b Narcissoside
Citrifolinoside Nicotifloroside

Salvadora persica

1H-Pyrazole-1-carbothioamide Catechin Pyrrolidine
1-triacantanol Cineole Salvadoside
3, 5-Dithiahexanol 5, 5-dioxide Epicatechin Salvadourea
5-O-caffeoylquinic acid Farnesol Syringin
5α-Androstan-16-one, cyclic ethylene mercaptole Glycerin Theobromine
Benzyl urea Humulene Trigonelline
Beta-sitosteryl arabinosyl vanilloyl stearate Kaempferol α-thujones
Borneol Limonene β-cymene
Bornyl acetate Linalool β-myrcene
Butanediamide Naringenine β-santatol
Caffeine N-benzyl- 2-phenylacetamide β-thujones
Camphor N-benzyl-benzamide
Caryophyllene Octacosanol

Table 9. List of parameters used to generate grid on target proteins for molecular docking.

Gene Name No. of Grid Points in Axes
(X, Y, Z) No. of Grid Points in Å Grid Center Coordinates (X, Y, Z)

CiaR 260, 160, 300 0.375 49.202, 21.493, −15.155
LepC 150, 250, 200 0.375 32.025, 56.24, 14.572
OppC 150, 100, 120 0.375 67.03, 139.688, 246.646
SecA 300, 300, 300 0.375 −7.808, 13.046, 09.175
SMU1784c 100, 100, 120 0.375 −30.648, 25.537, 8.584
SMU659 (SpaR) 250, 260, 300 0.375 −56.159, 24.702, −77.258

The binding energies between the target protein and ligand were calculated by run-
ning the AutoDock4 program using pre-set grid maps. The result analysis was performed
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using the GUI of AutoDock Tools and Discovery Studio. The binding energies for various
conformations of the ligand with the target proteins were determined, and the best confor-
mation was chosen based on the binding energy and the number of hydrogen bonds that
they formed with the protein.

4.6. Molecular Dynamics

The protein–ligand complexes (PLCs) were prepared using PyMOL [63], and these
PLCs were taken as input for Molecular Dynamics (MD) simulations (Table 10). The MD
simulation of PLCs aids in the visualization of target binding sites and also provides infor-
mation concerning the binding stability of the PLCs under physiological conditions. The
Desmond module of Schrödinger was used to perform MD simulations (academic license,
Version 2020-1) [64]. Initially, an explicit water model was prepared as an orthorhombic
simulation box with Simple Point-Charge (SPC). This was designed with the builder panel
of the system in such a way that a minimum distance of 10 Å is maintained between the pro-
tein surface and the solvent surface. Then, the PLCs with receptors were solvated with the
orthorhombic TIP3P water model [65]. The addition of counter ions and limitation of salt
concentration of the physiological system to 0.15M was performed for the neutralization of
the solvated system (Table 11).

Table 10. Details of Protein–Ligand Complex (PLC).

Protein Name CiaR LepC OppC SecA SMU1784c SpaR Yidc2

Total Residues 446 130 49 758 83 434 219
Protein Chain(s) A, B A C A A A, B A
Residue in
Chain(s) 223, 223 130 49 758 83 217, 217 219

No. of Atoms 7188 2104 746 12072 1324 7122 3509
No. of Heavy
Atoms 3572 1043 356 6059 633 3520 1710

Atoms Charge −24 9 −1 −24 14 4 9
Ligand name Campesterol Meliantrol Stigmasterol Citrostadienol Citrostadienol Isofucosterol Ursolic acid

No. of Atoms 77 (total)
29 (heavy)

79 (total)
33 (heavy)

78 (total)
30 (heavy)

81 (total)
31 (heavy)

81 (total)
31 (heavy)

78 (total)
30 (heavy)

81 (total)
33 (heavy)

Atomic Mass
[a.u.] 400.694 462.676 412.705 426.732 426.732 412.705 456.715

Molecular
Formula C28H48O C28H46O5 C29H48O C30H50O C30H50O C29H48O C30H48O3

No. of
Fragments 1 1 2 2 2 2 1

No. of Rotatable
Bonds 6 7 6 6 6 6 3

Table 11. Details of counterions and salt concentration added for simulation.

Protein–Ligand Complex Type No. of Atoms Concentration
[mM] Total Charge

CiaR–campesterol Na 92 68.698 92
Cl 68 50.777 −68

LepC–meliantrol Na 32 50.492 32
Cl 41 64.693 −41

OppC–stigmasterol Na 1 4.283 1
Cl - - -

SecA–citrostadienol
Na 101 66.292 101
Cl 77 50.54 −77

SMU1784c–citrostadienol
Na 12 50.811 12
Cl 26 110.09 −26

SpaR–isofucosterol Na 55 50.916 55
Cl 59 54.62 −59

Yidc2–ursolic acid
Na - - -
Cl 9 15.519 −9
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Then, the PLC system was designated with the OPLS AA force field [66]. For the
RESPA (reversible reference system propagator algorithms) integrator [67], Nose–Hoover
chain thermostat [68], and Martyna–Tobias–Klein barostat, a relaxation time of two seconds
was used. The equilibrated system was used to perform the final production process of MD
simulations. In this study, the default parameters set for relaxation before MD simulations
include a time duration of 100 ns, temperature of 310 K, a pressure of 1.0 bar with NPT
(Isothermal–Isobaric ensemble, constant temperature, constant pressure, constant number
of particles) ensemble [69] (Table 12).

Table 12. Details of default parameters set before simulation.

