A Review of the Popular Uses, Anatomical, Chemical, and Biological Aspects of Kalanchoe (Crassulaceae): A Genus of Plants Known as “Miracle Leaf”
Abstract
:1. Introduction
2. Results and Discussion
2.1. Traditional Uses
2.2. Botanical Description
Species | Macro Aspects | Micro Aspects | References |
---|---|---|---|
K. beharensis | The largest species of the genus, with 3 m in height; unbranched stems; leaves crowded at the branch tips; lobed, covered in a dense felt; ranging from 12–35 cm in length and 7–35 cm in width. | [6] | |
K. blossfeldiana | Dark green, succulent, and perennial plant, with scallop-edged leaves and large umbels of flower clusters held above the foliage. The fleshy, dark shiny green leaves have lobed edges and can reach 7.7 cm in length and 3.8 cm in width. Floral colors range from traditional red to yellow, orange, salmon and pink. | [104] | |
K. daigremontiana | Perennial short-lived succulent herb; monocarpic multi-annuals. The most characteristic feature of the species is its method of asexual reproduction by auto-propagation. Flowering tends to be sporadic, in winter, and, when it occurs, the main stalk elongates vertically, developing a terminal inflorescence of small, bell-shaped, pendulous flowers with a pinkish or purple corolla. The stem is unbranched, up to 1.5 m in height. The leaves are thick, fleshy, lanceolate, tapered at the apex and serrated in the margins, dark green colored, and have purple-brown spots on the abaxial side. The apex bears hydathodes and adventitious buds, from which propagules are formed and developed. | The epidermis is single-layered, with parenchymatic cells, convex outer walls surface, wax patches in cuticles, is smooth-undulating, and striated only on subsidiary cells. The leaves are amphistomatic, with anisocytic stomata. The subepidermal mesophyll consists of one or several layers of small, closely adherent cells. The central vascular bundles are surrounded by perivascular sheaths composed of mesophyll cells. Between the epidermis and mesophyll in the petioles there are 1–3 layers of compact angular collenchyma. The vascular bundles are collateral. In the central veins in the petiole and the leaf are three large bundles. The cross-sections show fine lateral vascular bundles surrounding large bundles in the petioles and leaf blades. The different tissues of the leaf contain numerous phenolic idioblasts, accumulating phenolic compounds in their vacuoles, present in epidermal cells, in the subepidermal layer, near the vascular elements, around the large vascular bundles in the leaf petioles, and surrounding the smaller vascular bundles, dispersed in the parenchyma as single cells or form multicellular aggregates. | [6,12,29,97,105,106] |
K. delagoensis | It has dark purplish, speckled, tubular leaves, which are filled with plantlets. It typically grows to about 1 m in height before blooming. It overwinters as a terminal inflorescence bearing orange or red pendant bell-shaped flowers and then dies. | The leaves are tubular and have 6–8 apical buds. The epidermal cells are uniseriate with sinuous anticlinal walls. The leaves are amphistomatic with anisocytic stomata. The mesophyll has regular chlorenchyma. The vascular system has collateral bundles distributed in the form of an arc. Anthocyanin idioblasts occur throughout the leaf blade, in the epidermis; hypodermis; layer beneath the hypodermis; scattered in the chlorenchyma; surrounding the vascular bundles; vascular tissues; and apical buds. | [6,107] |
K. ceratophylla | Perennial, succulent, and glabrous species. | [16] | |
K. laciniata | Perennial or biennial herb that grows from 30 cm to 1.5 m in height. Its leaves are oval, opposite, fleshy, simple, short-petiolate, glossy, and pale green to dark green in color. They have dentate to crenate leaf margins, with a cylindrical herbaceous stem and fleshy petiole. | The secretory structures found in the stems, petioles and leaf blades consist of idioblasts that contain anthocyanins. The epidermis of K. laciniata is a single layer with adhering and oblong cells. The outer cell wall is convex and covered with cuticles. The leaves are amphistomatic and the chlorenchyma tissue is uniform. The cells of the chlorenchyma tissue have irregular, spherical-ellipsoidal shapes. The vacuoles of some mesophyll cells located near the epidermis, vascular bundles, and hydathodes contain phenolic compounds. The leaves show the presence of adaptive traits that enable them to survive in dry environments | [42,44,108] |
K. laxiflora | Perennial species with multicolored leaves, that are crenate, green in shady settings, and pink or purple in bright sun. The flower buds are almost transparent but when they open, they turn orange. | [6] | |
K. marmorata | The leaves are large, oval, blue-green colored, with purple markings, arranged in stacked, opposite pairs to a height of 30 cm. The brown spots become brighter during summer dormancy and in strong sunlight; during winter they become pale or disappear altogether. | [3,6] | |
K. orgyalis | It is a much-branched slow-growing shrub that can reach approximately 1–2 m in height. It has spoon-shaped leaves, which are bronze to gray on the underside, and felted on the top of each leaf, with cinnamon-toned fuzz. Late winter or early spring brings bright yellow flowers in terminal clusters at the branch tips. | [6] | |
K. pinnata | An erect, succulent, perennial and glabrous plant that grows up to 1.5 m in height. The species reproduces through seeds and from leaf bulbils. The freshly dark green leaves are large (12–18 cm and 6–8 cm in size), simple, opposite, ovate, or elliptic, have serrate-crenate margins with buds, an obtuse apex, asymmetric base, reticulate venation, and long petiole. The flowers are pendulous, dark, and bell-like. The stems are tall, hollow, obtuse, and four-angled. The fruits are enclosed in the calyx and corolla. The seeds are small, smooth, oblong-ellipsoid, rarely striate, and smooth. | The leaves are broadly shallow on the adaxial side and convex on the abaxial side. The epidermal layer is thin, with small prominent cells on the adaxial side and less distinct on the abaxial side. The ground tissue of the midrib is parenchymatous and homogenous. The cells are circular or angular and compact. The vascular strand is single, collateral, small, and hemispherical; it consists of a thick horizontal band of xylem and a wide band of phloem. The lamina is uniformly flat with an even surface. The mesophyll tissue is not differentiated into palisade and spongy parenchyma. The stomata are anisocytic. The leaf petiole shows prismatic crystals of calcium oxalate embedded in parenchymatous cells, and annular and spiral vessels. In the powder, part of the vascular bundle, epidermis, annular and spiral xylem vessels were observed. The secretory structures found in the stems, petioles, and leaf blades consisted of idioblasts containing anthocyanins. | [12,42,44,63,78,79,106,109] |
K. pumila | It is a 30 cm high shrublet with small, fleshy leaves covered with powdery deposits formed by calcium carbonate sediments. The leaves are obovate (2.8 cm long, 1.7 cm wide, and 2.5 mm thick), opposite, wedge-shaped, and have a sinuate basis and dentate-serrate margins. | The reddish-brown or purple color appears along the leaf margins after exposure to sunlight due to the presence of anthocyanins in the epidermal cells and mesophyll vacuoles. The epidermal cells are polygonal–isodiametric or slightly oblong; they are more numerous on the abaxial surface. The anticlinal walls are curved or straight and are convex on the outer walls. The walls are thickened due to the presence of wax. The cuticula is smooth or slightly undulating, elevated or with striae, with sparse white or gray irregularly shaped and sized wax structures on the surface. The leaves are amphistomatic, with anisocytic stomata. The vascular bundles are collateral and closed. The sheath cells, or phloem, xylem parenchyma cells, subepidermal ground tissue, mesophyll tissue, and chlorenchyma tissue cells may contain tannin substances. | [110] |
K. rhombopilosa | Small plant (no more than 10 cm tall), which blooms in spring. The leaves are hard and triangular, with a pale and wavy margin and green-yellow flowers with red lines. | [6] | |
K. synsepala | One of the more unusual species of the genus because it is one of the few that produces stolon (lateral spreading stems). The leaves are arranged in rosettes and are thick, succulent, smooth, shiny, and green, with violet-red marks along the margins. This species is dormant in winter. The flowers are small, hairy, tubular, numerous, and pink. | [6] | |
K. tetraphylla | The leaves are silvery pale green, which turn red in bright sun and revert to green in active growth. It has a large rosette of rounded or wavy leaves. The inflorescence is terminal and erect, with densely clustered panicles of greenish, waxy, narrow, urn-shaped flowers. | [6] | |
K. tomentosa | The leaves are silvery, about 30 cm tall, reflecting the sun’s rays, lessening the chances of leaves overheating. | Its dense trichomes arise in triplets and perform a vital function in dry environments, helping to reduce the transpiration of water from the leaf surface | [6] |
K. × houghtonii | A perennial erect herb, monocarpic, and can reach a height of up to 1.5 m. The leaves are opposite or verticillate, petiolate, with the leaf blade simple. The leaves vary from triangular to narrowly lanceolate, are serrate and mottled. The species forms corymbiform inflorescences of more than 100 pendulous, tetra or pentameric, dark-red flowers. | [102] |
2.3. Chemical Composition
Extract and/or Plant Part | Compound Name | Species | References |
---|---|---|---|
Dichloromethane extract; methanol extract of aerial parts; flowers | bryophyllin A (bryotoxin C) (1) | K. daigremontiana; K. pinnata; K. delagoensis; K. ceratophylla | [11,32,86,111,112,113,114,115] |
Aqueous extract from the roots or whole plant; methanol extract of aerial parts | bryophyllin B (2) | K. daigremontiana; K. ceratophylla; K. delagoensis; K. pinnata | [30,111,113,114,116] |
Leaves, dichloromethane extract; methanol extract of the leaves; dichloromethane fraction from methanol extract | bryophyllin C (3) daigremontianin (4) methyl daigremonate (5) | K. daigremontiana; K. pinnata | [11,112,117] |
Dichloromethane extract; aqueous extract from the roots | bersaldegenin-1,3,5-orthoacetate (6) | K. daigremontiana; K. pinnata; K. delagoensis | [11,30,32,86,116] |
Aqueous extract from the roots; ethanol and dichloromethane extracts from the roots; leaves | bersaldegenin 1-acetate (7) | K. daigremontiana; K. pinnata; K. delagoensis | [11,30,32,86] |
Leaves; ethanol and dichloromethane extracts from the leaves | bersaldegenin 3-acetate (8) | K. pinnata | [11,86,114] |
Aqueous extract from the roots | bersaldegenin (9) | K. daigremontiana | [30] |
Ethanol and dichloromethane extracts from the leaves | bufalin (10) | K. pinnata | [86] |
Flower heads | bryotoxin A (11) | K. delagoensis | [111] |
Aqueous extract from the roots; flowers | bryotoxin B (12) | K. daigremontiana; K. delagoensis; K. pinnata | [30,111,115,116] |
Aqueous leaf extract; leaves | bufadienolide A (13) bufadienolide B (14) | K. daigremontiana | [118] |
Aqueous extract from the roots | daigredorigenin 3-acetate (15) | K. daigremontiana | [30,116] |
11α,19-dihydroxytelocinobufagin (16) | |||
Methanol extract of aerial parts | hellebrigenin (17) | K. ceratophylla | [113] |
Methanol extract of aerial parts | hellebrigenin-3-acetate (18) | K. ceratophylla; K. daigremontiana | [113,116] |
Methanol extract of aerial parts | kalanchoside A (19) kalanchoside B (20) kalanchoside C (21) | K. ceratophylla | [113] |
Methanol extract of aerial parts | thesiuside (22) | K. ceratophylla | [113] |
Ethanol extract; whole plant | kalantuboside A (23) kalantuboside B (24) | K. delagoensis | [32] |
Aqueous extract from the roots | 1β,3β,5β,14β,19-pentahydroxybufa-20,22-dienolide (kalandaigremoside A) (25) 19-(acetyloxy)-1β,3β,5β,14β-tetrahydroxybufa-20,22-dienolide (kalandaigremoside B) (26) 3β-(O-α-L-rhamnopyranosyl)-5β,11α,14β,19-tetrahydroxybufa-20,22-dienolide (kalandaigremoside C) (27) 19-(acetyloxy)-3β,5β,11α,14β-tetrahydroxybufa-20,22-dienolide (kalandaigremoside D) (28) 3β,5β,11α,14β,19-pentahydroxy-12-oxo-bufa-20,22-dienolide (kalandaigremoside E) (29) 19-(acetyloxy)-3β,5β,11α,14β-tetrahydroxy-12-oxo-bufa-20,22-dienolide (kalandaigremoside F) (30) 19-(acetyloxy)-1β,3β,5β,11α,14β-pentahydroxy-12-oxo-bufa-20,22-dienolide (kalandaigremoside G) (31) 1β-(acetyloxy)-3β,5β,11α,14β,19-pentahydroxy-12-oxo-bufa-20,22-dienolide (kalandaigremoside H) (32) | K. daigremontiana | [30] |
Ethyl acetate extract of the fresh; whole plant | lanceotoxin A (33) lanceotoxin B (34) | K. lanceolata | [119] |
Methanol extract; whole plant | kalanhybrin A (35) kalanhybrin B (36) kalanhybrin C (37) | K. hybrida | [120] |
