Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core–Shell Nanostructures
Abstract
:1. Introduction
2. Galvanic Replacement and Its Prevention to Synthesize Unconventional Core–Shell Nanostructures: The Case of Ag@M (M: Au, Pt, Pd, etc.) Nanostructures
2.1. Galvanic Replacement Reaction
2.2. Thermodynamic Control Strategy
2.3. Kinetic Control Strategy
3. Synthesis of 3d Transition Metal@noble Metal Core–Shell Nanostructures without Involving a Galvanic Replacement Reaction
4. Applications of Unconventional Bimetallic Core–Shell Nanostructures
4.1. Enhancing the Stability of the Core Nanocrystals
4.2. Tuning the Optical Properties
4.3. Improving the Catalytic Activities
4.4. Building Hollow Nanostructures or Open Frameworks
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sun, J.; Wang, J.; Hu, W.; Wang, Y.; Zhang, Q.; Hu, X.; Chou, T.; Zhang, B.; Gallaro, C.; Halloran, M.; et al. A Porous Bimetallic Au@Pt Core-Shell Oxygen Generator to Enhance Hypoxia-Dampened Tumor Chemotherapy Synergized with NIR-II Photothermal Therapy. ACS Nano 2022, 16, 10711–10728. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Astruc, D. From Galvanic to Anti-Galvanic Synthesis of Bimetallic Nanoparticles and Applications in Catalysis, Sensing, and Materials Science. Adv. Mater. 2017, 29, 1605305. [Google Scholar] [CrossRef]
- Qiao, Z.; Yang, H.; Fan, Q.; Liu, Z.; Liu, K.; Wen, Z.; Wang, Z.; Cheng, T.; Gao, C. Lattice Mismatch-Induced Formation of Copper Nanoplates with Embedded Ultrasmall Platinum or Palladium Cores for Tunable Optical Properties. Small 2023, 19, e2206838. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Jin, R.; Zhu, C.; Zhao, C.; Lin, Y.; Guan, Q.; Cao, L.; Wang, H.; Li, S.; et al. Conjugated Dual Size Effect of Core-Shell Particles Synergizes Bimetallic Catalysis. Nat. Commun. 2023, 14, 530. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, X.; Xia, F.; Zhang, W.; Ma, D.; Zhou, Y.; Peng, H.; Wu, J.; Gong, X.; Wang, D.; et al. Core-Shell Nanostructured Ru@Ir-O Electrocatalysts for Superb Oxygen Evolution in Acid. Small 2022, 18, e2108031. [Google Scholar] [CrossRef]
- Jung, H.; Kwon, Y.; Kim, Y.; Ahn, H.; Ahn, H.; Wy, Y.; Han, S.W. Directing Energy Flow in Core-Shell Nanostructures for Efficient Plasmon-Enhanced Electrocatalysis. Nano Lett. 2023, 23, 1774–1780. [Google Scholar] [CrossRef]
- Wang, Q.; Mi, B.; Zhou, J.; Qin, Z.; Chen, Z.; Wang, H. Hollow-Structure Pt-Ni Nanoparticle Electrocatalysts for Oxygen Reduction Reaction. Molecules 2022, 27, 2524. [Google Scholar] [CrossRef]
- Luo, M.; Guo, S. Strain-Controlled Electrocatalysis on Multimetallic Nanomaterials. Nat. Rev. Mater. 2017, 2, 17059. [Google Scholar] [CrossRef]
- Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts. Nat. Chem. 2010, 2, 454–460. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, E.; Hwang, S.; Mukerjee, S.; Jia, Q. Compressive Strain Reduces the Hydrogen Evolution and Oxidation Reaction Activity of Platinum in Alkaline Solution. ACS Catal. 2021, 11, 8165–8173. [Google Scholar] [CrossRef]
- Li, H.; Zhou, J.; Yan, L.; Zhong, R.; Wang, Y.; Liao, X.; Shi, B. Barbican-Inspired Bimetallic Core–Shell Nanoparticles for Fabricating Natural Leather-Based Radiation Protective Materials with Enhanced X-Ray Shielding Capability. Chem. Eng. J. 2023, 466, 143355. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Jafari, M.; Siaj, M.; Wang, H.; Xiao, S.; Ma, D. Highly Stable Ag–Au Core–Shell Nanowire Network for ITO-Free Flexible Organic Electrochromic Device. Adv. Funct. Mater. 2021, 31, 2010022. [Google Scholar] [CrossRef]
