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Abstract: High-performance non-enzymatic glucose sensor composite electrodes were prepared by
loading Ni onto a boron-doped diamond (BDD) film surface through a thermal catalytic etching
method. A carbon precipitate with a desired thickness could be formed on the Ni/BDD composite
electrode surface by tuning the processing conditions. A systematic study regarding the influence of
the precipitated carbon layer thickness on the electrocatalytic oxidation of glucose was conducted.
While an oxygen plasma was used to etch the precipitated carbon, Ni/BDD-based composite elec-
trodes with the precipitated carbon layers of different thicknesses could be obtained by controlling the
oxygen plasma power. These Ni/BDD electrodes were characterized by SEM microscopies, Raman
and XPS spectroscopies, and electrochemical tests. The results showed that the carbon layer thickness
exerted a significant impact on the resulting electrocatalytic performance. The electrode etched under
200 W power exhibited the best performance, followed by the untreated electrode and the electrode
etched under 400 W power with the worst performance. Specifically, the electrode etched under 200
W was demonstrated to possess the highest sensitivity of 1443.75 µA cm−2 mM−1 and the lowest
detection limit of 0.5 µM.

Keywords: boron-doped diamond; chemical vapor deposition; carbon thickness; glucose;
electrochemistry

1. Introduction

Blood glucose concentration is an important indicator of many diseases, such as
diabetes and endocrine disorders. The blood glucose levels of patients need to be strictly
and continuously controlled in a real-time manner. Therefore, the accurate, rapid, and
sensitive monitoring of glucose concentration is immensely significant for the diagnosis
and treatment of related diseases [1,2]. Enzyme glucose sensors based on glucose oxidase
(GOx) are often used to detect glucose levels. However, enzyme sensors exhibit certain
drawbacks, including low repeatability, unsatisfactory instability, high cost, and the need
for complex manufacturing techniques. Furthermore, the effectiveness of enzyme sensors
is influenced by external variables such as humidity, pH, and temperature fluctuations.
These limitations restrict the application of enzyme-based sensors [3,4]. Alternatively,
non-enzymatic glucose sensors offer excellent characteristics such as cost-effectiveness,
high efficiency, high sensitivity, and ease of operation [5]. Particularly, non-enzymatic
glucose sensors based on electrochemical methods show remarkable prospects for practical
applications [6,7]. Certainly, for non-enzymatic sensors, their sensing performance is largely
dictated by electrode materials [8].

As a common non-precious metal for electrode material fabrication, nickel generates
the Ni(OH)2/NiO(OH) redox pair under alkaline conditions, thus enabling the direct elec-
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trocatalytic oxidation of glucose [9]. Compared to other metal nanomaterials (e.g., Pt, Au,
Cu, Ag, and CuO), Ni possesses many advantages, such as lower cost, higher resistance
to chloride ion poisoning, superior corrosion resistance, and faster electron transfer prop-
erties, leading to greater performance and universality in the electrocatalytic oxidation of
glucose [10,11]. To further enhance the performance of Ni-based glucose sensors, most
researchers have focused on various nanostructures with high specific surface area and
surface energy, such as nanoparticles [12–15], nanowires [16], nanosheets [17], nanowire
arrays [18], and three-dimensional nanostructures [10,19,20]. These highly active nanoma-
terials often need to be loaded onto suitable carrier materials to achieve good dispersion,
stability, and rapid electron transfer. Therefore, it is essential to select appropriate carrier
materials and loading methods for active nanostructure deposition.

