Highly Selective and Stable Cu Catalysts Based on Ni–Al Catalytic Systems for Bioethanol Upgrading to n-Butanol
Abstract
:1. Introduction
2. Results and Discussions
2.1. Catalytic Performances
2.2. Stability Tests
2.3. Structural Properties of the Fresh and Spent Catalysts
2.4. Insight into the Catalytic Performance and Stability
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Catalysts
3.3. Catalytic Evaluation
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dürre, P. Biobutanol: An attractive biofuel. Biotechnol. J. 2007, 2, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- García, V.; Päkkiläa, J.; Ojamo, H.; Muurinena, E.; Keiski, R.L. Challenges in biobutanol production: How to improve the efficiency? Renew. Sustain. Energy Rev. 2011, 15, 964–980. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, J.H.; Jang, S.H.; Nielsen, L.K.; Kim, J.; Jung, K.S. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 2008, 101, 209–228. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Sarathy, S.; Vranckx, S.; Yasunanga, K.; Mehl, M.; Osswald, P.; Metcalfe, W.K.; Westbrook, C.K.; Pitz, W.J.; Kohse-Hoingaus, K.; Fernandes, R.X.; et al. A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust. Flame 2012, 159, 2028–2055. [Google Scholar] [CrossRef]
- Campos-Fernández, J.; Arnal, J.M.; Gómez, J.; Porado, M.P. A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Appl. Energy 2012, 95, 267–275. [Google Scholar] [CrossRef]
- Uyttebroek, M.; Vam Hecke, W.; Vanbroekhoven, K. Sustainability metrics of 1-butanol. Catal. Today 2015, 239, 7–10. [Google Scholar] [CrossRef]
- Al-Shorgani, N.K.N.; Al-Tabib, A.I.; Kadier, A.; Zanil, M.F.; Lee, K.M.; Kalil, M.S. Continuous butanol fermentation of dilute acid-pretreated deoiled rice bran by Clostridium acetobutylicum YM1. Sci. Rep. 2019, 9, 4622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rass-Hansen, J.; Falsig, H.; Jørgensen, B.; Christensen, C.H. Perspective Bioethanol: Fuel or feedstock? Chem. Technol. Biotechnol. 2007, 82, 329–333. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal. 2014, 4, 1078–1090. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, J.; Liu, Y.; Zhang, Q.; Liu, Y.; Wang, Y.; Cao, Y. Towards a green bulk-scale biobutanol from bioethanol upgrading. J. Energy Chem. 2016, 25, 907–910. [Google Scholar] [CrossRef]
- Angelici, C.; Weckhuysen, B.M.; Bruijnincx, P.C.A. Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals. ChemSusChem 2013, 6, 1595–1614. [Google Scholar] [CrossRef]
- Kozlowski, J.T.; Davis, R.J. Heterogeneous catalysts for the Guerbet Coupling of alcohols. ACS Catal. 2013, 3, 1588–1600. [Google Scholar] [CrossRef]
- Wu, X.; Fang, G.; Tong, Y.; Jiang, D.; Liang, Z.; Leng, W.; Liu, L.; Tu, P.; Wang, H.; Ni, J.; et al. Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development. ChemSusChem 2018, 11, 71–85. [Google Scholar] [CrossRef]
- Earley, J.H.; Bourne, R.A.; Watson, M.J.; Poliakoff, M. Continuous catalytic upgrading of ethanol to n-butanol and >C4 products over Cu/CeO2 catalysts in supercritical CO2. Green Chem. 2015, 17, 3018–3025. [Google Scholar] [CrossRef] [Green Version]
- Metzker, G.; Vargas, J.A.M.; de Lima, L.P.; Perrone, O.M.; Siqueira, M.R.; Varanda, L.C.; Boscolo, M. First row transition metals on the ethanol Guerbet reaction: Products distribution and structural behavior of mixed metal oxides as catalysts. Appl. Catal. A Gen. 2021, 623, 118272. [Google Scholar] [CrossRef]