- Yang, T.H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R.; Qin, D. Noble-Metal Nanoframes and Their Catalytic Applications. Chem. Rev. 2021, 121, 796–833. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Y.; Huo, D.; Ding, Q.; Lu, Z.; Hu, Y. Epitaxial Growth of Gold on Silver Nanoplates for Imaging-Guided Photothermal Therapy. Mater. Sci. Eng. C 2019, 105, 110023. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhou, W.; Ji, Y.; Chen, B.; Fu, G.; Yun, Q.; Chen, S.; Lin, Y.; Yin, P.F.; Cui, X.; et al. Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core-Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Y.; Wang, S.; Liu, M.; Wang, L.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Polyethylenimine-Modified Bimetallic Au@Rh Core-Shell Mesoporous Nanospheres Surpass Pt for Ph-Universal Hydrogen Evolution Electrocatalysis. J. Mater. Chem. A 2021, 9, 13080–13086. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Zhang, L.; Yan, S.; Sharma, A.; Zhao, B.; Kumbhar, A.; Zhou, G.; Fang, J. Synthesis of Core@Shell Cu-Ni@Pt-Cu Nano-Octahedra and Their Improved Mor Activity. Angew. Chem. Int. Ed. 2021, 60, 7675–7680. [Google Scholar] [CrossRef]
- Qiu, J.; Nguyen, Q.N.; Lyu, Z.; Wang, Q.; Xia, Y. Bimetallic Janus Nanocrystals: Syntheses and Applications. Adv. Mater. 2022, 34, e2102591. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D.; et al. Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis. Science 2016, 354, 1410–1414. [Google Scholar] [CrossRef]
- Aslam, U.; Linic, S. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes. ACS Appl. Mater. Interfaces 2017, 9, 43127–43132. [Google Scholar] [CrossRef]
- Liu, K.; Yang, H.; Jiang, Y.; Liu, Z.; Zhang, S.; Zhang, Z.; Qiao, Z.; Lu, Y.; Cheng, T.; Terasaki, O.; et al. Coherent Hexagonal Platinum Skin on Nickel Nanocrystals for Enhanced Hydrogen Evolution Activity. Nat. Commun. 2023, 14, 2424. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Xie, M.; Jiang, Y.; Liu, Z.; Lu, Y.; Zhang, S.; Zhang, Z.; Wang, X.; Liu, K.; Zhang, Q.; et al. Core-Shell Nanoparticles with Tensile Strain Enable Highly Efficient Electrochemical Ethanol Oxidation. J. Mater. Chem. A 2021, 9, 15373–15380. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, Y.-X.; Niu, Z. Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catal. 2020, 10, 10886–10904. [Google Scholar] [CrossRef]
- Gilroy, K.D.; Ruditskiy, A.; Peng, H.C.; Qin, D.; Xia, Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem. Rev. 2016, 116, 10414–10472. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, X.; Yang, J.; Wu, X.J.; Liu, Z.; Huang, W.; Zhang, H. Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons. J. Am. Chem. Soc. 2015, 137, 10910–10913. [Google Scholar] [CrossRef]
- Cheng, F.; Gu, W.; Zhang, H.; Song, C.; Zhu, Y.; Ge, F.; Qu, K.; Xu, H.; Wu, X.J.; Wang, L. Direct Synthesis of Au-Ag Nanoframes by Galvanic Replacement Via a Continuous Concaving Process. Nanoscale 2022, 14, 8825–8832. [Google Scholar] [CrossRef]
- Hong, Y.; Venkateshalu, S.; Jeong, S.; Tomboc, G.M.; Jo, J.; Park, J.; Lee, K. Galvanic Replacement Reaction to Prepare Catalytic Materials. Bull. Korean Chem. Soc. 2022, 44, 4–22. [Google Scholar] [CrossRef]
