Towards “Green” ANFO: Study of Perchlorates and Inorganic Peroxides as Potential Additives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electron Microscopy
2.2. DTA-TG
2.3. Determination of Sample Decomposition Temperature and Pseudo-Activation Energy
Additive | Fuel | EA 1 (Kissinger) [kJ/mol] | EA 1 (Ozawa) [kJ/mol] |
---|---|---|---|
Ba(ClO4)2 | paraffin | 80.41 | 85.05 |
Mg(ClO4)2 | paraffin | 78.17 | 82.89 |
SPB | paraffin | 66.69 | 71.92 |
SPC | paraffin | 81.21 | 85.69 |
Additive | Fuel | EA [kJ/mol] | Source |
7% NaCl | - | 147.6 | [29] |
5% BaCl2 | - | 145.4 | [29] |
5% NaF | - | 162.5 | [29] |
- | 5% Mineral oil | 147 | [30] |
- | 10% Dodecane | 164 | [30] |
- | 10% Mesitylene | 165 | [30] |
- | 4% Charcoal | 166.7 | [29] |
- | 8.6% Charcoal | 122.6 | [29] |
2.4. Impact and Friction Sensitivity Parameters
3. Materials and Methods
3.1. Chemicals
3.2. Sample Preparation
3.3. Material Characterisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
References
- Widodo, S.; Anwar, H.; Syafitri, N. Comparative analysis of ANFO and emulsion application on overbreak and underbreak at blasting development activity in underground Deep Mill Level Zone (DMLZ) PT Freeport Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 279, p. 012001. [Google Scholar]
- Edwards, D.W.; Young, P.R.; Zukovich, T.M. Method of Blasting a Field with ANFO and TL-136. U.S. Patent 4,273,049, 16 June 1981. [Google Scholar]
- Ali, F.; Roy, M.P.; Pingua, B.M.P.; Mukherjee, R.; Agarwal, L.; Singh, P.K. utilisation of Waste lubricant oil in fuel phase of ANFO explosives: Its field applications and environmental impact. Propellants Explos. Pyrotech. 2021, 46, 1397–1404. [Google Scholar] [CrossRef]
- Stramquist, D.; Wathen, B. Waste product in distillation for glycol product in ANFO explosives as replacement for fuel oils. Fuel Energy Abstr. 1997, 1, 19. [Google Scholar]
- Buczkowski, D. Explosive Properties of Mixtures of Ammonium Nitrate (V) and Materials of Plant Origin–Danger of Unintended Explosion. Cent. Eur. J. Energetic Mater. 2014, 11, 115–127. [Google Scholar]
- Ali, F.; Pingua, B.M.P.; Dey, A.; Roy, M.P.; Singh, P.K. Surface Functionalized Ammonium Nitrate Prills with Enhanced Water Resistance Property: Characterizations and its Application as Commercial Explosives. Propellants Explos. Pyrotech. 2021, 46, 78–83. [Google Scholar] [CrossRef]
- Sitkiewicz-Wołodko, R.; Maranda, A.; Paszula, J.M. Modification of ANFO detonation parameters by addition of ground of ammonium nitrate (V) and aluminium powder. Cent. Eur. J. Energetic Mater. 2019, 16, 122–134. [Google Scholar] [CrossRef]
- Brochu, S. Assessment of ANFO on the Environment; Technical Report; Defence Research and Development Canada Valcartier (QUEBEC): Québec City, QC, Canada, 2010. [Google Scholar]
- Liu, L.; Yan, L.; Dong, B.; Liu, W.; Yi, W.; Zhao, K. Detection and Recognition Method of Misfire for Chamber (Deep-Hole) Blasting Based on RFID. IEEE Access 2019, 7, 170144–170156. [Google Scholar] [CrossRef]
- Resources Safety & Health Queensland. Misfired Explosives Initiated during Excavation. 2020. Available online: https://www.rshq.qld.gov.au/safety-notices/explosives/misfired-explosives-initiated-during-excavation (accessed on 29 June 2023).