Ethanol extract of the whole plant | kalantubolide A (38) kalantubolide B (39) | K. delagoensis | [32] |
Extract and/or Plant Part | Compound Name | Species | References |
---|---|---|---|
Flower; ethanol leaf extractFlowers; Leaves | quercetin (40) | K. pinnata K. delagoensis K. blossfeldiana; K. mortagei; K. fedtschenkoi; K. daigremontiana; K. longiflora K. ceratophylla | [32,37,121,122,123,124,125,126,127] |
Flower extractFlowers | Quercetin 3-O-β-glucoside (quercetin 3-O-glucoside; isoquercetin; isoquercetrin) (41) | K. pinnata; K. blossfeldiana; K. daigremontiana; K. delagoensis | [49,122,123,127,128] |
Flower extractFlowers | quercetin 3-O-β-d-glucuronopyranoside (miquelianin) (42) | K. pinnata | [122] |
Aqueous and methanolic leaf extractsLeaves | quercetin 3-O-rhamnoside (quercitrin) (43) | K. pinnata; K. delagoensis; K. longiflora; K. ceratophylla | [42,82,122,123,125,126,129,130] |
Flowers, Aqueous leaf extractFlower, Leaves | quercetin-3-O-β-d-xylopyranosyl (1→2)-α-L-rhamnopyranoside (44) | K. blossfeldiana K. daigremontiana | [118,127] |
Aqueous and methanolic leaf extracts; flower extractFlowers, Leaves | quercetin 3-O-α-l-arabinopyranosyl-(1→2)-α-l-rhamnopyranoside (45) | K. pinnata | [8,82,83,122,129,130] |
Methanol leaf extractLeaves | quercetin 3-O-α-l-arabinopyranosyl-(1→2)-α-l-rhamnopyranoside-7-O-β-d-glucopyranoside (46) | K. pinnata | [129] |
Ethanol leaf extractLeaves | quercetin 3-O-rutinoside (rutin) (47) | K. pinnata | [121] |
Methanolic and hydroethanolic extracts from the leavesLeaves | kaempferol (48) | K. delagoensis; K. pinnata; K. fedtschenkoi; K. longiflora; K. ceratophylla | [2,37,43,123,125,126,129,131] |
Water and ethanol extracts Leaves | kaempferol 3,7-O-dirhamnoside (kaempferitrin) (49) kaempferol 3-O-β-d-xylopyranosyl-(1→2)-α-L-rhamnopyranoside-7-O-β-d-glucopyranoside (daigremontrioside) (50) | K. daigremontiana | [49] |
Leaves | kaempferol 7-O-rhamnoside (51) | K. delagoensis; K. longiflora | [123,125] |
Methanol leaf extractLeaves | kaempferol 3-O-β-d-xylopyranosyl-(1→2)-α-l-rhamnopyranoside (kaempferol 3-O-xylosyl-rhamnoside) (52) | K. pinnata; K. daigremontiana | [49,118,129] |
Leaves | kaempferol 3-O-galactoside (trifolin) (53) | K. delagoensis | [123] |
Leaves | kaempferol 3-rutinoside (nicotiflorin) (54) | K. pinnata; K. longiflora | [70,125] |
Leaves | kaempferol- 3-O-robinoside-7-O- rhamnoside (robinin) (55) | K. delagoensis; K. longiflora | [123,125] |
Aqueous and methanolic leaf extractsLeaves | kaempferol 3-O-α-l-arabinopyranosyl (1→2)-α-l-rhamnopyranoside (kapinnatoside) (56) | K. pinnata | [83,129,130] |
Ethyl acetate extract of the wholeWhole plant | kaempferol 3-O-α-l-(2-O-acetyl)rhamnopyranoside 7-O-α-l-rhamnopyranoside (57) kaempferol 3-O-α-l-(3-O-acetyl)rhamnopyranoside 7-O-α-l-rhamnopyranoside (58) kaempferol 3-O-α-l-(4-O-acetyl)rhamnopyranoside 7-O-α-l-rhamnopyranoside (59) kaempferol 3-O-α-d-glucopyranoside 7-O-α-l-rhamnopyranoside (60) afzelin (kaempferol 3-O-α-l-rhamnopyranoside) (61) α-rhamnoisorobin (kaempferol 7-O-α-l-rhamnopyranoside) (62) | K. pinnata | [132] |
Aqueous leaf extractLeaves | 4′,5-dihydroxy-3′,8-dimethoxyflavone 7-O-β-d-glucopyranoside (63) | K. pinnata | [130] |
Aerial parts; methanol extract from the stemsStems | eupafolin (6-methoxyluteolin) (64) | K. ceratophylla | [17,126] |
Aerial parts | eupafolin 4′-O-rhamnoside (65) | K. ceratophylla | [126] |
Ethanol extract of the wholeWhole plant | 4′-methoxyherbacetin (66) | K. delagoensis | [32] |
Stems and leaves; Leaves | kalambroside A (67) kalambroside B (68) kalambroside C (69) patuletin 3-O-(4′-O-acetyl-α-l-rhamnopyranosyl)-7-O-(3′-O-acetyl-α-l-rhaminopyranoside) (70) patuletin 3-O-α-l-rhamnopyranosyl-7-O-(3′-O-acetyl-α-L-rhaminopyranoside) (71) | K. laciniata | [133] |
Stems and leaves; hydroethanolic extract from leavesStems; Leaves | patuletin 3-O-α-l-rhamnopyranosyl-7-O-α-l-rhamnopyranoside (72) | K. laciniata | [40,44,133] |
Methanol leaf extract Leaves | myricetin 3-O-α-l-arabinopyranosyl-(1→2)-α-l-rhamnopyranoside (73) myricitrin (myricetin 3-O-α-l-rhamnopyranoside) (74) diosmine (diosmetin 7-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside) (75) acacetin 7-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (76) | K. pinnata | [129] |
Ethanol leaf extractLeaves | luteolin (77) | K. ceratophylla; K. pinnata | [121,126] |
Ethanol leaf extractLeaves | luteolin 7-O-β-d-glucoside (78) | K. pinnata | [121] |
Class | Extract and/or Plant Part | Compound Name | Species | References |
---|---|---|---|---|
Aurone | Aqueous root extractRoots | hovetrichoside C (79) | K. daigremontiana | [116] |
Coumarin | Aerial parts | 7-hydroxycoumarin (80) | K. ceratophylla | [126] |
Glycoside | Roots | KPB 100 (81) KPB 200 (82) schisandriside (83) | K. pinnata K. daigremontiana | [69,116] |
Glycoside | Aqueous root extract | schisandriside (83) | K. daigremontiana | [116] |
Lipid | Ethanol extract of the wholeWhole plant | taurolipid C (84) | K. delagoensis | [32] |
Megastigmane | Ethanol extract of the wholeWhole plant | (6S,7R,8R,9S)-6- oxaspiro-7,8-dihydroxymegastigman-4-en-3-one (tubiflorone) (85) | K. delagoensis | [32] |
Organic/ phenolichenolic acid | Leaves, ether leaves extract | ferulic acid (86) | K. delagoensis; Kalanchoe sp. K.daigremontiana K. pinnata; | [29,123,135,136] |
Ethanol extract of the wholeWhole plant; leavesLeaves | gallic acid (87) | K. delagoensis; Kalanchoe sp.; K. daigremontiana | [29,32,123,135] | |
Leaves; ether leaves extract | caffeic acid (88) | K. delagoensis; Kalanchoe sp.; K. longiflora; K. daigremontiana K. pinnata | [29,123,125,135,136] | |
Leaves | protocatechuic acid (89) | K. delagoensis; Kalanchoe sp.; K. daigremontiana | [29,123,135] | |
Ethanol extract of the whole plant; leaves; ether leaves extractWhole plant; Leaves | syringic acid (90) | K. delagoensis; Kalanchoe spp.; K. pinnata | [32,123,135] | |
Leaves | sinapic acid 91) | Kalanchoe sp. | [135] | |
Ethanol extract of the wholeWhole plant; leavesLeaves | vanillic acid (92) | K. delagoensis; Kalanchoe sp. | [32,135,136] | |
Leaves | chlorogenic acid (93) | Kalanchoe sp.; K. longiflora | [125,135] | |
Leaves; ether leaves extract | p-Coumaric acid (94) | Kalanchoe sp.; K. longiflora; K. daigremontiana K. pinnata | [29,125,135,136] | |
Leaves | β- resorcylic acid (95) | Kalanchoe sp. | [135] | |
γ-resorcylic acid (96) | ||||
Ethanol extract of the wholeWhole plant | cinnamic acid (97) 4-O-ethylgallic acid (98) methyl gallate (99) | K. delagoensis | [32] | |
Phenolic compounds | Whole plant | 4-O-ethylgallic acid (98) methyl gallate (99) 3,4-dimethoxyphenol (100) phloroglucinol (101) 3,4-dihydroxyallylbenzene (102) | K. delagoensis | [32] |
Phenanthrene | Leaves | bryophollenone (103) 2(9-decenyl) phenanthrene (104) | K. pinnata | [137] |
Steroid | Leaves | bryophyllol (105) 24-ethyl-25-hydroxycholesterol (106) | K. pinnata | [137] |
24-ethyl-25-hydroxycholesterol (106) | ||||
Ethanol extract of the wholeWhole plant | stigmasterol-O-d-glucoside (107) | K.delagoensis | [32] | |
Tocochromanol | Hexane leaf extractLeaves | α-tocopherol (108) γ-tocopherol (109) δ-tocopherol (110) β-tocomonoenol (111) γ-tocomonoenol (112) δ-tocomonoenol (113) | K. daigremontiana | [138] |
iterpeneTriterpene | Aerial parts; petroleum ether extract from flowers; methanol extract Flowers | friedelin (114) | K. fedtschenkoi; K. marnieriana; K. daigremontiana K. integra | [136,139,140] |
glutinone (115) | K. miniata | [139] | ||
glut-5-en-3- β-ol (glutinol) (116) | K. fedtschenkoi; K. daigremontiana K. integra | [136,139,140,141] | ||
Leaves | 18α-oleanane (117) α-amyrin acetate (118) | K. pinnata | [137] | |
α-amyrin acetate (118) | ||||
Leaves | β-amyrin acetate (119) | K. pinnata; K. miniata | [137,139] | |
Leaves; methanol extract | α-amyrin (120) | K. pinnata K. daigremontiana | [137,141] | |
Leaves; methanol extract | β-amyrin (121) | K. pinnata; | [137,140,141] | |
Leaves, petroleum ether extract from flowers; Flowers | bryophynol (122) Ψ-taraxasterol (123) bryophollone (124) | K. daigremontiana K. pinnata K. integra | [136,137] |
2.4. Pharmacological Activities
3. Methodology
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- POWO. Crassulaceae. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. 2023. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30000887-2 (accessed on 6 April 2023).
- Fernandes, J.M.; Cunha, L.M.; Azevedo, E.P.; Lourenco, E.M.G.; Fernandes-Pedrosa, M.F.; Zucolotto, S.M. Kalanchoe laciniata and Bryophyllum pinnatum: An updated review about ethnopharmacology, phytochemistry, pharmacology and toxicology. Rev. Bras. Farmacogn. 2019, 29, 529–558. [Google Scholar] [CrossRef]
- Smith, G.F.; Figueiredo, E.; Wyk, A.E. Chapter 4-The Genus Kalanchoe (Crassulaceae) in Southern Africa; Academic Press: Cambridge, MA, USA, 2019; pp. 23–28. [Google Scholar] [CrossRef]
- GBIF. Crassulaceae. The Global Biodiversity Information Facility. Published on the Internet. 2023. Available online: https://www.gbif.org/species/2406 (accessed on 15 June 2023).
- POWO. Kalanchoe. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. 2023. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30060186-2 (accessed on 6 April 2023).
- Akulova-Barlow, Z. Kalanchoe. Cactus Succul. J. 2009, 81, 268–276. [Google Scholar] [CrossRef]
- GBIF. Kalanchoe. The Global Biodiversity Information Facility. Published on the Internet. 2023. Available online: https://www.gbif.org/species/2985928 (accessed on 15 June 2023).
- Ferreira, R.T.; Coutinho, M.A.; Malvar, D.C.; Costa, E.A.; Florentino, I.F.; Costa, S.S.; Vanderlinde, F.A. Mechanisms Underlying the Antinociceptive, Antiedematogenic, and Anti-Inflammatory Activity of the Main Flavonoid from Kalanchoe pinnata. Evid. Based. Complement. Altern. Med. 2014, 2014, 429256. [Google Scholar] [CrossRef] [Green Version]
- Mawla, F.; Khatoon, S.; Rehana, F.; Jahan, S.; Shelley, M.R.; Hossain, S.; Haq, W.M.; Rahman, S.; Debnath, K.; Rahmatullah, M. Ethnomedicinal plants of folk medicinal practitioners in four villages of Natore and Rajshahi districts, Bangladesh. Am.-Eurasian J. Sustain. Agric. 2012, 6, 406–416. [Google Scholar]
- Molina, G.A.; Esparzab, R.; López-Mirandab, J.L.; Hernández-Martínez, A.R.; Espana-Sanchez, B.L.; Elizalde-Pena, E.A.; Estevez, M. Green synthesis of Ag nanoflowers using Kalanchoe daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf. B 2019, 180, 141–149. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Asztemborska, M.; Krauze-Baranowska, M.; Godlewska, S.; Gucwa, M.; Moniuszko-Szajwaj, B.; Stochmanl, A.; Ochocka, J.R. Identification of Flavonoids and Bufadienolides and Cytotoxic Effects of Kalanchoe daigremontiana Extracts on Human Cancer Cell Lines. Planta Med. 2020, 86, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Zawirska-Wojtasiak, R.; Jankowska, B.; Piechowska, P.; Szkudlarz, S.M. Vitamin C and aroma composition of fresh leaves from Kalanchoe pinnata and Kalanchoe daigremontiana. Sci. Rep. 2019, 9, 19786. [Google Scholar] [CrossRef] [Green Version]
- Okwu, D.E.; Josiah, C. Evaluation of the chemical composition of two Nigerian medicinal plants. Afr. J. Biotechnol. 2006, 5, 357–361. [Google Scholar]
- Kołodziejczyk-Czepas, J.; Nowak, P.; Wachowicz, B.; Piechocka, J.; Glowacki, R.; Moniuszko-Szajwaj, B.; Stochmal, A. Antioxidant efficacy of Kalanchoe daigremontiana bufadienolide-rich fraction in blood plasma in vitro. Pharm. Biol. 2016, 54, 3182–3188. [Google Scholar] [CrossRef]
- Kołodziejczyk-Czepas, J.; Stochmal, A. Bufadienolides of Kalanchoe species: An overview of chemical structure, biological activity and prospects for pharmacological use. Phytochem. Rev. 2017, 16, 1155–1171. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.R.; Peng, W.H.; Ho, Y.L.; Huang, S.C.; Huang, T.H.; Lai, S.C.; Ku, Y.R.; Tsai, J.C.; Wang, C.Y.; Chang, Y.S. Analgesic and anti-inflammatory activities of the methanol extract of Kalanchoe gracilis (L.) DC stem in mice. Am. J. Chin. Med. 2010, 38, 529–546. [Google Scholar] [CrossRef]
- Lai, Z.R.; Ho, Y.L.; Huang, S.C.; Huang, T.H.; Lai, S.C.; Tsai, J.C.; Wang, C.Y.; Huang, G.J.; Chang, Y.S. Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of Kalanchoe gracilis (L.) DC Stem. Am. J. Chin. Med. 2011, 39, 1275–1290. [Google Scholar] [CrossRef] [Green Version]
- Asiedu-Gyekye, I.J.; Antwi, D.A.; Awortwe, C.; N’guessan, B.B.; Nyarko, A.K. Short-term administration of an aqueous extract of Kalanchoe integra var. crenata (Andr.) Cuf leaves produce no major organ damage in Sprague-Dawley rats. J. Ethnopharmacol. 2014, 151, 891–896. [Google Scholar] [CrossRef]
- Asiedu-Gyekye, I.J.; Arhin, E.; Arthur, S.A.; N’guessan, B.B.; Amponsah, S.K. Genotoxicity, nitric oxide level modulation and cardio-protective potential of Kalanchoe integra var. crenata (Andr.) cuf leaves in murine models. J. Ethnopharmacol. 2022, 283, 114640. [Google Scholar] [CrossRef]