- Shao, S.; Zhu, X.; Ten, V.; Kim, M.J.; Xia, X. Understanding the Impact of Wall Thickness on Thermal Stability of Silver–-Gold Nanocages. J. Phys. Chem. C 2022, 126, 7337–7345. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, C.; Qin, D.; Xia, Y. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches. Acc. Chem. Res. 2023, 56, 900–909. [Google Scholar] [CrossRef]
- Huang, T.-C.; Tsai, H.-C.; Chin, Y.-C.; Huang, W.-S.; Chiu, Y.-C.; Hsu, T.-C.; Chia, Z.-C.; Hung, T.-C.; Huang, C.-C.; Hsieh, Y.-T. Concave Double-Walled Agaupd Nanocubes for Surface-Enhanced Raman Spectroscopy Detection and Catalysis Applications. ACS Appl. Nano Mater. 2021, 4, 10103–10115. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, X.; Yang, X.; Gilroy, K.D.; Qin, D.; Xia, Y. Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Well-Controlled Surface Structures. Adv. Mater. 2018, 30, e1801956. [Google Scholar] [CrossRef] [PubMed]
- Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Bals, S.; Liz-Marzan, L.M. Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. J. Am. Chem. Soc. 2016, 138, 11453–11456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Adv. Mater. 2013, 25, 6313–6333. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Lu, Z.; Liu, Y.; Zhang, Q.; Chi, M.; Cheng, Q.; Yin, Y. Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angew. Chem. Int. Ed. 2012, 51, 5629–5633. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Zhang, L.; Han, L.; Gao, C.; Yin, Y. Etching-Free Epitaxial Growth of Gold on Silver Nanostructures for High Chemical Stability and Plasmonic Activity. Adv. Funct. Mater. 2015, 25, 5435–5443. [Google Scholar] [CrossRef]
- Liu, H.; Liu, K.; Zhong, P.; Qi, J.; Bian, J.; Fan, Q.; Ren, K.; Zheng, H.; Han, L.; Yin, Y.; et al. Ultrathin Pt-Ag Alloy Nanotubes with Regular Nanopores for Enhanced Electrocatalytic Activity. Chem. Mater. 2018, 30, 7744–7751. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, P.; Liu, K.; Han, L.; Zheng, H.; Yin, Y.; Gao, C. Synthesis of Ultrathin Platinum Nanoplates for Enhanced Oxygen Reduction Activity. Chem. Sci. 2018, 9, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y.; Khanarian, G.; Kim, D.; Dou, L.; Dehestani, A.; Schierle-Arndt, K.; et al. Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors. J. Am. Chem. Soc. 2017, 139, 7348–7354. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, W.; Jiu, J.; Yang, Y.; Jing, J.; Suganuma, K.; Li, C.F. Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics. Inorg. Chem. 2019, 58, 3374–3381. [Google Scholar] [CrossRef]
- Yadav, V.; Jeong, S.; Ye, X.; Li, C.W. Surface-Limited Galvanic Replacement Reactions of Pd, Pt, and Au onto Ag Core Nanoparticles through Redox Potential Tuning. Chem. Mater. 2022, 34, 1897–1904. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Fu, Z.-W.; Qin, D. Galvanic Replacement-Free Deposition of Au on Ag for Core-Shell Nanocubes with Enhanced Chemical Stability and SERS Activity. J. Am. Chem. Soc. 2014, 136, 8153–8156. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, X.; Zhang, Y.; Ding, Y.; Su, D.; Qin, D. Pt-Ag Cubic Nanocages with Wall Thickness Less Than 2 nm and Their Enhanced Catalytic Activity toward Oxygen Reduction. Nanoscale 2017, 9, 15107–15114. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, Y.; Zhang, Z.; Qin, D. Mechanistic Roles of Hydroxide in Controlling the Deposition of Gold on Colloidal Silver Nanocrystals. Chem. Mater. 2017, 29, 4014–4021. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, X.; Yang, Y.; Li, J.; Zhang, Y.; Qin, D. Enriching Silver Nanocrystals with a Second Noble Metal. Acc. Chem. Res. 2017, 50, 1774–1784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Ahn, J.; Xiao, T.-H.; Li, Z.-Y.; Qin, D. Observing the Overgrowth of a Second Metal on Silver Cubic Seeds in Solution by Surface-Enhanced Raman Scattering. ACS Nano 2017, 11, 5080–5086. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Z.; Shi, Y.; Lyu, Z.; Cao, Z.; Cheng, H.; Chi, M.; Xiao, K.; Xia, Y. Facile Synthesis of Ag@PdNi Icosahedral Nanocrystals as a Class of Cost-Effective Electrocatalysts toward Formic Acid Oxidation. ChemCatChem 2020, 12, 5156–5163. [Google Scholar] [CrossRef]
- Qin, D. Framing Silver Nanocrystals with a Second Metal to Enhance Shape Stability and Expand Functionality. Acc. Mater. Res. 2022, 3, 391–402. [Google Scholar] [CrossRef]
- Mayer, M.; Steiner, A.M.; Roder, F.; Formanek, P.; Konig, T.A.F.; Fery, A. Aqueous Gold Overgrowth of Silver Nanoparticles: Merging the Plasmonic Properties of Silver with the Functionality of Gold. Angew. Chem. Int. Ed. 2017, 56, 15866–15870. [Google Scholar] [CrossRef]
- Xia, Z.; Guo, S. Strain Engineering of Metal-Based Nanomaterials for Energy Electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278. [Google Scholar] [CrossRef]
- Zhang, Z.; Ahn, J.; Kim, J.; Wu, Z.; Qin, D. Facet-Selective Deposition of Au and Pt on Ag Nanocubes for the Fabrication of Bifunctional Ag@Au-Pt Nanocubes and Trimetallic Nanoboxes. Nanoscale 2018, 10, 8642–8649. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, J.; Yang, Y.; Qin, D. Bifunctional Ag@Pd-Ag Nanocubes for Highly Sensitive Monitoring of Catalytic Reactions by Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039–7042. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Kim, J.; Qin, D. Orthogonal Deposition of Au on Different Facets of Ag Cuboctahedra for the Fabrication of Nanoboxes with Complementary Surfaces. Nanoscale 2020, 12, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Zhao, B.; Li, Y.; Zeng, Q.; Wang, L.; Ding, J.; Zhang, R.; Che, R. Galvanic Replacement Reaction Involving Core-Shell Magnetic Chains and Orientation-Tunable Microwave Absorption Properties. Small 2020, 16, e2003502. [Google Scholar] [CrossRef]
- Aherne, D.; Charles, D.E.; Brennan-Fournet, M.E.; Kelly, J.M.; Gun’ko, Y.K. Etching-Resistant Silver Nanoprisms by Epitaxial Deposition of a Protecting Layer of Gold at the Edges. Langmuir 2009, 25, 10165–10173. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, P.; Pan, Y.-T.F.; Warren, S.; Yin, X.; Yang, H. Surface Lattice-Engineered Bimetallic Nanoparticles and Their Catalytic Properties. Chem. Soc. Rev. 2012, 41, 8066–8069. [Google Scholar] [CrossRef]
- Zhuang, J.; Liu, X.; Ji, Y.; Gu, F.; Xu, J.; Han, Y.-f.; Xu, G.; Zhong, Z.; Su, F. Phase-Controlled Synthesis of Ni Nanocrystals with High Catalytic Activity in 4-Nitrophenol Reduction. J. Mater. Chem. A 2020, 8, 22143–22154. [Google Scholar] [CrossRef]
- LaGrow, A.P.; Cheong, S.; Watt, J.; Ingham, B.; Toney, M.F.; Jefferson, D.A.; Tilley, R.D. Can Polymorphism Be Used to Form Branched Metal Nanostructures? Adv. Mater. 2013, 25, 1552–1556. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Ge, Y.; Wang, Y.; Lu, S.; Zhao, Y.; Tang, Y.; Soomro, A.M.; Hong, Q.; Yang, X.; et al. Cu Nanowires Passivated with Hexagonal Boron Nitride: An Ultrastable, Selectively Transparent Conductor. ACS Nano 2020, 14, 6761–6773. [Google Scholar] [CrossRef]