- Han, Z.; Sachdeva, S.; Papadaki, M.I.; Mannan, M.S. Ammonium nitrate thermal decomposition with additives. J. Loss Prev. Process Ind. 2015, 35, 307–315. [Google Scholar] [CrossRef]
- Li, X.R.; Koseki, H. Study on the contamination of chlorides in ammonium nitrate. Process Saf. Environ. Prot. 2005, 83, 31–37. [Google Scholar] [CrossRef]
- Pawlus, K.; Kwiatkowski, M.; Stolarczyk, A.; Glosz, K.; Jarosz, T. Synthesis of explosive peroxides using unrecognised explosive precursors-percarbonates and perborates. FirePhysChem 2022, 2, 285–293. [Google Scholar] [CrossRef]
- Zhang, K.M.; Zhao, H.R. Perspectives in the stability of emulsion explosive. Adv. Colloid Interface Sci. 2022, 307, 102745. [Google Scholar] [CrossRef]
- Fischer, P.; Reinsberg, P.; Schwarz, R.M.; Marinaro, M.; Wachtler, M.; Diemant, T.; Behm, R.J.; Baltruschat, H.; Jörissen, L. Electrochemical formation and characterization of surface blocking layers on gold and platinum by oxygen reduction in Mg(ClO4)2 in DMSO. J. Electrochem. Soc. 2018, 165, A2037. [Google Scholar] [CrossRef]
- Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi, M.; Rinaldi, S.; Sambri, L. Mg(ClO4)2 as a powerful catalyst for the acylation of alcohols under solvent-free conditions. Synlett 2003, 2003, 0039–0042. [Google Scholar] [CrossRef]
- Schene, H.; Waldmann, H. Activation of glycosyl phosphites under neutral conditions in solutions of metal perchlorates in organic solvents. Eur. J. Org. Chem. 1998, 1998, 1227–1230. [Google Scholar] [CrossRef]
- Mishra, S.; Pati, S.; Bhatta, D. Catalytic effects of lanthanide oxides on the thermal decomposition of barium perchlorate. J. Therm. Anal. Calorim. 2000, 63, 589–596. [Google Scholar] [CrossRef]
- Lang, A.J.; Vyazovkin, S. Effect of pressure and sample type on decomposition of ammonium perchlorate. Combust. Flame 2006, 145, 779–790. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Wight, C.A. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem. Mater. 1999, 11, 3386–3393. [Google Scholar] [CrossRef]
- Demir, H. Thermal decomposition kinetics of sodium perborate tetrahydrate to sodium metaborate by using model-fitting and model-free methods. Korean J. Chem. Eng. 2011, 28, 2002–2008. [Google Scholar] [CrossRef]
- Wada, T.; Koga, N. Kinetics and mechanism of the thermal decomposition of sodium percarbonate: Role of the surface product layer. J. Phys. Chem. A 2013, 117, 1880–1889. [Google Scholar] [CrossRef]
- Galwey, A.K.; Hood, W.J. Thermal decomposition of sodium carbonate perhydrate in the solid state. J. Phys. Chem. 1979, 83, 1810–1815. [Google Scholar] [CrossRef]
- Gómez, M.V.; Caballero, R.; Vázquez, E.; Moreno, A.; de la Hoz, A.; Diaz-Ortiz, A. Green and chemoselective oxidation of sulfides with sodium perborate and sodium percarbonate: Nucleophilic and electrophilic character of the oxidation system. Green Chem. 2007, 9, 331–336. [Google Scholar] [CrossRef]
- Zhou, J.; Du, X.; Zhou, S.; Wu, S. Selectively isolated hemicellulose with high whiteness and molecular weight from poplar by sodium perborate-assisted alkali extraction. Cellulose 2023, 30, 4855–4871. [Google Scholar] [CrossRef]
- Kissinger, H. Variation of peak temperature with heating rate in DTA. Nat. Bur. Stand. Res. 1956, 57, 2712. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Sinditskii, V.P.; Egorshev, V.Y.; Levshenkov, A.I.; Serushkin, V.V. Ammonium nitrate: Combustion mechanism and the role of additives. Propellants Explos. Pyrotech. 2005, 30, 269–280. [Google Scholar] [CrossRef]
- Oxley, J.C.; Kaushik, S.M.; Gilson, N.S. Thermal decomposition of ammonium nitrate-based composites. Thermochim. Acta 1989, 153, 269–286. [Google Scholar] [CrossRef]
- Gruhne, M.S.; Lommel, M.; Wurzenberger, M.H.; Szimhardt, N.; Klapötke, T.M.; Stierstorfer, J. OZM ball drop impact tester (BIT-132) vs. BAM standard method—A comparative investigation. Propellants Explos. Pyrotech. 2020, 45, 147–153. [Google Scholar] [CrossRef]
- West, C. Crystal Structures of some Hydrated Compounds. I. LiClO4·3H2O, LiI·3H2O, Ba(ClO4)2·3H2O. Z. Krist.-Cryst. Mater. 1934, 88, 198–204. [Google Scholar] [CrossRef]
- Solovyov, L.A. Revision of the Mg(ClO4)2·4H2O crystal structure. Acta Crystallogr. Sect. B Struct. Sci. 2012, 68, 89–90. [Google Scholar] [CrossRef]
- Erkaeva, N.; Kaipbergenov, A.; Erkaev, A.; Kucharov, B. Study on the process of producing sodium percarbonate. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1142, p. 012106. [Google Scholar]
- EN 13631-3:2005; Explosives for Civil Uses—High Explosives—Part 3: Determination of Sensitiveness to Friction of Explosives. European Committee for Standardization: Brussels, Belgium, 2005.