Protein–Ligand
Complex Ensemble Temperature

[K]
Simulation
Time [ns] No. of Atoms No. of Water

Molecules Charge

CiaR_campesterol NPT 310.1 100.102 80,472 24,349 0
LepC_meliantrol NPT 310.1 101 36,825 11,523 0
OppC_stigmasterol NPT 310.1 100.102 13,560 4245 0
SecA_citrostadienol NPT 310.1 101 95,434 27,701 0
SMU1784c_citrostadienol NPT 310.1 101 14,325 4294 0
SpaR_isofucosterol NPT 310.1 101 66,234 19,640 0
Yidc2_ursolic acid NPT 310.1 100.102 35,231 10,544 0

The MD simulation tool was used to run the simulation, and the output file was used
to retrieve trajectories and create the movie. The output file in .cms format was imported
into the software, and the created simulation movie was exported at a higher resolution of
1280 × 1024 px for better quality. The trajectory of the overall MD simulation process was
written in 1000 frames. The frames of the protein backbone were aligned to the backbone
of the first frame. This provides a better understanding of the stability of the PLCs during
MD simulations. Finally, the Root Mean Square Deviation (RMSD) and Root Mean Square
Fluctuation (RMSF) of PLCs and the simulation interaction diagrams were analyzed [57,70].
For each protein–ligand complex, three simulations studies were run, and the best run was
taken for analysis.

The free binding energies of the protein and ligand complexes were also examined
using Molecular Mechanics, the Generalized Born model, and Solvent Accessibility (MM-
GBSA). The “thermal_MMGBSA.py” script and “MM-GBSA ∆G Bind:” parameter from
the Prime/Desmond module of the Schrodinger suite were employed to carry out the
post-MM-GBSA analysis [71].

4.7. ADMET Analysis

The ADMET properties of the high binding ligands were analyzed using the SwissADME
online tool (http://www.swissadme.ch; accessed on 10 May 2022) [72] and pkCSM online
tools (http://biosig.unimelb.edu.au/pkcsm/prediction; accessed on 10 May 2022) [73].
The input was given as SMILES notation of the ligands, and the output was retrieved as a
“.csv” file. In SwissADME, the BOILED-Egg plot and radar plot for all the leads were also
retrieved as a single image [74]. The ADMET analysis helps to predict the drug-likeness of
the top hits.

5. Conclusions

S. mutans is a major contributor to dental caries. In this study, an in silico approach
was employed to identify a plant metabolite with potential efficacy against specific target
proteins of S. mutans involved in quorum sensing. The selected target proteins included:
Membrane protein insertase YidC 2, Permease OppC, Putative Eep protein-like protein,
Putative transmembrane protein, Putative response regulator CiaR, Putative response
regulator SpaR, and Signal peptidase I LepC. The three-dimensional models of these target
proteins were generated using SWISS-MODEL and validated using the Ramachandran plot.
Plant metabolites derived from A. indica (Neem), M. citrifolia (Noni), and S. persica (Miswak)

http://www.swissadme.ch
http://biosig.unimelb.edu.au/pkcsm/prediction
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were evaluated for their potential binding affinity to the selected target proteins. Molecular
docking studies were performed using AutoDock Tools. From a total of 110 ligands, 6 top
hits were identified for each target protein. These ligands, namely campesterol, meliantrol,
citrostadienol, stigmasterol, isofucosterol, and ursolic acid, were subjected to molecular
simulation analysis to assess their stability and interaction patterns. The highly interacted
amino acid residues identified were ASP86, ARG182, ILE179, GLU143, ASP237, PRO101,
and VAL84, corresponding to the proteins CiaR, LepC, OppC, SecA, SMU1784c, SpaR,
YidC2, respectively. Furthermore, the ADME characteristics of the identified ligands were
evaluated using the SwissADME program. Collectively, the results suggest that these
phytosterols have the potential to serve as quorum-quenching agents. However, further
in vitro analysis is required to confirm their efficacy against S. mutans and to enable their
application in the treatment of dental caries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28145514/s1. Figure S1: Ramachandran plot of modelled
target proteins using structure assessment tool of the SWISS-MODEL: (a) ciaR; (b) lepC; (c) oppC;
(d) secA; (e) smu1784c; (f) spaR and (g) yidc2, (h) represents the transmembrane localization of target
protein yidc2. Figure S2: 3D structure of target proteins predicted using SWISS-MODEL online tool:
(a) ciaR; (b) lepC; (c) oppC; (d) secA; (e) smu1784c; (f) spaR and (g) yidc2.
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M.S., E.T., J.C.R., S.R.K.P., S.K. and V.B.; software, M.S. and P.M.; validation, K.S., S.K. and S.R.K.P.;
formal analysis, S.C.V.M., E.B., P.M. and E.T.; investigation, S.C.V.M. and J.C.R.; resources, K.S. and
P.M.; data curation, S.C.V.M.; writing—original draft preparation, S.C.V.M. and E.T.; writing—review
and editing, S.C.V.M., E.T., S.R.K.P., S.K. and K.S.; visualization, S.C.V.M. and K.S.; supervision,
K.S.; project administration, K.S.; funding acquisition, P.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Science and Engineering Research Board of India
(Grant number: EMR/2016/003035 to K.S.) and the Department of Biotechnology (Grant num-
ber: BT/PR36633/TRM/120/277/2020 to K.S. and S.K.). The article processing charges were funded
by the National Science Centre, Poland, Grant number 2019/35/B/NZ8/04523 to P.M.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Additional data may be available upon personal request.

Acknowledgments: S.C.V.M. thanks the Kalasalingam Academy of Research and Education for
University Research Fellowship. S.M. is thankful to BITS-Pilani, Pilani campus, for providing the
Computational facilities.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Not applicable.

References
1. Loesche, W.J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 1986, 50, 353–380. [CrossRef] [PubMed]
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