- Awortwe, C.; Manda, K.V.; Avonto, C.; Khan, I.S.; Walker, L.A.; Boiuc, P.J.; Rosenkranz, B. In vitro evaluation of reversible and time-dependent inhibitory effects of Kalanchoe crenata on CYP2C19 and CYP3A4 activities. Drug Metab. Lett. 2015, 9, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Perez, P.; Lozano-Milo, E.; Landin, M.; Gallego, P.P. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. Pharmaceuticals 2020, 13, 444. [Google Scholar] [CrossRef]
- Kamgang, R.; Foyet, A.F.; Essame, J.L.; Ngogang, J.Y. Effect of methanolic fraction of Kalanchoe crenata on metabolic parameters in adriamycin-induced renal impairment in rats. Indian J. Pharmacol. 2012, 44, 566–570. [Google Scholar] [CrossRef]
- Kuete, V.; Fokou, F.W.; Karaosmanoğlu, O.; Beng, V.P.; Sivas, H. Cytotoxicity of the methanol extracts of Elephantopus mollis, Kalanchoe crenata and 4 other Cameroonian medicinal plants towards human carcinoma cells. BMC Complement. Altern. Med. 2017, 17, 280. [Google Scholar] [CrossRef] [Green Version]
- Mutie, F.M.; Mbuni, Y.M.; Rono, P.C.; Mkala, E.M.; Nzei, J.M.; Phumthum, M.; Hu, G.-W.; Wang, Q.-F. Important Medicinal and Food Taxa (Orders and Families) in Kenya, Based on Three Quantitative Approaches. Plants 2023, 12, 1145. [Google Scholar] [CrossRef]
- Ngezahayo, J.; Havyarimana, F.; Hari, L.; Stévigny, C.; Duez, P. Medicinal plants used by Burundian traditional healers for the treatment of microbial diseases. J. Ethnopharmacol. 2015, 173, 338–351. [Google Scholar] [CrossRef]
- Odukoya, J.O.; Odukoya, J.O.; Mmutlane, E.M.; Ndinteh, D.T. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors insub-Saharan Africa. Plants 2022, 11, 1387. [Google Scholar] [CrossRef]
- Raadts, E. The Genus Kalanchoe (Crassulaceae) in Tropical East Africa. Willdenowia 1997, 8, 101–157. [Google Scholar]
- Akentieva, N.P.; Shushanov, S.S.; Gizatullin, A.R.; Prikhodchenko, T.R.; Prikhodchenko, T.R.; Shkondina, N.I.; D’agaro, E. The Effect of Plant Extracts Kalanchoe daigremontiana and Aloe arborescens on the Metabolism of Human Multiple Myeloma Cells. Biointerface Res. Appl. Chem. 2021, 11, 13171–13186. [Google Scholar] [CrossRef]
- Chernetskyy, M.; Woźniak, A.; Skalska-Kamińska, A.; Żuraw, B.; Blicharska, E.; Rejdak, R.; Donica, H.; Weryszko-Chmielewska, E. Structure Of Leaves And Phenolic Acids in Kalanchoe daigremontiana Raym.-Hamet & H. Perrier. Acta Sci. Pol. Hortorum Cultus 2018, 17, 137–155. [Google Scholar] [CrossRef]
- Moniuszko-Szajwaj, B.; Pecio, L.; Kowalczyk, M.; Stochmal, A. New Bufadienolides Isolated from the Roots of Kalanchoe daigremontiana (Crassulaceae). Molecules 2016, 21, 243. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.J.; Yang, M.Y.; Leu, I.Y.; Chen, C.; Wan, C.F.; Chang, M.Y.; Chang, C.J. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus. BMC Complement. Altern. Med. 2012, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.C.; Huang, G.J.; Liaw, C.C.; Yang, C.S.; Yang, C.P.; Kuo, C.L.; Tseng, Y.H.; Wang, S.Y.; Chang, W.T.; Kuo, Y.H. A new megastigmane from Kalanchoe tubiflora (Harvey) Hamet. Phytochem. Lett. 2013, 6, 379–382. [Google Scholar] [CrossRef]
- Huang, H.C.; Lin, M.K.; Yang, H.L.; Hseu, Y.C.; Liaw, C.C.; Tseng, Y.H.; Tsuzuki, M.; Kuo, Y.H. Cardenolides and bufadienolide glycosides from Kalanchoe tubiflora and evaluation of cytotoxicity. Planta Med. 2013, 79, 1362–1369. [Google Scholar] [CrossRef]
- Schmidt, C.; Fronza, M.; Goettert, M.; Geller, F.; Luik, S.; Flores, E.M.M.; Bittencourt, C.F.; Zanetti, G.D.; Heinzmann, B.M.; Laufer, S.; et al. Biological studies on Brazilian plants used in wound healing. J. Ethnopharmacol. 2009, 122, 523–532. [Google Scholar] [CrossRef]
- Getachew, M.; Belayneh, A.; Kebede, B.; Alimaw, Y.; Biyazin, Y.; Abebaw, A.; Abebe, D. Medicinal plants used for management of hemorrhoids in Ethiopia: A systematic review. Heliyon 2022, 8, e10211. [Google Scholar] [CrossRef]
- Arias-González, I.; García-Carrancá, A.M.; Cornejo-Garrido, J.; Ordaz-Pichardo, C. Cytotoxic effect of Kalanchoe flammea and induction of intrinsic mitochondrial apoptotic signaling in prostate cancer cells. J. Ethnopharmacol. 2018, 222, 133–147. [Google Scholar] [CrossRef]
- Richwagen, N.; James, T.L.; Brandon, L.F.D.; Quave, C.L. Antibacterial activity of Kalanchoe mortagei and K. fedtschenkoi against ESKAPE pathogens. Front. Pharmacol. 2019, 10, 67. [Google Scholar] [CrossRef]
- Palumbo, A.; Casanova, L.M.; Corrêa, M.F.P.; Da Costa, N.M.; Nasciutti, L.E.; Costa, S.S. Potential therapeutic effects of underground parts of Kalanchoe gastonis-bonnieri on benign prostatic hyperplasia. Evid. Based Complement. Altern. Med. 2019, 2019, 6340757. [Google Scholar] [CrossRef]
- Frimpong-Manso, S.; Asiedu-Gyekye, I.J.; Naadu, J.P.; Magnus-Aryitey, G.T.; Nyarko, A.K.; Boamah, D.; Awan, M. Micro and macro element composition of Kalanchoe integra leaves: An adjuvant treatment for hypertension in Ghana. Int. J. Hypertens. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.C.O.; Fernandes, J.M.; Negreiros Neto, T.S.; Mendonça, J.N.; Tomaz, J.C.; Lopes, N.P.; Soares, L.A.L.; Zucolotto, S.M. Quantification of Chemical Marker of Kalanchoe brasiliensis (Crassulaceae) Leaves by HPLC-DAD. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 795–800. [Google Scholar] [CrossRef]
- Cruz, B.P.; Chedier, L.M.; Fabri, R.L.; Pimenta, D.S. Chemical and agronomic development of Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers under light and temperature levels. An. Acad. Bras. Ciências 2011, 83, 1435–1441. [Google Scholar] [CrossRef] [Green Version]
- Cruz, B.P.; Chedier, L.M.; Peixoto, P.H.P.; Fabri, R.L.; Pimenta, D.S. Effects of light intensity on the distribution of anthocyanins in Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers. An. Acad. Bras. Ciências 2012, 84, 211–217. [Google Scholar] [CrossRef]
- de Araujo, E.R.D.; Guerra, G.C.B.; Araújo, D.F.S.; de Araújo, A.A.; Fernandes, J.M.; De Araujo Junior, R.F.; De Carvalho, T.G.; Ferreira, L.S.; Zucolotto, S.M. Gastroprotective and antioxidant activity of Kalanchoe brasiliensis and Kalanchoe pinnata leaf juices against indomethacin and ethanol- 45 induced gastric lesions in rats. Int. J. Mol. Sci. 2018, 19, 1265. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.M.; Félix-Silva, J.; da Cunha, L.M.; Gomes, J.A.; Siqueira, E.M.S.; Gimenes, L.P.; Lopes, N.P.; Soares, L.A.L.; Fernandes-Pedrosa, M.F.; Zucolotto, S.M. Inhibitory Effects of Hydroethanolic Leaf Extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae) against Local Effects Induced by Bothrops jararaca Snake Venom. PLoS ONE 2016, 11, e0168658. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.G.; Ribeiro Dantas, L.L.S.F.; Fernandes, J.M.; Zucolotto, S.M.; Neves Lima, A.A.; Soares, L.A.L.; Rocha, H.A.O.; Lemos, T.M.A.M. In Vivo and In Vitro Toxicity Evaluation of Hydroethanolic Extract of Kalanchoe brasiliensis (Crassulaceae) Leaves. J. Toxicol. 2018, 2018, 6849765. [Google Scholar] [CrossRef] [Green Version]
- Haile, A.A.; Tsegay, B.A.; Seid, A.; Adnew, W.; Moges, A. A Review on Medicinal Plants Used in the Management of Respiratory Problems in Ethiopia over a Twenty-Year Period (2000–2021). Evid. Based Complement. Alternat Med. 2022, 2022, 2935015. [Google Scholar] [CrossRef]
- Manan, M.; Hussain, L.; Ijaz, H.; Qadir, M.I. Phytochemical screening of different extracts of Kalanchoe laciniata. Pak. J. Pharm. Sci. 2015, 29, 1321–1324. [Google Scholar] [CrossRef]
- Sharif, A.; Akhtar, M.F.; Akhtar, B.; Saleem, A.; Manan, M.; Shabbir, M.; Ashraf, M.; Peerzada, S.; Ahmed, S.; Raza, M. Genotoxic and Cytotoxic Potential Of Whole Plant Extracts Of Kalanchoe Laciniata By Ames And Mtt Assay. EXCLI J. 2017, 16, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Stefanowicz-Hajduk, J.; Hering, A.; Gucwa, M.; Hałasa, R.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Ochocka, R. Biological activities of leaf extracts from selected Kalanchoe species and their relationship with bufadienolides content. Pharm. Biol. 2020, 58, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Bogale, M.; Sasikumar, J.M.; Egigu, M.C. An ethnomedicinal study in tulo district, west hararghe zone, oromia region, Ethiopia. Heliyon 2023, 9, e15361. [Google Scholar] [CrossRef] [PubMed]
- Singab, A.B.; El-Ahmady, S.H.; Labib, R.M.; Fekry, S.S. Phenolics from Kalanchoe marmorata Baker, Family Crassulaceae. Bull. Fac. Pharm. Cairo. Univ. 2011, 49, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.; Asnake, H.; Beyene, T.; Van Damme, P.; Mohammed, A. Ethnobotanical study of medicinal plants in Asagirt District, Northeastern Ethiopia. Trop. Med. Health 2023, 51, 1. [Google Scholar] [CrossRef]
- Abebe, W. An overview of Ethiopian traditional medicinal plants used for cancer treatment. Eur. J. Med. Plants 2016, 14, 1–16. [Google Scholar] [CrossRef]
- Agize, M.; Asfaw, Z.; Nemomissa, S.; Gebre, T. Ethnobotany of traditional medicinal plants and associated indigenous knowledge in Dawuro Zone of Southwestern Ethiopia. J. Ethnobiol. Ethnomedicine 2022, 18, 48. [Google Scholar] [CrossRef]
- Mekonnen, A.B.; Mohammed, A.S.; Tefera, A.K. Ethnobotanical Study of Traditional Medicinal Plants Used to Treat Human and Animal Diseases in Sedie Muja District, South Gondar, Ethiopia. Evid.-Based Complement. Altern. Med. 2022, 2022, 7328613. [Google Scholar] [CrossRef]
- Tadesse, T.Y.; Zeleke, M.M.; Dagnew, S.B. Review of Ethnobotanical and Ethnopharmacological Evidence of Some Ethiopian Medicinal Plants Traditionally Used for Peptic Ulcer Disease Treatment. Clin. Exp. Gastroenterol. 2022, 15, 171–187. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Hughes, K. Role of ethno-phytomedicine knowledge in healthcare of COVID-19: Advances in traditional phytomedicine perspective. Beni-Suef Univ. J. Basic. Appl. Sci. 2022, 11, 96. [Google Scholar] [CrossRef]
- Ahmed, M.; Wazir, Z.U.; Khan, R.A.; Khan, M.I.; Waqas, S.; Iqbal, A. Pharmacological evaluation of crude methanolic extract of Kalanchoe pinnata leaves. Environ. Toxicol. Chem. 2013, 95, 1539–1545. [Google Scholar] [CrossRef]
- Anadozie, S.O.; Akinyemi, J.A.; Agunbiade, S.; Ajiboyeet, B.O.; Adewale, O.B. Bryophyllum pinnatum inhibits arginase II activity and prevents oxidative damage occasioned by carbon tetrachloride (CCl4) in rats. Biomed. Pharmacother. 2018, 101, 8–13. [Google Scholar] [CrossRef]
- Bachmann, S.; Betschart, C.; Gerber, J.; Fürer, K.; Mennet, M.; Hamburger, M.; Potterat, O.; Von Mandach, U.; Simões-Wüst, A.P. Potential of Bryophyllum pinnatum as a detrusor relaxant: An in vitro exploratory study. Planta Med. 2017, 83, 1274–1280. [Google Scholar] [CrossRef]
- Barbhuiya, P.A.; Laskar, A.M.; Mazumdar, H.; Dutta, P.; Pathak, M.P.; Dey, B.K.; Sen, S. Ethnomedicinal Practices and Traditional Medicinal Plants of Barak Valley, Assam: A systematic review. J. Pharmacopunct. 2022, 25, 149–185. [Google Scholar] [CrossRef]
- Bhandari, R.; Gyawali, S.; Aryal, N.; Gaire, D.; Paudyal, K.; Panta, A.; Panth, P.; Joshi, D.R.; Rokaya, R.K.; Aryal, P.; et al. Evaluation of phytochemical, antioxidant, and memory-enhancing activity of Garuga pinnata Roxb. Bark and Bryophyllum pinnatum (Lam) Oken. leaves. Sci. World J. 2021, 2021, 6649574. [Google Scholar] [CrossRef]
- Bhatti, M.; Kamboj, A.; Saluja, A.K.; Jain, U.K. In vitro evaluation and comparison of antioxidant activities of various extracts of leaves and stems of Kalanchoe pinnatum. Int. J. Green Pharm. 2012, 6, 340–347. [Google Scholar] [CrossRef]
- Bhavsar, S.; Chandel, D. Cytotoxic and genotoxic effects of Kalanchoe pinnata (Lam.) Pers. fresh leaf juice in the cultured human blood lymphocytes. Drug Chem. Toxicol. 2019, 45, 360–366. [Google Scholar] [CrossRef]
- Bopda, O.S.M.; Longo, F.; Bella, T.N.; Edzah, P.M.O.; Taiwe, G.S.; Bilada, D.C.; Tom, E.N.L.; Kamtchouing, P.; Dimo, T. Antihypertensive activities of the aqueous extract of Kalanchoe pinnata (Crassulaceae) in high salt-loaded rats. J. Ethnopharmacol. 2014, 153, 400–407. [Google Scholar] [CrossRef]
- Clemen-Pascual, L.M.; Macahig, R.A.S.; Rojas, N.R.L. Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicol. Rep. 2021, 9, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, M.A.S.; Casanova, L.M.; Nascimento, L.B.D.S.; Leal, D.; Palmero, C.; Toma, H.K.; Santos, E.P.; Nasciutti, L.E.; Costa, S.S. Wound healing cream formulated with Kalanchoe pinnata major flavonoid is as effective as the aqueous leaf extract cream in a rat model of excisional wound. Nat. Prod. Res. 2020, 35, 6034–6039. [Google Scholar] [CrossRef] [PubMed]
- Cruz, E.A.; Reuter, H.; Martin, N.; Dehzad, N.; Muzitano, M.F.; Costa, S.S.; Rossi-Bergmann, B.; Buhl, R.; Stassen, M.; Taube, C. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease. Phytomedicine 2012, 19, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Cryer, M.; Lane, K.; Greer, M.; Cates, R.; Burt, S.; Andrus, M.; Zou, J.; Rogers, P.; Hansen, M.D.H.; Burgado, J.; et al. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharm. Biol. 2017, 55, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- El Abdellaoui, S.; Destandau, E.; Toribio, A.; Elfakir, C.; Lafosse, M.; Renimel, I.; André, P.; Cancellieri, P.; Landemarre, L. Bioactive molecules in Kalanchoe pinnata leaves: Extraction, purification, and identification. Anal. Bioanal. Chem. 2010, 398, 1329–1338. [Google Scholar] [CrossRef]