Boron-doped diamond (BDD) is highly promising as an electrode material with a
high oxygen evolution potential, high corrosion resistance, and good anti-pollution proper-
ties [21]. In the form of solid films for carrying sensitive nanostructures (e.g., Au, Pt, Ag, Cu,
or Ni), BDD is structurally stable and can be prepared by a simpler preparation process with
better reproducibility compared with other carbon materials such as carbon nanotubes and
graphene [22,23]. More importantly, BDD can be directly grown onto substrate electrodes,
without involving secondary loading. On the other hand, electrodeposition was mainly
adopted to load metal nanoparticles onto BDD. However, the interfacial adhesion between
the deposited active nanoparticles and the BDD substrate was weak. During long-term
electrochemical testing, weak interfacial binding is incapable to suppress the migration, ag-
gregation, and detachment of certain nanoparticles on the carrier, resulting in unsatisfactory
electrode performance [24,25]. Such weak interfacial adhesion also increases the energy
barrier for the adsorption and diffusion of analyte molecules at the electrode/solution
interface, as well as for electron migration at the interface [26]. To strengthen the interfa-
cial interactions, Dai et al. used nanodiamond-enhanced nucleation to electrodeposit Ni
nanoparticles on the BDD surface, which improved the Ni nanoparticle nucleation rate and
the binding force between Ni nanoparticles and BDD film [27]. Nevertheless, there is still
room remaining to improve the physisorption-based binding between Ni and BDD further.
Researchers have attempted to construct chemical binding at the interfaces to enhance the
performance of composite electrodes. Hutchison et al. achieved this by modifying the
surfaces of Au nanoparticles and BDD electrodes with organic ligands to chemically graft
the nanoparticles onto the BDD electrode surface [28]. This approach reduced the energy
barrier for electron migration and improved electrode response and stability. However, this
method is relatively complex and susceptible to environmental influences during usage.

By employing thermal catalytic etching, Ni can be loaded onto the BDD surface
with strong interfacial adhesion. Under high-temperature conditions, Ni is capable of
catalytically etching the BDD film, leading Ni particles to embed into BDD and forming
a stable interfacial connection between Ni and BDD [29,30]. This approach can resolve
the problem of weak interfacial binding associated with electrodeposition and enables the
preparation of high-performance non-enzymatic glucose sensor electrodes. Meanwhile,
the thermal catalytic etching process results in the precipitation of a substantial amount
of carbon, which encapsulates the nanoscale Ni. Research indicates that the precipitated
carbon layer can effectively enhance electrode conductivity. In addition, the metal particles
can be protected from electrolyte corrosion. A synergistic effect can also be created between
the metal and carbon materials, lowering the reaction barrier near the Ni/carbon interface
and hence accelerating the oxidation reaction [14,31,32]. Furthermore, some studies suggest
that the carbon layer thickness plays a crucial role in regulating the composite electrode
performance [33]. However, it is a grand challenge to precisely control the carbon layer
thickness from an experimental perspective. Bao et al. reported on the influence of carbon
layer thicknesses on carbon nanotube-encapsulated iron-based nanoparticle catalysts for
the oxygen reduction reaction [34,35]. The experimental findings revealed that oxygen
adhered more strongly to the carbon surface with a smaller thickness, significantly elevating
the oxygen reduction reaction rate. While the carbon layer thickness affected the electron
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transfer rate of the materials, the optimal catalysts typically had a carbon layer with a
thickness of only 1–2 layers. The DFT calculations further indicated that an increase in the
carbon layer thickness gradually diminished the effect of charge transfer from the metal
core to the outermost carbon layer, which became extremely weak beyond three layers.
Although the Ni/BDD composite electrode used as a sensor electrode exhibits excellent
glucose catalytic performance, the impact of carbon layer thickness on the performance of
glucose electrocatalytic oxidation has been unknown until now.

Therefore, in this study, we employed a low-temperature oxygen plasma etching tech-
nique to gradually remove the precipitated carbon on the surface of Ni/BDD electrodes,
which was generated during the thermal catalytic process. Through a series of material
composition characterizations and electrochemical measurements, we systematically ana-
lyzed the impact of carbon layer thickness on the electrocatalytic oxidation of glucose. This
study presented here sheds light on clarifying the relationship between the precipitated
carbon layer thickness and the electrochemical performance of Ni/BDD electrodes and
constructing durable and high-performance composite electrode materials with strong
interfacial adhesion for biological sensing.