- Han, M.; Ge, Y.; Liu, J.; Cao, Z.; Li, M.; Duan, X.; Hu, J. Mixed Polyvinyl Pyrrolidone Hydrogel-Mediated Synthesis of High-Quality Ag Nanowires for High-Performance Transparent Conductors. J. Mater. Chem. A 2020, 8, 21062–21069. [Google Scholar] [CrossRef]
- Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S.H. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network. Nano Lett. 2017, 17, 4339–4346. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Kim, S.; Ma, X.; Byrley, P.; Yu, N.; Liu, Q.; Sun, X.; Xu, D.; Peng, S.; Hartel, M.C.; et al. Ultrathin-Shell Epitaxial Ag@Au Core-Shell Nanowires for High-Performance and Chemically-Stable Electronic, Optical, and Mechanical Devices. Nano Res. 2021, 14, 4294–4303. [Google Scholar] [CrossRef]
- Chen, Z.; Balankura, T.; Fichthorn, K.A.; Rioux, R.M. Revisiting the Polyol Synthesis of Silver Nanostructures: Role of Chloride in Nanocube Formation. ACS Nano 2019, 13, 1849–1860. [Google Scholar] [CrossRef]
- Wiley, B.J.; Im, S.H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis. J. Phys. Chem. B 2006, 110, 15666–15675. [Google Scholar] [CrossRef]
- Chan, G.H.; Zhao, J.; Hicks, E.M.; Schatz, G.C.; Van Duyne, R.P. Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 2007, 7, 1947–1952. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Xue, F.; Xu, S.; Shen, S.; Huang, H.; Liu, M. Coupling Photothermal Effect into Efficient Photocatalytic H2 Production by Using a Plate-Like Cu@Ni Core-Shell Cocatalyst. ChemCatChem 2020, 12, 2745–2751. [Google Scholar] [CrossRef]
- Fan, Z.; Zhu, Y.; Huang, X.; Han, Y.; Wang, Q.; Liu, Q.; Huang, Y.; Gan, C.L.; Zhang, H. Synthesis of Ultrathin Face-Centered-Cubic Au@Pt and Au@Pd Core-Shell Nanoplates from Hexagonal-Close-Packed Au Square Sheets. Angew. Chem. Int. Ed. 2015, 54, 5672–5676. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Ahn, J.; Wang, X.; Qin, D. Defect-Assisted Deposition of Au on Ag for the Fabrication of Core-Shell Nanocubes with Outstanding Chemical and Thermal Stability. Chem. Mater. 2019, 31, 1057–1065. [Google Scholar] [CrossRef]
Half Reaction | E0 (V) |
---|---|
Au+ + e− = Au | 1.83 |
Au3+ + 3e− = Au | 1.52 |
Pt2+ + 2e− = Pt | 1.188 |
Pd2+ + 2e− = Pd | 0.915 |
Ag+ + e− = Ag | 0.80 |
Cu2+ + 2e− = Cu | 0.34 |
Ni2+ + 2e− = Ni | −0.257 |
Half Reaction | E0 (V) |
---|---|
Au3+ + 3e− = Au | 1.52 |
AuCl4− + 3e− = Au + 4Cl− | 1.002 |
AuBr4− + 3e− = Au + 4Br− | 0.854 |
AuI4− + 3e− = Au + 4I− | 0.56 |
Au(SO3)23− + e− = Au + 2SO32− | 0.111 |
Pt2+ + 2e− = Pt | 1.188 |
PtCl42− + 2e− = Pt + 4Cl− | 0.758 |
PtBr42− + 2e− = Pt + 4Br− | 0.698 |
Pd2+ + 2e− = Pd | 0.915 |
PdCl42− + 2e− = Pd + 4Cl− | 0.62 |
PdBr42− + 2e− = Pd + 4Br− | 0.49 |
Pd(NH3)42+ + 2e− = Pd + 4NH3 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Qiao, Z.; Gao, C. Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core–Shell Nanostructures. Molecules 2023, 28, 5720. https://doi.org/10.3390/molecules28155720
Liu K, Qiao Z, Gao C. Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core–Shell Nanostructures. Molecules. 2023; 28(15):5720. https://doi.org/10.3390/molecules28155720
Chicago/Turabian StyleLiu, Kai, Zhun Qiao, and Chuanbo Gao. 2023. "Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core–Shell Nanostructures" Molecules 28, no. 15: 5720. https://doi.org/10.3390/molecules28155720
APA StyleLiu, K., Qiao, Z., & Gao, C. (2023). Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core–Shell Nanostructures. Molecules, 28(15), 5720. https://doi.org/10.3390/molecules28155720