- EN 13631-4:2002; Explosives for Civil Uses—High Explosives—Part 4: Determination of Sensitiveness to Impact of Explosives. European Committee for Standardization: Brussels, Belgium, 2002.
- Choi, C.; Prask, H.; Prince, E. Phase transitions in ammonium nitrate. J. Appl. Crystallogr. 1980, 13, 403–409. [Google Scholar] [CrossRef]
Shot No. | Sample | Fuel | Heating Rate | I/ET [°C] |
---|---|---|---|---|
1 | ANFO | naphtha | 10 °C/min | 223 |
2 | ANFO | paraffin | 10 °C/min | 276 |
3 | Ba(ClO4)2 | naphtha | 10 °C/min | 250 |
4 | Ba(ClO4)2 | paraffin | 10 °C/min | 268 |
5 | Mg(ClO4)2 | naphtha | 10 °C/min | 164 |
6 | Mg(ClO4)2 | paraffin | 10 °C/min | 269 |
7 | SPB | naphtha | 10 °C/min | 247 |
8 | SPB | paraffin | 10 °C/min | 254 |
9 | SPC | naphtha | 10 °C/min | 232 |
10 | SPC | paraffin | 10 °C/min | 249 |
Impact sensitivity [J] (fuel: naphtha) | ||||
---|---|---|---|---|
Amount | 1 wt. % | 5 wt. % | 7 wt. % | |
Additive | ||||
Mg(ClO4)2 | 40 | 4 | 10 | |
Ba(ClO4)2 | 40 | 4 | 10 | |
SPB 1 | >50 | 35 | 20 | |
SPC 2 | >50 | 7.5 | - | |
Impact sensitivity [J] (fuel: liquid paraffin) | ||||
Amount | 1 wt. % | 5 wt. % | 7 wt. % | |
Additive | ||||
Mg(ClO4)2 | 25 | 15 | 3 | |
Ba(ClO4)2 | 20 | 15 | 3 | |
SPB 1 | >50 | >50 | 7.5 | |
SPC 2 | >50 | 35 | - | |
Friction sensitivity [N] (fuel: naphtha) | ||||
Amount | 1 wt. % | 5 wt. % | 7 wt. % | |
Additive | ||||
Mg(ClO4)2 | 288 | 288 | 120 | |
Ba(ClO4)2 | 288 | 324 | 360 | |
SPB 1 | >360 | 252 | 216 | |
SPC 2 | >360 | 112 | - | |
Friction sensitivity [N] (fuel: liquid paraffin) | ||||
Amount | 1 wt. % | 5 wt. % | 7 wt. % | |
Additive | ||||
Mg(ClO4)2 | 252 | 144 | 216 | |
Ba(ClO4)2 | 180 | 324 | 216 | |
SPB 1 | >360 | 214 | 252 | |
SPC 2 | 324 | 252 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabin, M.; Skóra, P.; Polis, M.; Zakusylo, R.; Stolarczyk, A.; Jarosz, T. Towards “Green” ANFO: Study of Perchlorates and Inorganic Peroxides as Potential Additives. Molecules 2023, 28, 5636. https://doi.org/10.3390/molecules28155636
Fabin M, Skóra P, Polis M, Zakusylo R, Stolarczyk A, Jarosz T. Towards “Green” ANFO: Study of Perchlorates and Inorganic Peroxides as Potential Additives. Molecules. 2023; 28(15):5636. https://doi.org/10.3390/molecules28155636
Chicago/Turabian StyleFabin, Magdalena, Paweł Skóra, Mateusz Polis, Roman Zakusylo, Agnieszka Stolarczyk, and Tomasz Jarosz. 2023. "Towards “Green” ANFO: Study of Perchlorates and Inorganic Peroxides as Potential Additives" Molecules 28, no. 15: 5636. https://doi.org/10.3390/molecules28155636
APA StyleFabin, M., Skóra, P., Polis, M., Zakusylo, R., Stolarczyk, A., & Jarosz, T. (2023). Towards “Green” ANFO: Study of Perchlorates and Inorganic Peroxides as Potential Additives. Molecules, 28(15), 5636. https://doi.org/10.3390/molecules28155636