2. Results and Discussion

Figure 1 shows the SEM images of different Ni/BDD samples. From Figure 1a, it
can be observed that, after thermal treatments, large Ni nanoparticles with diameters of
approximately 70–100 nm can be observed on the sample surface, in addition to small Ni
nanoparticles with diameters of about 10–20 nm that are separated by a dark material and
dispersed around the large particles. Upon closer inspection, a translucent coating can
be seen on the large particle surface. After 200 W oxygen plasma etching, the translucent
coating thickness is reduced (Figure 1b), along with the vanishment of the dark material
between particles, enabling the underlying Ni nanoparticles to be exposed and connected.
The oxygen plasma etching at 400 W eliminates the translucent coating, making the bound-
aries between Ni nanoparticles at the bottom clearer (Figure 1c). Based on the thermal
catalytic reaction between Ni and diamond, it can be inferred that the dark material and
translucent coating are primarily comprised of graphitic phases formed during the catalytic
reaction. With an increase in oxygen plasma etching power, the surface graphite layer is
partially removed to elevated extents.
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The formation of these small Ni nanoparticles at the bottom, together with some large
particles on the top surface, reveals that the Ni film exhibits obvious thermal instability
with a much lower melting point than bulk Ni with a melting point of 1455 °C. Compared
to conventional bulk materials, nanoscale thin films produced by sputtering have higher
surface energy and a larger number of surface atoms. In a low coordination state, these
surface atoms possess high reactivity. The much larger surface-to-volume ratio of the
nanoparticles with more reactive surface atoms compared with that of bulk materials
makes them require much less internal energy to melt [36]. Moreover, the sputtered Ni
films contain a high density of grain boundaries, which provide a significant driving force
for coarsening and hence result in a lower melting point [37]. This thermal instability
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significantly increases as the particle size decreases, exhibiting a pronounced size effect.
Specifically, coarsening occurs in some nanograined metals (such as Cu) even at ambient
temperatures [38]. Such size-related thermal instability, along with the high-temperature
impacts and the inherent size effect, causes localized melting on the surface when the
heat treatment temperature reaches 700 ◦C. As a result, diffusion and nucleation of Ni
atoms are promoted to aggregate into large particles. On the other hand, the thermal
instability accelerates the etching of BDD by Ni at 700 ◦C and brings rapid precipitation of
large amounts of carbon, thus allowing the bottom small Ni particles to be anchored by
embedding into the BDD thin film. The rapidly precipitated carbon during the thermal
catalytic process immediately encapsulates the nanoscale particles, forming a physical
barrier to reduce the aggregation of the bottom Ni nanoparticles and hence resulting in
highly dispersed Ni/C nanoclusters.

Figure 2 shows the Raman spectra of different samples. The characteristic peaks at
500 and 1200 cm−1 can be well observed. These two peaks can be attributed to the boron
doping in diamonds, which induces a certain degree of lattice disorder, thus confirming the
incorporation of boron atoms into the diamond crystal [39,40]. Two distinctive peaks appear
at 1350 and 1580 cm−1, corresponding to the D peak associated with defects and disordered
structures in sp2 carbon and the G peak related to the abundance of sp2 carbon, respectively.
This finding indicates the significant generation of graphite phases after thermal catalytic
treatments [41]. With an increase in oxygen plasma etching power from 200 to 400 W, the
Raman peaks at 500 and 1200 cm−1 gradually intensify, while the characteristic diamond
peak at 1332 cm−1 becomes more prominent. In contrast, the intensities of the peaks at
1350 and 1580 cm−1, which can be indexed to sp2 graphite phases, gradually decrease.
These results suggest that oxygen plasma etching reduces surface graphite phases, particu-
larly at higher etching power, which reduces the surface graphite phases to a greater extent.
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In the XPS survey spectra of three different samples, the characteristic peaks at approx-
imately 865, 285, and 532 eV can be assigned to Ni 2p3, C 1s, and O 1s, respectively, thus
indicating the presence of Ni, C, and O elements in all samples (Figure 3a–c). In addition,
it can be observed that the oxygen plasma etching at a higher power (corresponding to
the 400 W sample) enables the characteristic peak signal of the C element to be notice-
ably decreased whilst strengthening the signals from Ni and O elements. Because XPS
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is sensitive to surface elements, the etching of carbon atoms from the sample surface by
the oxygen plasma weakens the shielding effect on the absorption of underlying Ni. This
further indicates that increasing the etching power enhances the exfoliation degree of the
carbon layer on the surface.
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Figure 3. (a–c) Survey scan and (d–f) C 1s core-level XPS spectra of (a,d) untreated, (b,e) 200 W, and
(c,f) 400 W samples. The content ratios of C, O, and Ni are calculated based on the C1s, O1s, and Ni
2p3 characteristic peak signals.