- Zhu, Q.; Yin, L.; Ji, K.; Li, C.; Wang, B.; Tan, T. Effect of Catalyst Structure and Acid–Base Property on the Multiproduct Upgrade of Ethanol and Acetaldehyde to C4 (Butadiene and Butanol) over the Y-SiO2 Catalysts. ACS Sustain. Chem. Eng. 2020, 8, 1555–1565. [Google Scholar] [CrossRef]
- Larina, O.V.; Valihura, K.V.; Kyriienko, P.I.; Vlasenko, N.V.; Balakin, D.Y.; Khalakhan, I.; Čendak, T.; Soloviev, S.O.; Orlyk, S.M. Successive vapour phase Guerbet condensation of ethanol and 1-butanol over Mg-Al oxide catalysts in a flow reactor. Appl. Catal. A Gen. 2019, 588, 117265. [Google Scholar] [CrossRef]
- Ndou, A.S.; Plint, N.; Coville, N.J. Dimerisation of ethanol to butanol over solid-base catalysts. Appl. Catal. A Gen. 2003, 251, 337–345. [Google Scholar] [CrossRef]
- Yang, C.; Meng, Z. Bimolecular Condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites. J. Catal. 1993, 142, 37–44. [Google Scholar] [CrossRef]
- Guerbet, M.C.R. Action des alcools ethylique, isobutylique, isoamylique sur leurs derives sodes. Acad. Sci. Paris 1899, 128, 1002–1004. [Google Scholar]
- Aitchison, H.; Wingad, R.L.; Wass, D.F. Homogeneous Ethanol to Butanol Catalysis Guerbet Renewed. ACS Catal. 2016, 6, 7125–7132. [Google Scholar] [CrossRef] [Green Version]
- Neumann, C.N.; Payne, M.T.; Rozeveld, S.J.; Wu, Z.; Zhang, G.; Comito, R.J.; Miller, J.T.; Dincă, M. Structural Evolution of MOF-Derived RuCo, A General Catalyst for the Guerbet Reaction. ACS Appl. Mater. Interfaces 2021, 13, 52113–52124. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wu, X.; Mao, J.; Ni, J.; Li, X. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts. Chem. Commun. 2016, 52, 13749. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Vasconcelos, A.C.; Bottari, G.; Stuart, M.C.A.; Bonura, G.; Cannilla, C.; Frusteri, F.; Barta, K. Efficient Catalytic Conversion of Ethanol to 1-Butanol via the Guerbet Reaction over Copper- and Nickel-Doped Porous. ACS Sustain. Chem. Eng. 2017, 5, 1738–1746. [Google Scholar] [CrossRef]
- Hanspal, S.; Young, Z.D.; Prillaman, J.T.; Davis, R.J. Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts. J. Catal. 2017, 352, 182–190. [Google Scholar] [CrossRef]
- Chistyakov, A.V.; Nikolaev, S.A.; Zharova, P.A.; Tsodikov, M.V.; Manenti, F. Linear α-alcohols production from supercritical ethanol over Cu/Al2O3 catalyst. Energy 2019, 166, 569–576. [Google Scholar] [CrossRef]
- Pang, J.; Zheng, M.; Wang, Z.; Liu, S.; Li, X.; Li, X.; Wang, J.; Zhang, T. Catalytic upgrading of ethanol to butanol over a binary catalytic system of FeNiOx and LiOH. Chin. J. Catal. 2020, 41, 672–678. [Google Scholar] [CrossRef]
- Chakraborty, S.; Piszel, P.E.; Hayes, C.E.; Baker, R.T.; Jones, W.D. Highly Selective Formation of n-Butanol from Ethanol through the Guerbet Process: A Tandem Catalytic Approach. J. Am. Chem. Soc. 2015, 137, 14264–14267. [Google Scholar] [CrossRef] [PubMed]
- Dowson, G.R.M.; Haddow, M.F.; Lee, J.; Wingad, R.L.; Wass, D.F. Catalytic Conversion of Ethanol into an Advanced Biofuel: Unprecedented Selectivity for n-Butanol. Angew. Chem. 2013, 125, 9175–9178. [Google Scholar] [CrossRef]
- Fu, S.; Shao, Z.; Wang, Y.; Liu, Q. Manganese-catalyzed upgrading of ethanol into 1-butanol. J. Am. Chem. Soc. 2017, 139, 11941–11948. [Google Scholar] [CrossRef]
- Cuello-Penaloza, P.A.; Dastidar, R.G.; Wang, S.C.; Du, Y.; Lanci, M.P.; Wooler, B.; Kliewer, C.E.; Hermans, I.; Dumesic, J.A.; Huber, G.W. Ethanol to distillate-range molecules using Cu/MgxAlOy catalysts with low Cu loadings. Appl. Catal. B 2022, 304, 120984. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, J.; An, Z.; Zhu, Y.; Shu, X.; Song, H.; Xiang, X.; Wang, W.; Jing, Y.; Zheng, L.; et al. Atomic Ru catalysis for ethanol coupling to C4+ alcohols. Appl. Catal. B 2022, 309, 121271. [Google Scholar] [CrossRef]