- Fernandes, J.M.; Ortiz, S.; Tavares, R.P.M.; Mandova, T.; Araújo, E.R.; Andrade, A.W.L.; Michel, S.; Grougnet, R.; Zucolotto, S.M. Bryophyllum pinnatum markers: CPC isolation, simultaneous quantification by a validated UPLC-DAD method and biological evaluations. J. Pharm. Biomed. Anal. 2021, 193, 113682. [Google Scholar] [CrossRef]
- Furer, K.; Simões-Wüst, A.P.; von Mandach, U.; Hamburger, M.; Potterat, O. Bryophyllum pinnatum and Related Species Used in Anthroposophic Medicine: Constituents, Pharmacological Activities, and Clinical Efficacy. Planta Med. 2016, 82, 930–941. [Google Scholar] [CrossRef]
- Gomes, D.C.O.; Muzitano, M.F.; Costa, S.S.; Rossi-Bergmann, B. Effectiveness of the immunomodulatory extract of Kalanchoe pinnata against murine visceral leishmaniasis. Parasitology 2010, 137, 613–618. [Google Scholar] [CrossRef]
- Kadam, S.; Madhusoodhanan, V.; Bandgar, A.; Kaushik, K.S. From Treatise to Test: Evaluating Traditional Remedies for Anti-Biofilm Potential. Front. Pharmacol. 2020, 11, 566334. [Google Scholar] [CrossRef]
- Kukuia, K.E.K.; Asiedu-Gyekye, I.J.; Woode, E.; Biney, R.P.; Addae, E. Phytotherapy of experimental depression: Kalanchoe integra var. crenata (Andr.) Cuf leaf extract. J. Pharm. Bioallied. Sci. 2015, 7, 26–31. [Google Scholar] [CrossRef]
- Leal-Costa, M.V.; Nascimento, L.B.S.; Moreira, N.S.; Reinert, F.; Costa, S.S.; Salgueiro Lage, C.L.; Tavares, E.S. Influence of Blue Light on the Leaf Morphoanatomy of In Vitro Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae). Microsc. Microanal. 2010, 16, 576–582. [Google Scholar] [CrossRef]
- Lebedeva, A.A.; Zakharchenko, N.S.; Trubnikova, E.V.; Medvedeva, O.A.; Kuznetsova, T.V.; Masgutova, G.A.; Zylkova, M.V.; Buryanov, Y.I.; Belous, A.S. Bactericide, Immunomodulating, and Wound Healing Properties of Transgenic Kalanchoe pinnata Synergize with Antimicrobial Peptide Cecropin P1 In Vivo. J. Immunol. Res. 2017, 2017, 4645701. [Google Scholar] [CrossRef] [Green Version]
- Majaz, A.Q.; Khurshid, M.; Nazim, S. The Miracle Plant (Kalanchoe pinnata): A Phytochemical and Pharmacological Review. Int. J. Res. Ayurveda Pharm. 2011, 2, 1478–1482. [Google Scholar]
- Majaz, A.Q.; Nazim, S.; Afsar, S.; Siraj, S.; Siddik, P.M. Evaluation of Antimicrobial activity of Roots of K. pinnata. Int. J. Pharmacol. Bio. Sci. 2011, 5, 93–96. [Google Scholar]
- Mora-Pérez, A.; Hernández-Medel, M.D.R. Anticonvulsant activity of methanolic extract from Kalanchoe pinnata (Lam.) stems and roots in mice: A comparison to diazepam. Neurología 2016, 31, 161–168. [Google Scholar] [CrossRef]
- Mourão, R.H.V.; Santos, F.O.; Franzotti, E.M.; Moreno, M.P.N.; Antoniolli, A.R. Antiinflammatory Activity and Acute Toxicity (LD50) of the Juice of Kalanchoe brasiliensis (Comb.) Leaves Picked Before and During Blooming. Phytother. Res. 1999, 13, 352–354. [Google Scholar] [CrossRef]
- Muzitano, M.F.; Bergonzi, M.C.; De Melo, G.O.; Lage, C.L.S.; Bilia, A.R.; Vincieri, F.F.; Rossi-Bergmann, B.; Costa, S.S. Influence of cultivation conditions, season of collection and extraction method on the content of antileishmanial flavonoids from Kalanchoe pinnata. J. Ethnopharmacol. 2011, 133, 132–137. [Google Scholar] [CrossRef]
- Nascimento, L.B.S.; Leal-Costa, M.V.; Coutinho, M.A.S.; Moreira, N.S.; Lage, C.L.S.; Barbi, N.S.; Costa, S.S.; Tavares, E.S. Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light. Photochem. Photobiol. 2013, 89, 391–399. [Google Scholar] [CrossRef]
- Nascimento, L.B.S.; Leal-Costa, M.V.; Menezes, E.A.; Lopes, V.R.; Muzitano, M.F.; Costa, S.S.; Tavares, E.S. Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. J. Photochem. Photobiol. B Biol. 2015, 148, 73–81. [Google Scholar] [CrossRef]
- Nascimento, L.B.S.; Aguiar, P.F.; Leal-Costa, M.V.; Coutinho, M.A.S.; Borsoldi, M.P.G.; Rossi-Bergmann, B.; Tavares, E.S.; Costa, S.S. Optimization of Aqueous Extraction from Kalanchoe pinnata Leaves to Obtain the Highest Content of an Anti-inflammatory Flavonoid Using a Response Surface Model. Phytochem. Anal. 2018, 29, 308–315. [Google Scholar] [CrossRef]
- Oufir, M.; Seiler, C.; Gerodetti, M.; Gerber, J.; Fürer, K.; Mennet-von Eiff, M.; Elsas, S.M.; Brenneisen, R.; von Mandach, U.; Hamburger, M.; et al. Quantification of bufadienolides in Bryophyllum pinnatum leaves and manufactured products by UHPLC-ESIMS/MS. Planta Med. 2015, 81, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.B.; Dongare, V.R.; Kulkarni, C.R.; Joglekar, M.M.; Arvindekar, A.U. Antidiabetic activity of Kalanchoe pinnata in streptozotocin-induced diabetic rats by glucose independent insulin secretagogue action. Pharm. Biol. 2013, 51, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Chakraborty, N.; Sarkar, A.; Acharya, K.; Ranjan, A.; Chauhan, A.; Srivastava, S.; Singh, A.K.; Rai, A.K.; Mubeen, I.; et al. Ethnopharmacological Potential of Phytochemicals and Phytogenic Products against Human RNA Viral Diseases as Preventive Therapeutics. BioMed Res. Int. 2013, 2023, 1977602. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Zurfluh, L.; Mennet, M.; Potterat, O.; von Mandach, U.; Hamburger, M.; Simoes-Wust, A.P. Bryophyllum pinnatum Compounds Inhibit Oxytocin-Induced Signaling Pathways in Human Myometrial Cells. Front. Pharmacol. 2021, 12, 632986. [Google Scholar] [CrossRef] [PubMed]
- Yuliani, T.; Dewijanti, I.D.; Banjarnahor, S.D.S. Antidiabetic activity of ethanolic extracts of Kalanchoe pinnata leaves in alloxan induced hyperglycemic rats. Indones. J. Pharm. 2016, 27, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Zakharchenko, N.S.; Lebedeva, A.A.; Furs, O.V.; Rukavtsova, E.B.; Schevchuk, T.V.; Rodionov, I.L.; Bur’yanov, Y.I. Producing Marker-Free Kalanchoe Plants Expressing Antimicrobial Peptide Cecropin P1 Gene. Russ. J. Plant Physiol. 2016, 63, 273–282. [Google Scholar] [CrossRef]
- Zakharchenko, N.S.; Rukavtsova, E.B.; Shevchuk, T.V.; Furs, O.V.; Pigoleva, S.V.; Lebedeva, A.A.; Chulina, I.A.; Baidakova, L.K.; Bur’yanov, Y.I. The Obtainment and Characteristics of Kalanchoe pinnata L. Plants Expressing the Artificial Gene of the Cecropin P1 Antimicrobial Peptide. Appl. Biochem. Microbiol. 2016, 52, 421–428. [Google Scholar] [CrossRef]
- Zakharchenko, N.S.; Belous, A.S.; Biryukova, Y.K.; Medvedeva, O.A.; Belyakova, A.V.; Masgutova, G.A.; Trubnikova, E.V.; Buryanov, Y.I.; Lebedeva, A.A. Immunomodulating and Revascularizing Activity of Kalanchoe pinnata Synergize with Fungicide Activity of Biogenic Peptide Cecropin P1. J. Immunol. Res. 2017, 2017, 3940743. [Google Scholar] [CrossRef] [Green Version]
- Kamboj, A.; Saluja, A.K. Bryophyllum pinnatum (Lam.) Kurz: Phytochemical and pharmacological profile: A review. Pharmacogn. Rev. 2009, 3, 364–375. [Google Scholar]
- Lorenzi, H.; Matos, F.J.A. Plantas Medicinais No Brasil: Nativas Exóticas Cultivadas, 2nd ed.; Instituto Plantarum de Estudos da Flora: Nova Odessa, Brazil, 2008; p. 223. [Google Scholar]
- Milad, R.; El-Ahmady, S.; Singab, A.N. Genus Kalanchoe (Crassulaceae): A Review of Its Ethnomedicinal, Botanical, Chemical and Pharmacological Properties. J. Med. Plants 2014, 4, 86–104. [Google Scholar] [CrossRef]
- Herrera, I.; Hernandez, M.J.; Lampo, M.; Nassar, J.M. Plantlet recruitment is the key demographic transition in invasion by Kalanchoe daigremontiana. Popul. Ecol. 2011, 54, 225–237. [Google Scholar] [CrossRef]
- Moreira, N.S.; Nascimento, L.B.S.; Leal-Costa, M.V.; Tavares, E.S. Comparative anatomy of leaves of Kalanchoe pinnata and K. crenata in sun and shade conditions, as a support for their identification. Rev. Bras. Farmacogn. 2012, 22, 929–936. [Google Scholar] [CrossRef]
- Wild, B.; Wanek, W.; Postl, W.; Richter, A. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana. J. Exp. Bot. 2010, 61, 1375–1383. [Google Scholar] [CrossRef]
- Yang, X.; Hu, R.; Yin, H.; Jenkins, J.; Shu, S.; Tang, H.; Liu, D.; Weighill, D.A.; Yim, W.C.; Ha, J.; et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 2017, 8, 1899. [Google Scholar] [CrossRef] [Green Version]
- Gotoh, E.; Oiwamoto, K.; Inoue, S.I.; Shimazaki, K.I.; Doi, M. Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana. J. Exp. Bot. 2019, 70, 1367–1374. [Google Scholar] [CrossRef] [Green Version]
- Herrando-Moraira, S.; Vitales, D.; Nualart, N.; Gómez-Bellver, C.; Ibáñez, N.; Massó, S.; Cachón-Ferrero, P.; González-Gutiérrez, P.A.; Guillot, D.; Herrera, I.; et al. Global distribution patterns and niche modelling of the invasive Kalanchoe × houghtonii (Crassulaceae). Sci. Rep. 2020, 10, 3143. [Google Scholar] [CrossRef] [Green Version]
- Al-Khayri, J.M.; Mahdy, E.M.B.; Taha, H.A.S.; Eldomiaty, A.S.; Abd-Elfattah, M.A.; Latef, A.A.H.A.; Rezk, A.A.; Shehata, W.F.; Almaghasla, M.I.; Shalaby, T.A.; et al. Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. Plants 2022, 11, 1722. [Google Scholar] [CrossRef]
- García-Sogo, B.; Pineda, B.; Castelblanque, L.; Antón, T.; Medina, M.; Roque, E.; Torresi, C.; Beltrán, J.P.; Moreno, V.; Cañas, L.A. Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep. 2009, 29, 61–77. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, C.; Zeng, H.M. Key KdSOC1 gene expression profiles during plantlet morphogenesis under hormone, photoperiod, and drought treatments. Genet. Mol. Res. 2016, 15, 1–14. [Google Scholar] [CrossRef]
- Quintero, E.J.; De León, E.G.; Morán-Pinzón, J.; Mero, A.; Leon, E.; Cano, L.P.P. Evaluation of the Leaf Extracts of Kalanchoe Pinnata and Kalanchoe Daigremontiana Chemistry, Antioxidant and Anti-inflammatory Activity. Eur. J. Med. Plants 2021, 32, 45–54. [Google Scholar] [CrossRef]
- Casanova, J.M.; Nascimento, L.B.S.; Casanova, L.M.; Leal-Costa, M.V.; Costa, S.S.; Tavares, E.S. Differential Distribution of Flavonoids and Phenolic Acids in Leaves of Kalanchoe delagoensis Ecklon & Zeyher (Crassulaceae). Microsc. Microanal. 2020, 26, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Brzezicka, E.; Karwowska, K.; Kozieradzka-Kiszkurno, M.; Chernetskyy, M. Leaf micromorphology of Kalanchoë laciniata (Crassulaceae). Mod. Phytomorphology 2015, 8, 49–52. [Google Scholar]
- Bhavsar, S.; Bhavita, D.; Maitreyi, Z.; Divya, C. A comparative pharmacognostical and phytochemical analysis of Kalanchoe pinnata (Lam.) Pers. leaf extracts. J. Pharmacogn. Phytochem. 2018, 7, 1519–1527. [Google Scholar]
- Chernetskyy, M.; Weryszko-Chmielewska, E. Structure of Kalanchoë pumila Bak. leaves (Crassulaceae DC.). Acta Agrobot. 2008, 61. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, R.A.; Franke, F.P.; Dunster, P.J. The toxicity to cattle and bufadienolide content of six Bryophyllum species. Aust. Vet. J. 1987, 64, 298–301. [Google Scholar] [CrossRef]
- Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H. New insecticidal bufadienolide, bryophyllin C, from Kalanchoe pinnata. Biosci. Biotechnol. Biochem. 2000, 64, 1310–1312. [Google Scholar] [CrossRef]
- Wu, P.L.; Hsu, Y.L.; Wu, T.S.; Bastow, K.F.; Lee, K.H. Kalanchosides A–C, new cytotoxic bufadienolides from the aerial parts of Kalanchoe gracilis. Org. Lett. 2006, 8, 5207–5210. [Google Scholar] [CrossRef]
- Yamagishi, T.; Haruna, M.; Yan, X.Z.; Chang, J.J.; Lee, K.H. Antitumor agents, 110. Bryophyllin B, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum. J. Nat. Prod. 1989, 52, 1071–1079. [Google Scholar] [CrossRef]
- Capon, R.J.; MacLeod, J.K.; Oelrichs, P.B. Bryotoxins B and C, toxic bufadienolide orthoacetates from the flowers of Bryophyllum tubiflorum (Crassulaceae). Aust. J. Chem. 1986, 39, 1711–1715. [Google Scholar] [CrossRef]
- Kołodziejczyk-Czepas, J.; Pasiński, B.; Ponczek, M.B.; Moniuszko-Szajwaj, B.; Kowalczyk, M.; Pecio, L.; Nowak, P.; Stochmal, A. Bufadienolides from Kalanchoe daigremontiana modulate the enzymatic activity of plasmin—In vitro and in silico analyses. Int. J. Biol. Macromol. 2018, 120, 1591–1600. [Google Scholar] [CrossRef]
- Wagner, H.; Fischer, M.; Lotter, H. Isolation and Structure Determination of Daigremontianin, a Novel Bufadienolide from Kalanchoe daigremontiana. Planta Med. 1985, 51, 169–170. [Google Scholar] [CrossRef]
- Ürményi, F.G.; Saraiva, G.D.; Casanova, L.M.; Matos, A.D.; Camargo, L.M.M.; Romanos, M.T.V.; Costa, S.S. Anti-HSV-1 and HSV-2 flavonoids and a new kaempferol triglycoside from the medicinal plant Kalanchoe daigremontiana. Chem. Biodivers. 2016, 13, 1707–1714. [Google Scholar] [CrossRef]
- Anderson, L.A.P.; Steyn, P.S.; Heerden, F.R. The characterization of two novel bufadienolides, lanceotoxins A and B from Kalanchoe lanceolata [Forssk.] Pers. J. Chem. Soc. Perkin Trans. 1 1984, 15, 1573–1575. [Google Scholar] [CrossRef]