Figure 3d–f show the XPS spectra and corresponding peak fitting curves of the C 1s for
different samples. Three characteristic peaks can be deconvoluted from the high-resolution
C 1s XPS spectra. The C1, C2, and C3 peaks at approximately 283.5, 284.4, and 286.6 eV
can be attributed to the carbon atom features in carbides [42,43], the C=C bond in sp2

hybridized orbitals [44], and the carbon atom features in oxygen-containing functional
groups [45], respectively. The oxygen plasma etching steadily enhances the intensity of the
C1 peak and the C3 peak while stepwise decreasing the intensity of the C2 peak indexed
to the sp2 carbon phase with a gradual increase in the etching power. These observations
indicate that a significant amount of carbon is oxidized by the plasma and etched from the
surface, thus weakening the collected sp2 carbon signals in XPS. Additionally, the removal
of surface sp2 carbon allows the underlying Ni to be exposed, making the collection of Ni
signals more efficient, especially in the case of a high oxygen plasma etching power.

Figure 4 shows the cyclic voltammograms (CV) of different electrodes in a 0.5 M
NaOH electrolyte solution and a mixed solution containing 1 mM glucose and a 0.5 M
NaOH electrolyte. Before conducting CV tests, a CV pretreatment in a 0.5 M NaOH solution
had been carried out. In the CV curves, a pair of Ni(OH)2/NiO(OH) redox peaks can be
observed. Upon the addition of glucose, the oxidation and reduction peak currents increase
and decrease, respectively, along with a positive shift of the oxidation peak potential. This
behavior can be attributed to the reduction of some NiOOH species by glucose molecules
during the reaction, resulting in a decrease of NiO(OH) and an increase of Ni(OH)2. The
reaction equations can be expressed as follows [46]:

Ni(OH)2 + (OH)− → NiO(OH) + H2O + e− (1)

Ni(OH) + glucose→ Ni(OH)2 + gluconolactone (2)
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By calculating the difference in oxidation peak currents in the 0.5 M NaOH solution
and the mixture of the 0.5 M NaOH and 1 mM glucose solution, the electrocatalytic
currents were obtained, as shown in Figure 4d. A comparison study of the oxidation and
electrocatalytic currents presents that the 200 W electrode exhibits the highest currents,
followed by the untreated electrode and the 400 W electrode with the lowest currents.
Therefore, the order of the electrocatalytic performance of the three electrodes towards
glucose oxidation can be determined as follows: 200 W > untreated > 400 W.

Figure 5 shows the CV curves of different electrodes in a mixture solution of 0.5 M
NaOH and glucose at varying concentrations (i.e., 1, 2, 3, 4, and 5 mM). With the increase
of glucose concentrations, the oxidation peak current steadily increases, and the oxidation
peak potential shifts towards more positive values. This result can be attributed to the
diffusion limitation of glucose molecules on the electrode surface [47]. The gradual decrease
of the reduction peak current can be due to the reduction of the NiOOH species by glucose
molecules [48]. The plots of oxidation peak currents as a function of glucose concentrations
can be well linearly fitted for all the cases with different electrodes.
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Figure 6a–c depicts the CV curves of different electrodes in a mixture solution of 0.5 M
NaOH and 1 mM glucose at various scan rates. As the scan rate increases, the oxidation
peak potential continuously shifts towards more positive values. This phenomenon can
be attributed to the fact that the electrode requires a larger overpotential to achieve the
same electron transfer rate at higher scan rates. Figure 6d presents the fitting curves of the
oxidation and reduction peak currents vs. the square root of the scan rate for the systems
equipped with different electrodes. The oxidation-reduction currents can be estimated in
the order: 200 W > untreated > 400 W. The peak currents are proportional to the square
root of the scan rate for all the systems with different electrodes. This observation indicates
that the rate-determining step during the oxidation-reduction process of glucose lies in the
diffusion mass transfer [49].
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Figure 7 shows the amperometric responses of different electrodes in a 0.5 M NaOH
electrolyte after successively adding glucose with different concentrations. The initial
volume of the blank solution was 200 mL, and the solution was continuously stirred during
the test. The current response of these electrodes can be found in the following order:
200 W > untreated > 400 W. The obtained results that were based on the amperometric
method to detect glucose are consistent with the electrocatalytic current response observed
from the CV curves.
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systems with the (b) untreated, (c) 200 W, and (d) 400 W electrodes.