- Seekhiaw, P.; Pinthong, P.; Praserthdam, P.; Jongsomjit, B. Optimal Conditions for Butanol Production from Ethanol over MgAlO Catalyst Derived from Mg-Al Layer Double Hydroxides. J. Oleo Sci. 2022, 71, 141–149. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, M.; Pang, J.; Li, X.; Su, Y.; Liu, S.; Liu, X.; Wu, P.; Zheng, M. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol. J. Energy Chem. 2022, 72, 306–317. [Google Scholar] [CrossRef]
- Li, J.; Lin, L.; Tan, Y.; Wang, S.; Yang, W.; Chen, X.; Luo, W.; Ding, Y. High performing and stable Cu/NiAlOx catalysts for the continuous catalytic conversion of ethanol into butanol. ChemCatChem 2022, 14, e202200539. [Google Scholar]
- Marcu, I.C.; Tanchoux, N.; Fajula, F.; Tichit, D. Catalytic Conversion of Ethanol into Butanol over M-Mg-Al Mixed Oxide Catalysts (M = Pd, Ag, Mn, Fe, Cu, Sm, Yb) Obtained from LDH Precursors. Catal. Lett. 2013, 143, 23–30. [Google Scholar] [CrossRef]
- Marcu, I.C.; Tichit, D.; Fajula, F.; Tanchoux, N. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts. Catal. Today 2009, 147, 231–238. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, K.; Zhu, Y.; An, Z.; Wang, W.; Ma, X.; Shu, X.; Song, H.; Xiang, X.; He, J. Interfacial sites in Ag supported layered double oxide for dehydrogenation coupling of ethanol to n-butanol. ChemistryOpen 2021, 10, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Zheng, M.; He, L.; Li, L.; Pan, X.; Wang, A.; Wang, X.; Zhang, T. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts. J. Catal. 2016, 344, 184–193. [Google Scholar] [CrossRef]
- Petrolini, D.D.; Eagan, N.; Ball, M.R.; Burt, S.P.; Hermans, I.; Huber, G.W.; Dumesic, J.A.; Martins, L. Ethanol condensation at elevated pressure over copper on AlMgO and AlCaO porous mixed-oxide supports. Catal. Sci. Technol. 2019, 9, 2032–2042. [Google Scholar] [CrossRef]
- Carvalho, D.L.; de Avillez, R.R.; Rodrigues, M.T.; Borges, L.E.P.; Appel, L.G. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Appl. Catal. A Gen. 2012, 415, 96–100. [Google Scholar] [CrossRef]
- Gao, D.; Feng, Y.; Yin, H.; Wang, A.; Jiang, T. Coupling reaction between ethanol dehydrogenation and maleic anhydride hydrogenation catalyzed by Cu/Al2O3, Cu/ZrO2, and Cu/ZnO catalysts. Chem. Eng. J. 2013, 233, 349–359. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Williams, R.T. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Tong, Y.; Zhou, J.; He, Y.; Tu, P.; Xue, B.; Cheng, Y.; Cen, J.; Zheng, Y.; Ni, J.; Li, X. Structure-activity Relationship of Cu Species in the Ethanol Upgrading to n-Butanol. ChemistrySelect 2020, 5, 7714–7719. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, K.; An, Z.; Zhu, Y.; Shu, X.; Song, H.; Xiang, X.; He, J. Acid-base promoted dehydrogenation coupling of ethanol on supported Ag particles. Ind. Eng. Chem. Res. 2020, 59, 3342–3350. [Google Scholar] [CrossRef]
- Vlasenko, N.V.; Kyriienko, P.I.; Yanushevska, O.I.; Valihura, K.V.; Soloviev, S.O.; Strizhak, P.E. The effect of ceria content on the acid-base and catalytic characteristics of ZrO2-CeO2 oxide compositions in the process of ethanol to n-butanol condensation. Catal. Lett. 2020, 150, 234–242. [Google Scholar] [CrossRef]