- Kuo, P.C.; Kuo, T.H.; Su, C.R.; Liou, M.J.; Wu, T.S. Cytotoxic principles and α-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrida. Tetrahedron 2018, 64, 3392–3396. [Google Scholar] [CrossRef]
- Chibli, L.A.; Rodrigues, K.C.M.; Gasparetto, C.M.; Pinto, N.C.C.; Fabri, R.L.; Scio, E.; Alves, M.S.; Del-Vechio-Vieira, G.; Sousa, O.V. Anti-inflammatory effects of Bryophyllum pinnatum (Lam.) Oken ethanol extract in acute and chronic cutaneous inflammation. J. Ethnopharmacol. 2014, 11, 330–338. [Google Scholar] [CrossRef]
- Coutinho, M.A.; Muzitano, M.F.; Cruz, E.A.; Bergonzi, M.C.; Kaiser, C.R.; Tinoco, L.W.; Bilia, A.R.; Vincieric, F.F.; Rossi-Bergmann, B.; Costa, S.S. Flowers from Kalanchoe pinnata are a rich source of T cell-suppressive flavonoids. Nat. Prod. Commun. 2012, 7, 175–178. [Google Scholar] [CrossRef]
- Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement. Altern. Med. 2018, 18, 214. [Google Scholar] [CrossRef]
- Elizondo-Luevano, J.H.; Pérez-Narváez, O.A.; Sánchez-García, E.; Castro-Ríos, R.; Hernández-García, M.E.; Chávez-Montes, A. In Vitro Effect of Kalanchoe daigremontiana and Its Main Component, Quercetin against Entamoeba histolytica and Trichomonas vaginalis. Iran. J. Parasitol. 2021, 16, 394–401. [Google Scholar]
- Hegazy, M.M.; Metwaly, A.M.; Mostafa, A.E.; Radwan, M.M.; Mehany, A.B.M.; Ahmed, E.; Enany, S.; Magdeldin, S.; Afifi, W.M.; ElSohly, M.A. Biological and chemical evaluation of some African plants belonging to Kalanchoe species: Antitrypanosomal, cytotoxic, antitopoisomerase I activities and chemical profiling using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometer. Pharmacog. Mag. 2021, 17, 6–15. [Google Scholar]
- Liu, K.C.S.; Yang, S.L.; Roberts, M.F.; Phillipson, J.D. Eupafolin Rhamnosides from Kalanchoe gracilis. J. Nat. Prod. 1986, 52, 970–974. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Olsen, C.E.; Møller, B.L. Flavonoids in flowers of 16 Kalanchoë blossfeldiana varieties. Phytochemistry. 2005, 66, 2829–2835. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Mondal, C.; Bera, R.; Chakraborty, S.; Barik, R.; Roy, P.; Kumar, A.; Yadav, K.K.; Choudhury, J.; Chaudhary, S.K.; et al. Antimicrobial properties of Kalanchoe blossfeldiana: A focus on drug resistance with reference to quorum sensing-mediated bacterial biofilm formation. J. Pharm. Pharmacol. 2015, 67, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Fürer, K.; Raith, M.; Brenneisen, R.; Mennet, M.; Simões-Wüst, A.P.; von Mandach, U.; Hamburger, M.; Potterat, O. Two new flavonol glycosides and a metabolite profile of Bryophyllum pinnatum, a phytotherapeutic used in obstetrics and gynaecology. Planta Med. 2013, 79, 1565–1571. [Google Scholar] [CrossRef]
- Muzitano, M.F.; Cruz, E.A.; de Almeida, A.P.; Da Silva, S.A.; Kaiser, C.R.; Guette, C.; Rossi-Bergmann, B.; Costa, S.S. Quercitrin: An antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med. 2006, 72, 81–83. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, E.R.D.; Félix-Silva, J.; Xavier-Santos, J.B.; Fernandes, J.M.; Guerra, G.C.B.; de Araújo, A.A.; Araújo, D.F.S.; Ferreira, L.S.; da Silva Júnior, A.A.; Fernandes-Pedrosa, M.F.; et al. Local anti-inflammatory activity: Topical formulation containing Kalanchoe brasiliensis and Kalanchoe pinnata leaf aqueous extract. Biomed. Pharmacother. 2019, 113, 108721. [Google Scholar] [CrossRef]
- Tatsimo, S.; Tamokou, J.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.-R.; Tane, P. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Costa, S.S.; Jossang, A.; Bodo, B.; Souza, M.L.; Moraes, V.L. Patuletin acetylrhamnosides from Kalanchoe brasiliensis as inhibitors of human lymphocyte proliferative activity. J. Nat. Prod. 1994, 57, 1503–1510. [Google Scholar] [CrossRef]
- García-Pérez, P.; Lozano-Milo, E.; Zhang, L.; Miras-Moreno, B.; Landin, M.; Lucini, L.; Gallego, P.P. Neurofuzzy logic predicts a fine-tuning metabolic reprogramming on elicited Bryophyllum PCSCs guided by salicylic acid. Front. Plant Sci. 2022, 13, 991557. [Google Scholar] [CrossRef]
- Bogucka-Kocka, A.; Zidorn, C.; Kasprzycka, M.; Szymczak, G.; Szewczyk, K. Phenolic acid content, antioxidant and cytotoxic activities of four Kalanchoe species. Saudi J. Biol. Sci. 2018, 25, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Gaind, K.N.; Gupta, R.L. Phenolic components from the leaves of Kalanchoe pinnata. Planta Med. 1973, 23, 149–153. [Google Scholar] [CrossRef]
- Siddiqui, S.; Faizi, S.; Siddiqui, B.S.; Sultana, N. Triterpenoids and phenanthrenes from leaves of Bryophyllum pinnatum. Phytochemistry 1989, 28, 2433–2438. [Google Scholar] [CrossRef]
- Kruk, J.; Pisarski, A.; Szymanska, R. Novel vitamin E forms in leaves of Kalanchoe daigremontiana and Phaseolus coccineus. J. Plant Physiol. 2011, 168, 2021–2027. [Google Scholar] [CrossRef]
- Siems, K.; Jas, G.; Arriaga-Ginerb, F.J.; Wollenweber, E.; Dorr, M. On the chemical nature of epicuticular waxes in some succulent Kalanchoe and Senecio species. Z. Naturforschung C 1995, 50, 451–454. [Google Scholar] [CrossRef]
- Van Maarseveen, C.; Jetter, R. Composition of the Epicuticular and Intracuticular Wax Layers On Kalanchoe daigremontiana (Hamet Et Perr. De La Bathie) Leaves. Phytochemistry 2009, 70, 899–906. [Google Scholar] [CrossRef]
- Sharker, S.M.; Hossain, K.M.; Haque, M.R.; Hamidul Kabir, A.N.M.; Hasan, C.M.; Rashid, M.A. Phytochemical and pharmacological studies of Bryophyllum daigremontianum (Raym.). Am. J. PharmTech Res. 2013, 3, 484–492. [Google Scholar]
- Aldalbahi, A.; Alterary, S.; Almoghim, R.A.A.; Awad, M.A.; Aldosari, N.S.; Alghannam, S.F.; Alabdan, A.N.; Alharbi, S.; Alateeq, B.A.M.; Al Mohsen, A.A.; et al. Greener Synthesis of Zinc Oxide Nanoparticles: Characterization and Multifaceted Applications. Molecules 2020, 25, 4198. [Google Scholar] [CrossRef]
- Wang, C.Y.; Huang, S.C.; Zhang, Y.; Lai, Z.R.; Kung, S.H.; Chang, Y.S.; Lin, C.W. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16. Evid. Based Complement. Alternat. Med. 2012, 2012, 503165. [Google Scholar] [CrossRef] [Green Version]
- Nguelefack, T.B.; Nana, P.; Atsamo, A.D.; Dimo, T.; Watcho, P.; Dongmo, A.B.; Tapondjou, L.A.; Njamen, D.; Wansi, S.L.; Kamanyi, A. Analgesic and anticonvulsant effects of extracts from the leaves of Kalanchoe crenata (Andrews) Haworth (Crassulaceae). J. Ethnopharmacol. 2006, 106, 70–75. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.D.; Valdés, A.; Gallego, R.; Suárez-Montenegro, Z.J.; Alarcón, M.; Ibañez, E.; Alvarez-Rivera, G.; Cifuentes, A. Blood-Brain Barrier Permeability Study of Potential Neuroprotective Compounds Recovered from Plants and Agri-Food by-Products. Front. Nutr. 2022, 9, 924596. [Google Scholar] [CrossRef]
- Viršile, A.; Samuoliene, G.; Laužike, K.; Šipailaite, E.; Balion, Z.; Jekabsone, A. Species-Specific Plant-Derived Nanoparticle Characteristics. Plants 2022, 11, 3139. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Hering, A.; Gucwa, M.; Sztormowska-Achranowicz, K.; Kowalczyk, M.; Soluch, A.; Ochocka, J.R. An In Vitro Anticancer, Antioxidant, and Phytochemical Study on Water Extract of Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. Molecules 2022, 27, 2280. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.J.; Huang, H.S.; Leu, Y.L.; Peng, K.C.; Chang, C.J.; Chang, M.Y. Anticancer activity of Kalanchoe tubiflora extract against human lung cancer cells in vitro and in vivo. Environ. Toxicol. 2015, 31, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.P.; Da Silva, S.A.; Souza, M.L.; Lima, L.M.; Rossi-Bergmann, B.; de Moraes, V.L.; Costa, S.S. Isolation and chemical analysis of a fatty acid fraction of Kalanchoe pinnata with a potent lymphocyte suppressive activity. Planta Med. 2000, 66, 134–137. [Google Scholar] [CrossRef]
- Adam, M.; Elhassan, G.O.M.; Yagi, S.; Senol, F.S.; Orhan, I.E.; Ahmed, A.A.; Efferth, T. In Vitro Antioxidant and Cytotoxic Activities of 18 Plants from the Erkowit Region, Eastern Sudan. Nat. Prod. Bioprospecting 2018, 8, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.C.; Rosenthal, D.; Carvalho, D.P. Thyroid peroxidase inhibition by Kalanchoe brasiliensis aqueous extract. Food Chem. Toxicol. 2000, 38, 417–421. [Google Scholar] [CrossRef]
- Costa, S.S.; de Souza Mde, L.; Ibrahim, T.; de Melo, G.O.; de Almeida, A.P.; Guette, C.; Férézou, J.P.; Koatz, V.L. Kalanchosine dimalate, an anti-inflammatory salt from Kalanchoe brasiliensis. J. Nat. Prod. 2006, 69, 815–818. [Google Scholar] [CrossRef]
- Ibrahim, T.; Cunha, J.M.; Madi, K.; da Fonseca, L.M.; Costa, S.S.; Gonçalves Koatz, V.L. Immunomodulatory and anti-inflammatory effects of Kalanchoe brasiliensis. Int. Immunopharmacol. 2002, 2, 875–883. [Google Scholar] [CrossRef]
- Mayorga, O.A.S.; da Costa, Y.F.G.; da Silva, J.B.; Scio, E.; Ferreira, A.L.P.; de Sousa, O.V.; Alves, M.S. Kalanchoe brasiliensis Cambess., a Promising Natural Source of Antioxidant and Antibiotic Agents against Multidrug-Resistant Pathogens for the Treatment of Salmonella Gastroenteritis. Oxid. Med. Cell. Longev. 2019, 2019, 9245951. [Google Scholar] [CrossRef] [Green Version]
- Hewagama, S.P.; Hewawasam, R.P. Antiurolithiatic Potential of Three Sri Lankan Medicinal Plants by the Inhibition of Nucleation, Growth, and Aggregation of Calcium Oxalate Crystals In Vitro. Sci. World J. 2022, 2022, 8657249. [Google Scholar] [CrossRef]
- Kenderson, C.A.; Kagoro, M.L.; Adelakun, E.A. Phytochemical and Pharmacological Evaluation of Nigerian Kalanchoe pinnata (Lam.) Stem-Bark. J. Chem. Soc. Nigeria 2021, 46, 0751–0756. [Google Scholar] [CrossRef]
- Cruz, E.A.; Da-Silva, S.A.; Muzitano, M.F.; Silva, P.M.; Costa, S.S.; Rossi-Bergmann, B. Immunomodulatory pretreatment with Kalanchoe pinnata extract and its quercitrin flavonoid effectively protects mice against fatal anaphylactic shock. Int. Immunopharmacol. 2008, 8, 1616–1621. [Google Scholar] [CrossRef]
- Yadav, N.P.; Dixit, V.K. Hepatoprotective activity of leaves of Kalanchoe pinnata Pers. J. Ethnopharmacol. 2003, 86, 197–202. [Google Scholar] [CrossRef]
- de Araújo, E.R.D.; Guerra, G.C.B.; Andrade, A.W.L.; Fernandes, J.M.; Da Silva, V.C.; De Aragão Tavares, E.; De Araújo, A.A.; de Araújo Júnior, R.F.; Zucolotto, S.M. Gastric Ulcer Healing Property of Bryophyllum pinnatum Leaf Extract in Chronic Model In Vivo and Gastroprotective Activity of Its Major Flavonoid. Front. Pharmacol. 2021, 12, 744192. [Google Scholar] [CrossRef]
- de Araújo, E.R.D.; Xavier-Santos, J.B.; da Silva, V.C.; de Lima, J.B.F.; Schlamb, J.; Fernandes-Pedrosa, M.d.F.; da Silva Júnior, A.A.; de Araújo Júnior, R.F.; Rathinasabapathy, T.; Moncada, M.; et al. Gel formulated with Bryophyllum pinnatum leaf extract promotes skin wound healing in vivo by increasing VEGF expression: A novel potential active ingredient for pharmaceuticals. Front. Pharmacol. 2023, 13, 1104705. [Google Scholar] [CrossRef]
- Nayak, B.S.; Marshall, J.R.; Isitor, G. Wound healing potential of ethanolic extract of Kalanchoe pinnata Lam. Leaf—A preliminary study. Indian J. Exp. Biol. 2010, 48, 572–576. [Google Scholar]
- Torres-Santos, E.C.; Da Silva, S.A.; Costa, S.S.; Santos, A.P.; Almeida, A.P.; Rossi-Bergmann, B. Toxicological analysis, and effectiveness of oral Kalanchoe pinnata on a human case of cutaneous leishmaniasis. Phytother. Res. 2003, 17, 801–803. [Google Scholar] [CrossRef]
- Phatak, R.S. Lack of anthelmintic activity of Kalanchoe pinnata fresh leaves. J. Pharm. Negat. Results 2016, 7, 21–24. [Google Scholar] [CrossRef]
- Ramon, P.; Bergmann, D.; Abdulla, H.; Sparks, J.; Omoruyi, F. Bioactive Ingredients in K. pinnata Extract and Synergistic Effects of Combined, K. pinnata and Metformin Preparations on Antioxidant Activities in Diabetic and Non-Diabetic Skeletal Muscle Cells. Int. J. Mol. Sci. 2023, 24, 6211. [Google Scholar] [CrossRef]
- Saravanan, V.; Murugan, S.S.; Kumaravel, T.S. Genotoxicity studies with an ethanolic extract of Kalanchoe pinnata leaves. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2020, 856–857, 503229. [Google Scholar] [CrossRef]
- Mahata, S.; Maru, S.; Shukla, S.; Pandey, A.; Mugesh, G.; Das, B.C.; Bharti, A. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement. Altern. Med. 2012, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Caballero, M.E.; Sierra-Ramírez, J.A.; Valencia, R.V.; Seseña-Méndez, E. Potential of Kalanchoe pinnata as a Cancer Treatment Adjuvant and an Epigenetic Regulator. Molecules 2022, 27, 6425. [Google Scholar] [CrossRef]
- Plangger, N.; Rist, L.; Zimmermann, R.; von Mandach, U. Intravenous tocolysis with Bryophyllum pinnatum is better tolerated than beta-agonist application. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006, 124, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Gwehenberger, B.; Rist, L.; Huch, R.; von Mandach, U. Effect of Bryophyllum pinnatum versus fenoterol on uterine contractility. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 113, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazhina, N.N.; Lapshin, P.V.; Zagoskina, N.V.; Korotkova, E.I.; Misin, V.M. A Comparative Analysis of the Antioxidant Activity of Kalanchoe Juices. Russ. J. Bioorg. Chem. 2014, 40, 771–776. [Google Scholar] [CrossRef]