To obtain the calibration curve of the current response as a function of glucose con-
centrations, we linearly fitted the steady-state current responses of all electrodes against
glucose concentrations. The fitting curves, shown in Figure 7b–d, can be divided into two
linear regions corresponding to the low (0–2 mM) and high concentration (2–12.8 mM)
ranges. The linear fitting equations used to evaluate the electrode calibration curves and
their corresponding sensing performances are presented in Table 1. It can be observed
that the sensitivities follow the order of 200 W > untreated > 400 W for both the low and
high concentration ranges, with the 200 W electrode exhibiting the highest sensitivity of
1443.75 µA cm−2 mM−1. The limit of detection (LOD) can be calculated for each electrode
according to the formula LOD = 3SD/S, where SD represents the standard deviation of
the background current obtained from 11 repeated measurements in the blank solution
(0.5 M NaOH) and S represents the sensitivity. The LOD results are also shown in Table 1,
with the detection limit found to be in the following order: 400 W > untreated > 200 W; the
200 W electrode exhibits the lowest detection limit of 0.5 µM. Additionally, a comparison
between the present Ni/BDD electrode and some typical Ni-based electrodes previously
reported elsewhere in non-enzymatic electrochemical sensing of glucose is summarized
in Table 2. The results show that the Ni/BDD composite electrode prepared in this work
exhibits high sensitivity and low LOD over a wide linear range, thus demonstrating the
advance in fabricating superior Ni-based electrodes for non-enzymatic electrochemical
sensing of glucose.
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Table 1. Comparison of the glucose sensing performance of different electrodes prepared in this study.

Electrodes Linear Range
(mM)

Sensitivity
(µA mM−1 cm−2)

LOD
(µM)

Linear Calibration
Equation

untreated
0~2 1012.5

1.2
I(mA) = 0.162C + 0.0084

2~12.8 568.75 I(mA) = 0.091C + 0.214

200 W
0~2 1443.75

0.5
I(mA) = 0.231C + 0.0125

2~12.8 831.25 I(mA) = 0.133C + 0.287

400 W
0~2 706.25

1.6
I(mA) = 0.113C + 0.0123

2~12.8 468.75 I(mA) = 0.075C + 0.0098

Table 2. Comparison of the present Ni/BDD electrode with the previously reported Ni-based
electrodes in non-enzymatic electrochemical sensing of glucose, including linear range, sensitivity,
and LOD.

Electrode Materials Linear Range
(mM)

Sensitivity
(µA mM−1 cm−2)

LOD
(µM) Ref.

Ni-NPs a/NCNs b-500 0.0001–0.5336 337.32 0.07 [50]
0.5336–3.03 210.56

Ni-NPs/NC c 0.002–4.658 660.3 0.12 [51]
Ni-NPs/MOF d 0.004–5.664 367.45 0.8 [52]

Ni/Ni foam 0.01–0.7 2370 5 [53]
Ni(II)-CP e/C60 0.01–3 614.29 4.3 [54]

3–11
Ni30/PF f 0.02–0.5 670 8 [55]

Ni@C@rGO g 0.002–0.951 1211.41 0.34 [56]
Ni@C/3D-KSCs h 0.024–1.2 9.11 7.85 [57]

NiO/Ni foil 0.0005–9 4400 0.007 [58]
Ni(OH)2/IN625 foam i 0.001–10 5685 2 [59]