- Chieregato, A.; Ochoa, J.V.; Bandinelli, C.; Fornasari, G.; Cavani, F.; Mella, M. On the Chemistry of Ethanol on Basic Oxides: Revising Mechanisms and Intermediates in the Lebedev and Guerbet reactions. ChemSusChem 2015, 8, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Li, H.; Tan, Y.; Ding, Y. Zn promoted Mg-Al mixed oxides-supported gold nanoclusters for direct oxidative esterification of aldehyde to ester. Int. J. Mol. Sci. 2021, 22, 8668. [Google Scholar] [CrossRef]
- León, M.; Díaz, E.; Ordóñez, S. Ethanol catalytic condensation over Mg-Al mixed oxides derived from hydrotalcites. Catal. Today 2011, 164, 436–442. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Baiker, A.; Huang, J. Pentacoordinated aluminum species: New frontier for tailoring acidity-enhanced silica–alumina Catalysts. Acc. Chem. Res. 2020, 53, 2648–2658. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, X.; Kou, J.; Tao, T.; Shen, X.; Jiang, D.; Lin, L.; Li, X. Catalytic upgrading of ethanol to higher alcohols over nickel-modified Cu–La2O3/Al2O3 catalysts. Catal. Sci. Technol. 2023, 13, 170–177. [Google Scholar] [CrossRef]
- He, J.; Lin, L.; Liu, M.; Miao, C.; Wu, Z.; Chen, R.; Chen, S.; Chen, T.; Su, Y.; Zhang, T.; et al. A durable Ni/La-Y catalyst for efficient hydrogenation of γ-valerolactone into pentanoic biofuels. J. Energy Chem. 2022, 70, 347–355. [Google Scholar] [CrossRef]
Entry | Catalysts | Conversion (%) a | Selectivity (%) a | ||||||
---|---|---|---|---|---|---|---|---|---|
Butanol | Ethyl Acetate | Ether | Butaldehyde | Ethyl Butyrate | Butyl Acetate | Hexanol | |||
1 | Cu/Ni3AlOx | 39.0 | 41.3 | 4.3 | 2.9 | 4.7 | 4.2 | 12.0 | 8.7 |
2 | Cu/Ni1AlOx | 30.0 | 43.8 | 7.7 | 3.4 | 3.8 | 2.5 | 5.0 | 11.4 |
3 | Cu/NiO | 41.1 | 37.0 | 3.1 | 6.4 | 4.4 | 1.6 | 10.2 | 1.0 |
4 | Cu/Al2O3 | 32.9 | 24.1 | 19.7 | 2.7 | 4.4 | 4.6 | 3.1 | 3.3 |
Entry | Catalysts | Cu (wt.%) a | Ni (wt.%) a | Al (wt.%) a | Ni/Al Molar Ratio a | SBET (m2·g−1) b | Volume (cm3·g−1) b | Dpore (nm) b |
---|---|---|---|---|---|---|---|---|
1 | Cu/NiO | 12.6 | 64.8 | - | - | 228.7 | 0.28 | 4.35 |
2 | Cu/Al2O3 | 12.8 | - | 38.8 | - | 351.6 | 0.48 | 3.86 |
3 | Cu/Ni3AlOx | 12.3 | 48.4 | 7.2 | 3.1 | 254.7 | 0.39 | 5.69 |
4 | Cu/Ni1AlOx | 12.9 | 32.9 | 13.5 | 1.1 | 207.9 | 0.21 | 1.93 |
5 | Cu/NiO c | 11.6 | 71.3 | - | - | 79.4 | 0.13 | 4.94 |
6 | Cu/Al2O3 c | 11.3 | - | 36.0 | - | 168.0 | 0.32 | 3.86 |
7 | Cu/Ni3AlOx c | 12.0 | 49.4 | 7.5 | 3.0 | 125.5 | 0.19 | 4.96 |
8 | Cu/Ni1AlOx c | 12.3 | 39.6 | 16.6 | 1.1 | 162.4 | 0.20 | 3.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Zhan, N.; Li, J.; Tan, Y.; Ding, Y. Highly Selective and Stable Cu Catalysts Based on Ni–Al Catalytic Systems for Bioethanol Upgrading to n-Butanol. Molecules 2023, 28, 5683. https://doi.org/10.3390/molecules28155683
Xiao Y, Zhan N, Li J, Tan Y, Ding Y. Highly Selective and Stable Cu Catalysts Based on Ni–Al Catalytic Systems for Bioethanol Upgrading to n-Butanol. Molecules. 2023; 28(15):5683. https://doi.org/10.3390/molecules28155683
Chicago/Turabian StyleXiao, Yan, Nannan Zhan, Jie Li, Yuan Tan, and Yunjie Ding. 2023. "Highly Selective and Stable Cu Catalysts Based on Ni–Al Catalytic Systems for Bioethanol Upgrading to n-Butanol" Molecules 28, no. 15: 5683. https://doi.org/10.3390/molecules28155683
APA StyleXiao, Y., Zhan, N., Li, J., Tan, Y., & Ding, Y. (2023). Highly Selective and Stable Cu Catalysts Based on Ni–Al Catalytic Systems for Bioethanol Upgrading to n-Butanol. Molecules, 28(15), 5683. https://doi.org/10.3390/molecules28155683