- Lambrigger-Steiner, C.; Simões-Wüst, A.P.; Kuck, A.; Fürer, K.; Hamburger, M.; von Mandach, U. Sleep quality in pregnancy during treatment with Bryophyllum pinnatum: An observational study. Phytomedicine 2014, 21, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Simões-Wüst, A.P.; Hassani, T.A.; Müller-Hübenthal, B.; Pittl, S.; Kuck, A.; Meden, H.; Eberhard, J.; Decker, M.; Fürer, K.; von Mandach, U.; et al. Sleep Quality Improves During Treatment with Bryophyllum pinnatum: An Observational Study on Cancer Patients. Integr. Cancer Ther. 2015, 14, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Pereira, K.M.F.; de Carvalho, A.C.; Veiga, T.A.M.; Melgoza, A.; Hernandez, R.B.; Grecco, S.S.; Nakamura, U.; Guo, S. The psychoactive effects of Bryophyllum pinnatum (Lam.) Oken leaves in young zebrafish. PLoS ONE 2022, 17, e0264987. [Google Scholar] [CrossRef]
- Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H.; Murakami, A.; Sakai, H.; Koshimizu, K.; Ohigashi, H. Anti-tumor Promoting Activity of Bufadienolides from Kalanchoe pinnata and K. daigremontiana × butiflora. Biosci. Biotechnol. Biochem. 2001, 65, 947–949. [Google Scholar] [CrossRef]
Scientific Name | Synonym | Occurrences |
---|---|---|
Kalanchoe adelae Raym.-Hamet | Bryophyllum adelae (Raym.-Hamet) A.Berger, Kalanchoe floribunda Tul. | 2 |
Kalanchoe aliciae Raym.-Hamet | Bryophyllum aliciae (Raym.-Hamet) A.Berger, Kalanchoe miniata var. tsinjoarivensis H.Perrier, Kalanchoe pubescens var. brevicalyx Boiteau and Mannoni, Kalanchoe pubescens var. grandiflora Boiteau and Mannoni | 4 |
Kalanchoe alternans (Vahl) Pers. | Cotyledon alternans Vahl, Vereia alternans (Vahl) Spreng. | 56 |
Kalanchoe alticola Compton | - | 5 |
Kalanchoe ambolensis Humbert | - | 10 |
Kalanchoe angolensis N.E.Br. | - | 1 |
Kalanchoe antennifera Desc. | - | 2 |
Kalanchoe arborescens Humbert | - | 43 |
Kalanchoe aromatica H.Perrier | - | 27 |
Kalanchoe aubrevillei Raym.-Hamet ex Cufod. | - | 12 |
Kalanchoe × auriculata (Raadts) V.V.Byalt | Kalanchoe nyikae subsp. auriculata Raadts | 47 |
Kalanchoe ballyi Raym.-Hamet ex Cufod. | - | 27 |
Kalanchoe beauverdii Raym.-Hamet | Bryophyllum beauverdii (Raym.-Hamet) A.Berger, Kalanchoe beauverdii var. typica Boiteau and Mannoni | 152 |
Kalanchoe beharensis Drake | Kalanchoe vantieghemii Raym.-Hamet | 386 |
Kalanchoe benbothae Gideon F.Sm. and N.R.Crouch | - | 6 |
Kalanchoe bentii C.H.Wright ex Hook f. | - | 37 |
Kalanchoe berevoensis Rebmann | - | - |
Kalanchoe bergeri Raym.-Hamet and H.Perrier | Bryophyllum bergeri (Raym.-Hamet and H.Perrier) Govaerts, Kalanchoe bergeri var. typica Boiteau and Mannoni, Kalanchoe bergeri var. glabra Boiteau and Mannoni | 27 |
Kalanchoe bhidei T.Cooke | - | 16 |
Kalanchoe bipartita Chiov. | - | 14 |
Kalanchoe blossfeldiana Poelln. | Kalanchoe coccinea (H.Perrier) Boiteau, Kalanchoe coccinea var. blossfeldiana (Poelln.) Boiteau, Kalanchoe globulifera var. coccinea H.Perrier | 493 |
Kalanchoe bogneri Rauh | Bryophyllum bogneri (Rauh) V.V.Byalt | 10 |
Kalanchoe boisii Raym.-Hamet and H.Perrier | - | 2 |
Kalanchoe boranae Raadts | - | 10 |
Kalanchoe bouvetii Raym.-Hamet and H.Perrier | Bryophyllum bouvetii (Raym.-Hamet and H.Perrier) A.Berger | 16 |
Kalanchoe bouvetii Raym.-Hamet and H.Perrier | Kalanchoe baumii Engl. and Gilg, Kalanchoe multiflora Schinz, Kalanchoe pruinosa Dinter, Kalanchoe pyramidalis Schönland | 16 |
Kalanchoe bracteata Scott Elliot | Kalanchoe bracteata var. aurantiaca Rauh and Hebding, Kalanchoe bracteata var. glabra Rauh and Hebding, Kalanchoe bracteata subsp. glabra Rauh and Hebding, Kalanchoe bracteata var. longisepala Boiteau ex L.Allorge, Kalanchoe bracteata var. pubescens Rauh and Hebding, Kalanchoe bracteata var. virescens Desc., Kalanchoe nadyae Raym.-Hamet | 88 |
Kalanchoe brevicalyx (Raym.-Hamet and H.Perrier) Gideon F.Sm. and Figueiredo | Kalanchoe pinnata var. brevicalyx Raym.-Hamet and H.Perrier | 1 |
Kalanchoe briquetii Raym.-Hamet | - | 2 |
Kalanchoe campanulata (Baker) Baill. | Bryophyllum campanulatum (Baker) V.V.Byalt, Udalova and I.M.Vassiljeva, Kitchingia campanulata Baker, Kalanchoe amplexicaulis (Baker) Baill., Kalanchoe campanulata subsp. orthostyla Boiteau and Mannoni, Kalanchoe panduriformis (Baker) Baill., Kalanchoe parviflora (Baker) Baill., Kitchingia amplexicaulis Baker, Kitchingia panduriformis Baker, Kitchingia parviflora Baker | 80 |
Kalanchoe ceratophylla Haw. | 111 | |
Kalanchoe chapototii Raym.-Hamet and H.Perrier | 2 | |
Kalanchoe cherukondensis Subba Rao and Kumari | Vereia ceratophylla (Haw.) D.Dietr. | - |
Kalanchoe chevalieri Gagnep. | Kalanchoe integra var. chevalieri (Gagnep.) H.H.Pham | 9 |
Kalanchoe citrina Schweinf. | Kalanchoe citrina var. ballyi Raym.-Hamet ex Wickens, Kalanchoe citrina var. erythreae Schweinf. | 102 |
Kalanchoe costantinii Raym.-Hamet | Bryophyllum costantinii (Raym.-Hamet) A.Berger | 1 |
Kalanchoe craibii Raym.-Hamet | - | 1 |
Kalanchoe crenata (Andrews) Haw. | Cotyledon crenata (Andrews) Vent., Cotyledon verea Jacq., Kalanchoe afzeliana Britten, Kalanchoe crenata var. verea Cufod., Kalanchoe integra var. crenata (Andrews) Cufod., Kalanchoe integra var. varea Cufod., Kalanchoe verea Pers., Vereia crenata Andrews | 1320 |
Kalanchoe crouchii Gideon F.Sm. and Figueiredo | - | 3 |
Kalanchoe crundallii I.Verd. | - | 6 |
Kalanchoe curvula Desc. | Bryophyllum curvulum (Desc.) V.V.Byalt | 16 |
Kalanchoe cymbifolia Desc. | Bryophyllum cymbifolium (Desc.) V.V.Byalt | - |
Kalanchoe daigremontiana Raym.-Hamet and H.Perrier | Bryophyllum daigremontianum (Raym.-Hamet and H.Perrier) A.Berger | 768 |
Kalanchoe darainensis D.-P.Klein and Callm. | - | 22 |
Kalanchoe decumbens Compton | - | - |
Kalanchoe deficiens (Forssk.) Asch. and Schweinf. | Cotyledon deficiens Forssk., Kalanchoe glaucescens var. deficiens (Asch. and Schweinf.) Senni | 342 |
Kalanchoe delagoensis Eckl. and Zeyh. | Bryophyllum delagoense (Eckl. and Zeyh.) Druce, Bryophyllum tubiflorum Harv., Kalanchoe tubiflora (Harv.) Raym.-Hamet, Bryophyllum verticillatum (Scott Elliot) A.Berger, Geaya purpurea Costantin and Poiss., Kalanchoe verticillata Scott Elliot | 5341 |
Kalanchoe densiflora Rolfe | - | 687 |
Kalanchoe × descoingsii Shtein, Gideon F.Sm. and J.Ikeda | - | - |
Kalanchoe dinklagei Rauh | Kalanchoe brevisepala (Humbert) L.Allorge, Kalanchoe millotii var. brevisepala Humbert | 14 |
Kalanchoe dyeri N.E.Br. | - | 21 |
Kalanchoe elizae A.Berger | Cotyledon elizae (A.Berger) Raym.-Hamet, Cotyledon insignis N.E.Br., Kalanchoe insignis (N.E.Br.) N.E.Br., Kalanchoe laurensii Raym.-Hamet | 80 |
Kalanchoe eriophylla Hils. and Bojer ex Tul. | Cotyledon pannosa Baker | 43 |
Kalanchoe × estrelae Gideon F.Sm. | - | - |
Kalanchoe fadeniorum Raadts | - | 8 |
Kalanchoe farinacea Balf.f. | - | 55 |
Kalanchoe faustii Font Quer | Kalanchoe laciniata subsp. faustii (Font Quer) Maire | 33 |
Kalanchoe fedtschenkoi Raym.-Hamet and H.Perrier | Bryophyllum fedtschenkoi (Raym.-Hamet and H.Perrier) Lauz.-March., Kalanchoe fedtschenkoi var. isalensis Boiteau and Mannoni | 514 |
Kalanchoe fernandesii Raym.-Hamet | - | 4 |
Kalanchoe × flaurantia Desc. | - | - |
Kalanchoe gastonis-bonnieri Raym.-Hamet and H.Perrier | Bryophyllum gastonis-bonnieri (Raym.-Hamet and H.Perrier) Lauz.-March., Kalanchoe adolphi-engleri Raym.-Hamet, Kalanchoe gastonis-bonnieri var. ankaizinensis Boiteau ex L.Allorge | 173 |
Kalanchoe germanae Raym.-Hamet ex Raadts | - | 16 |
Kalanchoe gideonsmithii N.R.Crouch and Figueiredo | - | 1 |
Kalanchoe glaucescens Britten | Kalanchoe beniensis De Wild., Kalanchoe elliptica Raadts, Kalanchoe flammea Stapf, Kalanchoe holstii Engl., Kalanchoe magnidens N.E.Br., Kalanchoe marinellii Pamp., Kalanchoe ndorensis Schweinf. ex Engl. | 379 |
Kalanchoe globulifera H.Perrier | - | 15 |
Kalanchoe gracilipes (Baker) Baill. | Bryophyllum gracilipes (Baker) Eggli, Kitchingia gracilipes Baker | 89 |
Kalanchoe grandidieri Baill. | - | 64 |
Kalanchoe grandiflora Wight and Arn. | Vereia grandiflora (Wight and Arn.) D.Dietr. | 77 |
Kalanchoe guignardii Raym.-Hamet and H.Perrier | Kalanchoe beauverdii var. guignardii (Raym.-Hamet and H.Perrier) Boiteau and Mannoni | 1 |
Kalanchoe × gunniae Gideon F.Sm. and Figueiredo | - | - |
Kalanchoe hametiorum Raym.-Hamet | - | 4 |
Kalanchoe hauseri Werderm. | - | - |
Kalanchoe hildebrandtii Baill. | Kalanchoe gomphophylla Baker, Kalanchoe hildebrandtii var. glabra Rauh and Hebding | 95 |
Kalanchoe hirta Harv. | - | 13 |
Kalanchoe × houghtonii D.B.Ward | Bryophyllum × houghtonii (D.B.Ward) P.I.Forst. | 1650 |
Kalanchoe humifica Desc. | Bryophyllum humificum (Desc.) V.V.Byalt | 1 |
Kalanchoe humilis Britten | - | 30 |
Kalanchoe hypseloleuce Friis and M.G.Gilbert | - | 1 |
Kalanchoe inaurata Desc. | Bryophyllum inauratum (Desc.) V.V.Byalt | - |
Kalanchoe integra (Medik.) Kuntze | Cotyledon integra Medik., Bryophyllum serratum Blanco, Cotyledon acutiflora (Haw.) W.T.Aiton, Cotyledon hybrida Dum.Cours., Cotyledon spathulata (DC.) Poir., Echeveria spathulata (DC.) W.Bull ex É.Morren, Kalanchoe acutiflora (Andrews) Haw., Kalanchoe annamica Gagnep., Kalanchoe corymbosa Wall., Kalanchoe dixoniana Raym.-Hamet, Kalanchoe garambiensis Kudô, Kalanchoe hybrida Desf. ex Steud., Kalanchoe integra var. annamica (Gagnep.) H.H.Pham, Kalanchoe nudicaulis Buch.-Ham. ex C.B.Clarke, Kalanchoe schumacheri Koord., Kalanchoe spathulata DC., Kalanchoe spathulata var. annamica (Gagnep.) H.Ohba, Kalanchoe spathulata var. baguioensis H.Ohba, Kalanchoe spathulata var. ciliata, Kalanchoe spathulata var. dixoniana (Raym.-Hamet) H.Ohba, Kalanchoe spathulata var. garambiensis (Kudô) H.Ohba, Kalanchoe spathulata var. schumacheri (Koord.) H.Ohba, Kalanchoe spathulata var. simlensis H.Ohba, Kalanchoe spathulata var. staintonii H.Ohba, Kalanchoe subamplectens Wall., Kalanchoe varians Haw., Kalanchoe yunnanensis Gagnep., Vereia acutiflora Andrews, Vereia spathulata (DC.) D.Dietr. | 289 |
Kalanchoe integrifolia Baker | Kalanchoe bitteri Raym.-Hamet and H.Perrier, Kalanchoe heckelii Raym.-Hamet and H.Perrier, Kalanchoe integrifolia var. bitteri Raym.-Hamet and H.Perrier, Kalanchoe integrifolia var. flava Boiteau | 85 |
Kalanchoe jongmansii Raym.-Hamet and H.Perrier | Bryophyllum jongmansii (Raym.-Hamet and H.Perrier) Govaerts, Kalanchoe jongmansii subsp. ivohibensis Humbert | 54 |
Kalanchoe klopperae Gideon F.Sm. and Figueiredo | - | - |
Kalanchoe laciniata (L.) DC. | Cotyledon laciniata L., Vereia laciniata (L.) Willd., Kalanchoe angustifolia A.Rich., Kalanchoe biternata Wight ex Wall., Kalanchoe carnea N.E.Br., Kalanchoe gloveri Cufod., Kalanchoe lentiginosa Cufod., Kalanchoe petitiaesii Rich. ex Jacques, Kalanchoe rohlfsii Engl., Kalanchoe rosea A.Chev., Kalanchoe schweinfurthii Penz., Kalanchoe teretifolia Haw. | 430 |
Kalanchoe laetivirens Desc. | Bryophyllum laetivirens (Desc.) V.V.Byalt | 223 |
Kalanchoe lanceolata (Forssk.) Pers. | Cotyledon lanceolata Forssk., Vereia lanceolata (Forssk.) Spreng., Cotyledon amplexicaulis B.Heyne ex C.B.Clarke, Cotyledon corymbosa Rottler ex Wight and Arn., Cotyledon heterophylla Roxb., Cotyledon hirsuta B.Heyne ex C.B.Clarke, Cotyledon paniculata Rottler ex Wight and Arn., Kalanchoe amplexicaulis B.Heyne, Kalanchoe brachycalyx A.Rich., Kalanchoe crenata var. collina Engl., Kalanchoe ellacombei N.E.Br., Kalanchoe floribunda Wight and Arn., Kalanchoe floribunda var. glabra C.B.Clarke, Kalanchoe glandulosa Hochst. ex A.Rich., Kalanchoe glandulosa var. benguellensis Engl., Kalanchoe glandulosa var. rhodesica Baker f., Kalanchoe glandulosa var. tomentosa Keissl., Kalanchoe goetzei Engl., Kalanchoe gregaria Dinter, Kalanchoe heterophylla (Roxb.) Wight and Arn., Kalanchoe heterophylla (Roxb.) Prain, Kalanchoe homblei De Wild., Kalanchoe homblei f. reducta De Wild., Kalanchoe junodii Schinz, Kalanchoe laciniata var. brachycalyx (A.Rich.) Chiov., Kalanchoe lanceolata var. glabra (C.B.Clarke) S.R.Sriniv., Kalanchoe lanceolata var. glandulosa (Hochst. ex A.Rich.) Cufod., Kalanchoe modesta Kotschy and Peyr., Kalanchoe pentheri Schltr., Kalanchoe pilosa Baker, Kalanchoe platysepala Welw. ex Britten, Kalanchoe pubescens R.Br. ex Britten, Kalanchoe ritchieana Dalzell, Kalanchoe spathulata Wall., Kalanchoe wightianum Wall., Meristostylus macrocalyx Klotzsch, Vereia floribunda (Wight and Arn.) D.Dietr., Vereia heterophylla (Wight and Arn.) D.Dietr. | 893 |
Kalanchoe lateritia Engl. | - | 284 |
Kalanchoe latisepala N.E.Br. | - | 31 |
Kalanchoe laxiflora Baker | Bryophyllum laxiflorum (Baker) Govaerts, Bryophyllum crenatum Baker, Kalanchoe crenata (Baker) Raym.-Hamet, Kalanchoe laxiflora subsp. stipitata Boiteau and Mannoni, Kalanchoe laxiflora subsp. subpeltata Boiteau and Mannoni, Kalanchoe laxiflora subsp. violacea Boiteau and Mannoni, Kalanchoe tieghemii Raym.-Hamet | 469 |
Kalanchoe leblanciae Raym.-Hamet | - | 17 |
Kalanchoe lindmanii Raym.-Hamet | Kalanchoe gossweileri Croizat, Kalanchoe humbertii Guillaumin, Kalanchoe pearsonii N.E.Br. | 16 |
Kalanchoe linearifolia Drake | Kalanchoe bonnieri Raym.-Hamet | 118 |
Kalanchoe lobata R.Fern. | - | 6 |
Kalanchoe × lokarana Desc. | Bryophyllum × lokarana (Desc.) V.V.Byalt | 2 |
Kalanchoe longiflora Schltr. | - | 35 |
Kalanchoe longifolia E.T.Geddes | - | 2 |
Kalanchoe lubangensis R.Fern. | - | 1 |
Kalanchoe luciae Raym.-Hamet | Kalanchoe albiflora H.M.L.Forbes | 60 |
Kalanchoe macrochlamys H.Perrier | Bryophyllum macrochlamys (H.Perrier) A.Berger | 12 |
Kalanchoe mandrarensis Humbert | - | 7 |
Kalanchoe manginii Raym.-Hamet and H.Perrier | Bryophyllum manginii (Raym.-Hamet and H.Perrier) Nothdurft | 67 |
Kalanchoe marmorata Baker | Kalanchoe grandiflora A.Rich., Kalanchoe macrantha Baker ex Maire, Kalanchoe macrantha var. marmorata (Baker) Maire, Kalanchoe macrantha var. richardiana Maire | 264 |
Kalanchoe marnieriana H.Jacobsen ex L.Allorge | Bryophyllum marnierianum (H.Jacobsen ex L.Allorge) Govaerts, Kalanchoe humbertii Mannoni and Boiteau | 46 |
Kalanchoe maromokotrensis Desc. and Rebmann | - | 5 |
Kalanchoe migiurtinorum Cufod. | - | 7 |
Kalanchoe millotii Raym.-Hamet and H.Perrier | - | 82 |
Kalanchoe miniata Hils. and Bojer ex Tul. | Bryophyllum miniatum (Hils. and Bojer ex Tul.) A.Berger, Kalanchoe miniata var. typica H.Perrier, Kitchingia miniata (Hils. and Bojer ex Tul.) Baker | 252 |
Kalanchoe mitejea Leblanc and Raym.-Hamet | - | 29 |
Kalanchoe montana Compton | Kalanchoe luciae subsp. montana (Compton) Toelken | 2 |
Kalanchoe mortagei Raym.-Hamet and H.Perrier | Bryophyllum mortagei (Raym.-Hamet and H.Perrier) Wickens, Kalanchoe poincarei var. mortagei (Raym.-Hamet and H.Perrier) Boiteau | 42 |
Kalanchoe ndotoensis L.E.Newton | - | 1 |
Kalanchoe neglecta Toelken | Kalanchoe rotundifolia f. peltata R.Fern. | 7 |
Kalanchoe nyikae Engl. | Kalanchoe hemsleyana Cufod. | 53 |
Kalanchoe obtusa Engl. | - | 39 |
Kalanchoe olivacea Dalzell | - | 10 |
Kalanchoe orgyalis Baker | Kalanchoe antanosiana Drake | 162 |
Kalanchoe paniculata Harv. | Sedum harveyanum Kuntze, Kalanchoe oblongifolia Harv. | 193 |
Kalanchoe pareikiana Desc. and Lavranos | - | 2 |
Kalanchoe peltata (Baker) Baill. | Bryophyllum peltatum (Baker) V.V.Byalt, Udalova and I.M.Vassiljeva, Kitchingia peltata Baker | 152 |
Kalanchoe peltigera Desc. | Bryophyllum peltigerum (Desc.) V.V.Byalt | 5 |
Kalanchoe perrieri Shtein, Gideon F.Sm. and D.-P.Klein | - | - |
Kalanchoe peteri Werderm. | - | 35 |
Kalanchoe petitiana A.Rich. | - | 95 |
Kalanchoe pinnata (Lam.) Pers. | Bryophyllum pinnatum (Lam.) Oken, Cotyledon pinnata Lam., Crassula pinnata (Lam.) L.f., Kalanchoe pinnata var. genuina Raym.-Hamet, Vereia pinnata (Lam.) Spreng., Baumgartenia sobolifera Tratt., Bryophyllum calcicola (H.Perrier) V.V.Byalt, Bryophyllum calycinum Salisb., Bryophyllum germinans Blanco, Bryophyllum pinnatum simplicifolium Kuntze, Cotyledon calycina (Salisb.) B.Heyne, Cotyledon calyculata Sol. ex Sims, Cotyledon rhizophylla Roxb., Crassuvia floripendia Comm. ex Lam., Kalanchoe calcicola (H.Perrier) Boiteau, Kalanchoe floripendula Steud, Kalanchoe pinnata var. calcicola H.Perrier, Kalanchoe pinnata var. floripendula Pers. | 7288 |
Kalanchoe × poincarei Raym.-Hamet and H.Perrier | Bryophyllum poincarei (Raym.-Hamet and H.Perrier) Govaerts | 10 |
Kalanchoe porphyrocalyx (Baker) Baill. | Bryophyllum porphyrocalyx (Baker) A.Berger, Kalanchoe porphyrocalyx var. typica Boiteau and Mannoni, Kitchingia porphyrocalyx Baker | 187 |
Kalanchoe prasina N.E.Br. | Kalanchoe figuereidoi Croizat | - |
Kalanchoe prittwitzii Engl. | Kalanchoe dielsii Raym.-Hamet, Kalanchoe lugardii Bullock, Kalanchoe robynsiana Raym.-Hamet, Kalanchoe secunda Werderm. | 136 |
Kalanchoe prolifera (Bowie ex Hook.) Raym.-Hamet | Bryophyllum proliferum Bowie ex Hook., Bryophyllum cochleatum Lem., Kalanchoe cochleatum (Lem.) B.D.Jacks. | 180 |
Kalanchoe pseudocampanulata Mannoni and Boiteau | Bryophyllum pseudocampanulatum (Mannoni and Boiteau) Govaerts, Kalanchoe miniata var. decaryana H.Perrier | 5 |
Kalanchoe pubescens Baker | Bryophyllum pubescens (Baker) Govaerts, Kalanchoe pubescens var. typica Boiteau and Mannoni | 162 |
Kalanchoe pumila Baker | Kalanchoe brevicaulis Baker, Kalanchoe multiceps Baill., Kalanchoe pumila f. venustior Boiteau | 71 |
Kalanchoe quadrangularis Desc. | - | 3 |
Kalanchoe quartiniana A.Rich. | - | 23 |
Kalanchoe rebmannii Desc. | - | 1 |
Kalanchoe × rechingeri Raym.-Hamet ex Rauh and Hebding | Bryophyllum × rechingeri (Raym.-Hamet ex Rauh and Hebding) V.V.Byalt | 2 |
Kalanchoe rhombopilosa Mannoni and Boiteau | Kalanchoe rhombopilosa var. argentea Rauh, Kalanchoe rhombopilosa var. viridifolia Rauh | 30 |
Kalanchoe × richaudii Desc. | - | 2 |
Kalanchoe robusta Balf.f. | Kalanchoe abrupta Balf.f. | 7 |
Kalanchoe rolandi-bonapartei Raym.-Hamet and H.Perrier | Bryophyllum rolandi-bonapartei (Raym.-Hamet and H.Perrier) Govaerts, Bryophyllum tsaratananense (H.Perrier) A.Berger, Kalanchoe tsaratananensis H.Perrier | 16 |
Kalanchoe rosea C.B.Clarke | - | - |
Kalanchoe rosei Raym.-Hamet and H.Perrier | Bryophyllum rosei (Raym.-Hamet and H.Perrier) A.Berger, Kalanchoe bouvieri Raym.-Hamet and H.Perrier | 74 |
Kalanchoe rotundifolia (Haw.) Haw. | Crassula rotundifolia Haw., Sedum subrotundifolium (Haw.) Kuntze, Vereia rotundifolia (Haw.) D.Dietr., Kalanchoe guillauminii Raym.-Hamet, Kalanchoe integerrima Lange, Kalanchoe luebbertiana Engl., Kalanchoe rotundifolia var. guillauminii (Raym.-Hamet) Raym.-Hamet, Kalanchoe rotundifolia f. tripartita R.Fern., Kalanchoe seilleana Raym.-Hamet, Kalanchoe stearnii Raym.-Hamet, Meristostylus brachycalyx Klotzsch | 623 |
Kalanchoe rubella (Baker) Raym.-Hamet | Bryophyllum rubellum Baker | 23 |
Kalanchoe salazarii Raym.-Hamet | - | 2 |
Kalanchoe sanctula Desc. | Bryophyllum sanctulum (Desc.) V.V.Byalt | 2 |
Kalanchoe scandens H.Perrier | Bryophyllum scandens (H.Perrier) A.Berger, Kalanchoe beauverdii var. parviflora Boiteau and Mannoni | 7 |
Kalanchoe scapigera Welw. ex Britten | - | 15 |
Kalanchoe schimperiana A.Rich. | Cotyledon deficiens Hochst. and Steud. ex A.Rich. | 78 |
Kalanchoe schizophylla (Baker) Baill. | Bryophyllum schizophyllum (Baker) A.Berger, Kitchingia schizophylla Baker | 48 |
Kalanchoe schliebenii Werderm. | - | 3 |
Kalanchoe serrata Mannoni and Boiteau | Bryophyllum lauzac-marchaliae V.V.Byalt, Bryophyllum serratum (Mannoni and Boiteau) Lauz.-March. | 36 |
Kalanchoe sexangularis N.E.Br. | - | 130 |
Kalanchoe stenosiphon Britten | - | 9 |
Kalanchoe streptantha Baker | Bryophyllum streptanthum (Baker) A.Berger | 28 |
Kalanchoe suarezensis H.Perrier | Bryophyllum suarezense (H.Perrier) A.Berger, Kalanchoe poincarei var. suarezensis (H.Perrier) L.Allorge | 20 |
Kalanchoe subrosulata Thulin | - | 4 |
Kalanchoe synsepala Baker | Kalanchoe brachycalyx Baker, Kalanchoe gentyi Raym.-Hamet and H.Perrier, Kalanchoe trichantha Baker | 214 |
Kalanchoe tachingshuii S.S.Ying | - | - |
Kalanchoe tashiroi Yamam. | - | 4 |
Kalanchoe teixeirae Raym.-Hamet ex R.Fern. | - | 3 |
Kalanchoe tenuiflora Desc. | - | 3 |
Kalanchoe tetramera E.T.Geddes | - | 2 |
Kalanchoe tetraphylla H.Perrier | - | 30 |
Kalanchoe thyrsiflora Harv. | Kalanchoe alternans Eckl. and Zeyh. ex Harv. | 251 |
Kalanchoe tomentosa Baker | Bryophyllum triangulare Blanco | 179 |
Kalanchoe torrejacqii Shtein and Gideon F.Sm. | - | 3 |
Kalanchoe tuberosa H.Perrier | - | 11 |
Kalanchoe uniflora (Stapf) Raym.-Hamet | Bryophyllum uniflorum (Stapf) A.Berger, Kitchingia uniflora Stapf, Bryophyllum ambrense (H.Perrier) A.Berger, Kalanchoe ambrensis H.Perrier, Kalanchoe uniflora var. brachycalyx Boiteau and Mannoni | 97 |
Kalanchoe usambarensis Engl. and Raym.-Hamet | - | 16 |
Kalanchoe variifolia (Guillaumin and Humbert) Shtein, D.-P.Klein and Gideon F.Sm. | Kalanchoe rosei var. variifolia (Guillaumin and Humbert) J.M.H.Shaw, Kalanchoe rosei subsp. variifolia Guillaumin and Humbert | 13 |
Kalanchoe velutina Welw. ex Britten | - | 56 |
Kalanchoe viguieri Raym.-Hamet and H.Perrier | Kalanchoe viguieri var. latisepala Raym.-Hamet and H.Perrier | 68 |
Kalanchoe waldheimii Raym.-Hamet and H.Perrier | Bryophyllum waldheimii (Raym.-Hamet and H.Perrier) Lauz.-March. | 50 |
Kalanchoe waterbergensis van Jaarsv. | - | 3 |
Kalanchoe welwitschii Britten | - | 17 |
Kalanchoe wildii Raym.-Hamet ex R.Fern. | Kalanchoe aleuroides Stearn | 2 |
Kalanchoe winteri Gideon F.Sm., N.R.Crouch and Mich.Walters | - | 3 |
Kalanchoe yemensis (Deflers) Schweinf. | Kalanchoe brachycalyx var. yemensis Deflers | 17 |
Species | Traditional Uses | Form of Use and Plant Part | References |
---|---|---|---|
K. ceratophylla | To treat injuries, pain, fever, and inflammation. | Internal or external administration of crude extracts or plant juice. | [14,15,16,17] |
K. crenata | Antidiabetic, anti-inflammatory, antimicrobial, vermifuge, and anti-infective agent; to treat wounds, abscesses, abdominal pain, asthma, headache, convulsion, smallpox, peptic ulcer, upper respiratory tract infections, coughs, otitis, palpitations, cancer (or disease states with symptoms related to cancer), diabetes, swollen areas for muscle sprain and myalgia; and to heal umbilical cord wounds in newborns. | Internal administration of crude extracts, plant juice, leaves juice, or chew the leaves; external administration of crude extracts or plant juice and from macerating the leaves into a cream. Use of roots. | [6,14,15,16,18,19,20,21,22,23,24,25,26,27] |
K. daigremontiana | Anticancer, anti-inflammatory, antimicrobial, antiseptic, carminative and cardioactive agent; to treat skin injuries and wounds; to staunch bleeding; to treat infections, rheumatism, earache, burns, arthritis, gastric and menstrual disorders, cough, fever, cardiovascular dysfunction, diabetes, psychic agitation, restlessness and anxiety, some cancers; a chemo preventive. | Internal or external administration of crude extracts or plant juice and use of roots. | [9,10,11,12,15,21,28,29,30] |
K. delagoensis | To treat wounds, epilepsy, neoplastic diseases, fever, abscesses, bruises, pneumonia, coughs, stomachache, and as a vermifuge. | Internal or external administration of crude extracts or plant juice and use of roots. | [14,15,21,31,32,33,34] |
K. densiflora | To treat wounds and skin disorders, rheumatism, hemorrhoids, eye problems, joint and muscle pains, stomach and liver problems, umbilical cord, cardiac disorders, edema, poisonous, abortifacient. | Internal or external administration of crude extracts or plant juice. | [15,24,27,35] |
K. flammea | To treat fever, wounds, inflammation, and cancer. | [36] | |
K. fedtschenkoi | Analgesic, cytotoxic, and antimicrobial treatments. | Internal or external administration. Use of leaves and roots. | [21,37] |
K. gastonis-bonnieri | To treat genital-urinary and vaginal infections and as a vaginal contraceptive. | [38] | |
K. germanae | After removal of ganglions the leaves are used to treat the affected area. | Internal or external administration of crude extracts or plant juice. | [15] |
K. glaucescens | To treat coughs and rheumatism. | Internal or external administration of crude extracts or plant juice. | [15,24] |
K. integra | Antihypertensive. | [39] | |
K. laciniata | As an anti-inflammatory, astringent, and antiseptic; to treat wounds, inflammation, headache, diabetes, heart discomfort, gastric disorders, lithiasis, diarrhea, fever, cough, snakebites, erysipelas, boils, and human prostate cancer. | Internal administration of crude extracts, plant juice, leaves juice or chew the leaves; external administration of crude extracts or plant juice and from macerating the leaves into a cream. | [6,11,15,40,41,42,43,44,45,46,47,48,49] |
K. lanceolata | To treat dysentery, rheumatism, hemorrhoids, splenomegaly, hepatomegaly, and pains. | Internal or external administration of crude extracts or plant juice. | [15,24,27,35] |
K. marmorata | To treat wounds, boils, bruises, periodontal disease, cracked lips, arthritis, gastric ulcers, ear diseases, eye infections, dysentery, fever, common cold, coughs, cholera, urinary diseases, stiff muscles, liver problems, and headaches. | Internal or external administration of crude extracts or plant juice. | [15,24,50,51,52] |
K. mortagei | As an antimicrobial; to treat digestive disorders, parasites, and neoplastic diseases orally; and as a local remedy for cancer. | Internal or external administration. Use of leaves and roots. | [21,37] |
K. obtusa | Children’s diseases and as pesticide. | Use the whole plant. | [24] |
K. petitiana | To treat epilepsy, trachoma, allergies, intestinal parasites, gonorrhea, bone setting after fractures, wound healing, breast tumors, skin cancer, swelling of gland/lymph adenitis, toothache, dysentery, liver problems, stomachache, tonsillitis, gastritis, peptic ulcer disease, and foot problems (fungal nails, corns, and calluses, athlete’s foot, plantar warts). | Internal or external administration of crude extracts or plant juice. | [15,53,54,55,56] |
K. pinnata | Antipyretic, antibacterial, antiseptic, antimalaria, anti-inflammatory, and antipsychotic agent. To treat the following: wounds, burns; cardiovascular dysfunctions; cancer; rheumatoid arthritis; digestive, menstrual and psychiatric disorders; hypertension; skin, respiratory and genitourinary infections; kidney, liver and urinary disorders; ear, head and toothache; insect, snake and scorpion bites; muscle bruises; cholera; leishmania; leprosy; lithiasis; viruses; restlessness; biostimulator during skin transplantation; to prevent premature labor and help women recover after childbirth; diabetes; cold, whooping cough, bone fracture, Chikungunya virus, and against COVID-19 symptoms. | Internal administration of crude extracts, whole plant, or leaves juice, chew the leaves or leaves infusion; external administration of crude extracts or plant juice and from macerating the leaves into a cream. Use of roots. | [6,8,9,14,15,21,41,42,43,44,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93] |
K. prittwitzii | Stiff joints and rheumatism. | Use of leaves. | [24] |
K. serrata | To treat pain, inflammation, fever, and viruses. | Use of leaves and roots. | [21] |
K. x houghtonii | To treat infections, rheumatism, coughs, fever, and inflammation. | [30] |
Species Plant Part | Compound Tested | Pharmacological Activity | Results | Mechanisms of Action | References |
---|---|---|---|---|---|
K. delagoensis Whole plant | quercetin (40) (6S,7R,8R,9S)-6-oxaspiro-7,8-dihydroxymegastigman-4-en-3-one (tubiflorone) (85) syringic acid (90) 4-O-ethylgallic acid (98) 3,4-dimethoxyphenol (100) phloroglucinol (101) 3,4-dihydroxyallylbenzene (102) | Anti-inflammatory Lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells | The compounds demonstrated dose-dependent relationships for LPS-induced NO production. The MTT assay showed high cell viability in the presence of LPS in the culture medium at various concentrations. The results showed that quercetin (40), and 3,4-dihydroxyallylbenzene (102) possessed NO inhibitory activities, whereas (6S,7R,8R,9S)-6-oxaspiro-7,8-dihydroxymegastigman-4-en-3-one (85), syringic acid, and 3,4-dimethoxyphenol (100) exhibited weak activities. | Not reported | [32] |
kalantubolide A (38) kalantubolide B (39) kalantuboside A (23) kalantuboside B (24) bryotoxin C (1) bersaldegenin-1,3,5-orthoacetate (6) bersaldegenin-1-acetate (7) taurolipid C (84) gallic acid (87) cinnamic acid (97) ferulic acid (86) stigmasterol-O-d-glucoside (107) | Cytotoxicity In vitro cytotoxicity assay, cell cycle analysis, and apoptosis assay | Cardenolides (kalantubolide A (38) and kalantubolide B (39)) and bufadienolide glycosides (kalantuboside A (23), kalantuboside B (24), bryotoxin C (1), bersaldegenin-1,3,5-orthoacetate (6), bersaldegenin-1-acetate (7)) showed strong cytotoxicity against four human tumor cell lines (A549, Cal-27, A2058, and HL-60) with IC50 values ranging from 0.01 µM to 10.66 µM. Cardenolides (kalantubolide A (38) and kalantubolide B (39)) also displayed significant cytotoxicity toward HL-60 tumor cell line. In addition, kalantuboside A (23), kalantuboside B (24), bryotoxin C (1), bersaldegenin-1,3,5-orthoacetate (6), and bersaldegenin-1-acetate (7) blocked the cell cycle in the G2/M-phase and induced apoptosis in HL-60 cells. | Not reported | [33] | |
K. pinnata Whole plant | bryophyllin A (1) bryophyllin B (2) bersaldegenin-3-acetate (8) | Cytotoxicity In vitro cytotoxicity assay | Bryophyllin A (1), bryophyllin B (2), and bersaldegenin-3-acetate (8) showed potent cytotoxicity effects. | Not reported | [114] |
K. pinnata Roots | KPB-100 (81) KPB-200 (82) | Antivirus Virus spread inhibition and virus yield reduction assays of vaccinia virus, and viral cytopathic effect inhibition assay of HHV-2-TK-mutant and VYR assay of HHV-1 wild type | Both compounds are promising targets for synthetic optimization and in vivo study against human alpha herpesvirus 1 and 2 and vaccinia virus. KPB-100 (122) strongly inhibited all the tested viruses. | The authors consider that further studies are required to establish the mechanism of action of these compounds. | [69] |
K. pinnata Flowers | quercetin 3-O-α-l-arabinopyranosyl-(1→2)-α-l-rhamnopyranoside (45) | Anti-inflammatory Acetic acid-induced abdominal writhing | The flavonoid (1, 3, and 10 mg/kg) produced a dose-related inhibition of the number of acetic acid-induced writhing by 20.5% (44.2 ± 3.1 w), 35.8% (35.7 ± 4.5 w), and 50.5% (27.5 ± 3.5 w), respectively (ID50 9.4 mg/kg), when compared with the vehicle group (55.6 ± 3.3 w). The positive control indomethacin (10 mg/kg) reduced the number of writhings by 56.5% (24.2 ± 3.5 w). | The aglycone quercetin present in the chemical structure of the isolated compound proved to be an anti-inflammatory and immunosuppressive agent. This flavonol has a well-known immunomodulatory effect through the regulation of inflammatory mediators, such as inhibiting cytokine and inducible nitric oxide synthase expression via inhibition of the NF-κβ pathway. | [8] |
Anti-inflammatory Carrageenan-induced pleurisy | The flavonoid (0.3, 1.0, and 3.0 mg/kg) exhibited a dose-related reduction of leukocyte migration by 8.0% (6.9 ± 0.6 leukocytes × 106/mL), 38.8% (4.6 ± 0.2 leukocytes × 106/mL), and 57.2% (3.2 ± 0.3 leukocytes × 106/mL), respectively (ID50 2.0 mg/kg), whereas the treated with dexamethasone (2 mg/kg), positive control group, inhibited by 71.9% (2.1 ± 0.2 leukocytes × 106/mL) when compared with the vehicle-treated group (7.5 ± 0.6 leukocytes × 106/mL). | The reduction in the total leukocyte migration to the pleural cavity induced by carrageenan is dependent on the synthesis/release of the chemoattractant mediators leukotrienes such as LTB4, cytokines IL-1 and TNF-α, and chemokines. | |||
Anti-inflammatory Croton oil-induced mice ear edema | Pretreatment with the flavonoid (0.3, 1.0, or 3.0 mg/kg, s.c.) produced a dose-related antiedematogenic effect by 38.2% (=4.2 ± 0.4 mg), 54.4% (=3.1 ± 0.4 mg), and 70.6% (=2.0 ± 0.4 mg), respectively, whereas the treatment with dexamethasone (2 mg/kg) reduced the ear edema by 85.3% (=1.0 ± 0.4 mg) when compared with the vehicle group (=6.8 ± 0.6 mg), with ID50 0.76 mg/kg. | The edema formation is initially mediated by histamine and serotonin and later by the release of prostaglandins. Prostaglandins play an important role in the setting of the cardinal signs of inflammation, pain, heat, redness, edema, and loss of function. The biosynthesis of PGE2, the main inflammatory prostaglandin, involves three key enzymes, phospholipase A2 (PLA2), cyclooxygenase (COX), and PGE synthase (PGES). | |||
Anti-inflammatory TNF-α ex vivo measurement | The flavonoid (3.0 mg/kg, s.c.) decreased the TNF-α concentration in pleural exudates by 66.6% (22.6 ± 3.1 pg/mL) when compared to the vehicle group (67.5 ± 4.9 pg/mL), whereas dexamethasone (2 mg/kg, s.c.) reduced the TNF-α concentration by 74.5% (17.2 ± 3.2 pg/mL). | Pretreatment reduced the TNF-α concentration in pleural exudates, suggesting that they produce an anti-inflammatory effect, at least in part, by TNF-α inhibition. | |||
Anti-inflammatory In vitro cyclooxygenase (COX) inhibition assay | The flavonoid inhibited both COX-1 and COX-2 in vitro activities (COX-1 IC50 = 3.8 × 10−5 M (22.1 μg/mL) and COX-2 IC50 ≥ 8.4 × 10−5 M). The selectivity index was <0.44. The positive control indomethacin also inhibited both COX-1 and COX-2 activities (IC50 for COX-1 and COX-2 was 5.9 and 31.2 μg/mL, resp., and SI was 0.19). | Some flavonoids may reduce PGE2 synthesis by inhibiting the activity of these enzymes or by inhibiting the expression of the inflammatory-induced enzymes, COX-2, or microsomal PGES-1. | |||
K. pinnata Leaves | quercetin 3-O-α-l-arabinopyranosyl-(1→2)-α-l-rhamnopyranoside (45) | Wound healing In vivo rat excision model | A cream containing quercetin 3-O-α-l-arabinopyranosyl-(1→2)-α-L rhamnopyranoside (45) (0.15%) was developed and topically compared to a cream containing the aqueous extract. Both creams showed a better re-epithelialization and dense collagen fibers compared to control groups. | Wound healing agents can act in the inflammation, cellular proliferation and/or remodeling phases of wound healing. Classic symptoms of inflammation are caused by the release of prostaglandins, leukotrienes and reactive oxygen and nitrogen species. The strong antioxidant activity and in vivo anti-inflammatory activity exhibited by quercetin 3-O-α-L-arabinopyranosyl-(1→2)-α-L rhamnopyranoside (45) might explain its healing performance, being considered the main responsible for the wound healing activity of this species. | [67] |
quercetin 3-O-α-l-arabinopyranosyl-(1→2)-O-α- L-rhamnopyranoside (45) kaempferol 3-O-α-l-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside (56) | Antioxidant In vitro DPPH and ABTS assays | Kaempferol and quercetin derivatives moderately inhibited XO, while only quercetin derivatives displayed average radical scavenging activity, suggesting that quercetin 3-O-α-l-arabinopyranosyl-(1→2)-α-l-rhamnopyranoside (45) can be indicated as a specific marker of this species. | Not reported | [71] | |
Anti-inflammatory Xanthine oxidase (XO) inhibition assay | |||||
quercitrin (43) | Antianaphylactic Mouse hypersensitization and antigen challenge, OVA-specific IgE measurement, T cell proliferation, cytokine production, mast cell degranulation in the mesentery, and histamine release assay. | Pretreatment with the flavonoid quercitrin (43) showed protective effects in death caused by anaphylactic shock. In this study, the treatment conferred resistance to fatal anaphylactic shock in 75% of the animals. | The mechanism by which quercitrin acts its still unknown. | [157] | |
Anti-inflammatory Mast cell activation in vitro and allergic airway disease model in vivo | Treatment with quercitrin (43) did not affect the tested parameters. | [68] | |||
Antileishmanial In vitro antiamastigote and antipromastigote acitivity assays | Antiamastigote activity-guided fractionation of ethyl acetate fraction led to the isolation of quercitrin (43), which inhibited 93.9% of amastigote growth (100 µg/mL (223 µM). The compound exhibited significant antileishmanial activity. | [130] | |||
bryophyllin A (1) bryophyllin C (3) | Insecticidal Third instar larvae of silkworm bioassay | Bryophyllin A (1) and bryophyllin C (3) showed strong insecticidal activity against third instar larvae of the silkworm (Bombyx mori). | The authors suggest that the 1,3,5-orthoacetate moiety played an important role in exhibiting the insecticidal activity. | [112] | |
bryophyllin A (1) bryophyllin B (2) bryophyllin C (3) | Antivirus Tumor promoter-induced Epstein-Barr virus (EBV) activation assay | Bryophyllin A (1), bersaldegenin 1,3,5-orthoacetate (6) and daigremontianin (4) showed good inhibitory potential on the Epstein-Barr virus, but bryophyllin A (1) was the most effective (IC50: 0.4 µM). These results strongly suggest that bufadienolides are potential cancer chemopreventive agents. | Tumor promoters possibly induce EBV activation through the activation of protein kinase C and mitogen-activated protein kinase. | [174] | |
K. × houghtonni Leaves | daigremontianin (4) bersaldegenin 1,3,5-orthoacetate (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assis de Andrade, E.; Machinski, I.; Terso Ventura, A.C.; Barr, S.A.; Pereira, A.V.; Beltrame, F.L.; Strangman, W.K.; Williamson, R.T. A Review of the Popular Uses, Anatomical, Chemical, and Biological Aspects of Kalanchoe (Crassulaceae): A Genus of Plants Known as “Miracle Leaf”. Molecules 2023, 28, 5574. https://doi.org/10.3390/molecules28145574
Assis de Andrade E, Machinski I, Terso Ventura AC, Barr SA, Pereira AV, Beltrame FL, Strangman WK, Williamson RT. A Review of the Popular Uses, Anatomical, Chemical, and Biological Aspects of Kalanchoe (Crassulaceae): A Genus of Plants Known as “Miracle Leaf”. Molecules. 2023; 28(14):5574. https://doi.org/10.3390/molecules28145574
Chicago/Turabian StyleAssis de Andrade, Evelyn, Isadora Machinski, Ana Carolina Terso Ventura, Sarah Ainslie Barr, Airton Vicente Pereira, Flávio Luís Beltrame, Wendy Karen Strangman, and Robert Thomas Williamson. 2023. "A Review of the Popular Uses, Anatomical, Chemical, and Biological Aspects of Kalanchoe (Crassulaceae): A Genus of Plants Known as “Miracle Leaf”" Molecules 28, no. 14: 5574. https://doi.org/10.3390/molecules28145574
APA StyleAssis de Andrade, E., Machinski, I., Terso Ventura, A. C., Barr, S. A., Pereira, A. V., Beltrame, F. L., Strangman, W. K., & Williamson, R. T. (2023). A Review of the Popular Uses, Anatomical, Chemical, and Biological Aspects of Kalanchoe (Crassulaceae): A Genus of Plants Known as “Miracle Leaf”. Molecules, 28(14), 5574. https://doi.org/10.3390/molecules28145574