Ni(OH)2/Ni foam 0.002–0.04 1130 1 [60]
Ni-ND j/BDD 0.0002–0.012 120 0.05 [27]

0.0313–1.06 35.6
Ni-Microparticles/BDD 0.1–10 1040 2.7 [25]

Au-Ni/BDD 0.02–2 157.5 0.0026 [61]
2–9 61.2

Ni/BDD 0–2 1443.75 0.5
This work2–12.8 831.25

a NPs: nanoparticles; b MCNs: nanoporous carbon nanorods; c NC: nitrogen-doped carbon; d MOF: metal–
organic framework; e CP: coordination polymer; f PF: pyrogallol-formaldehyde; g rGO: reduced graphene
oxide; h 3D-KSCs: 3D kenaf stem-derived porous carbon; i IN625 foam: a three-dimensional Inconel 625 foam;
j ND: nanodiamond.

The electrochemical testing results indicate an order of 200 W > untreated > 400 W in
terms of the electrocatalytic performance of these three electrodes, suggesting a significant
influence of the thickness of the carbon layer formed by thermal catalytic etching on the
performance. The untreated electrode demonstrates superior electrocatalytic performance,
which can be mainly attributed to the following factors: (1) During the thermal catalytic
process, the lowered melting point of the nanoscale Ni film with reactive surface Ni atoms
renders a reaction between Ni and the BDD substrate, making carbon atoms rapidly diffuse
toward the Ni particles and eventually solidly dissolve into the lattice of the Ni particles.
The carbon atoms in a solution with Ni particles precipitate out in the form of other carbon
allotropes, such as graphite [30]. Such a carbon layer formed by thermal catalytic etching
acts as a coating that provides a physical barrier among the nanometer-sized particles, thus
promoting the high dispersion of Ni/C nanoparticles. The inhibited Ni particle aggregation
renders a high specific surface area and high catalytic activity of the electrode during the
electrocatalytic process [62,63]. (2) The synergy generated between the precipitated carbon
layer and Ni nanoparticles can significantly alter the electron density in the carbon layer at
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the interface, which enhances the charge transfer of the composite electrode and improves
the surface electrochemical activity of Ni/carbon [64,65]. However, etching at 200 W to
decrease the surface carbon layer thickness leads to an improvement in the electrocatalytic
performance. The results obtained via Raman spectroscopy indicate that the thermally
catalyzed samples exhibit a strong D peak, indicating the presence of abundant defects and
disordered structures in the precipitated carbon layer. These structures serve as diffusion
channels for glucose molecules [66–68]. As the precipitated carbon layer is thinned through
oxygen plasma etching, the reduced carbon layer increases the diffusion channels for
glucose, which enhances the permeability and diffusion capacity of the glucose solution.
Simultaneously, more active sites at the Ni/C interface are exposed as a result of the
synergistic effect, thereby increasing the probability of contact with active sites at the Ni/C
interface and enhancing the electrocatalytic activity [69]. However, further increasing the
etching power to 400 W substantially removes the carbon layer from the electrode surface,
resulting in the elimination of numerous Ni/C active sites and a decrease in the Ni/C
synergistic effect. Consequently, the electrode’s activity decreases. Therefore, the effective
control of the carbon layer thickness plays a crucial role in obtaining high-performance
glucose sensors.

3. Materials and Methods
3.1. Reagents

Glucose was purchased from Sigma-Aldrich (St. Louis, MO, USA). Sodium hydroxide,
acetone, and ethanol (analytical grade) were purchased from Tianjin Recovery Technology
Development Co., Ltd. (Tianjin, China). All reagents were stored under standard conditions
as required. The solvent used throughout the experiment was high-purity water (resistivity
of 18.2 MΩ cm). The reaction gases (i.e., CH4, B2H6, and H2) employed were all high-purity
grades (99.99%).

3.2. Fabrication of Electrodes

Ni/BDD composite electrodes were prepared in a typical process, as shown in
Figure 8. Initially, the BDD film was deposited on a P-type heavily doped silicon substrate
(4 × 4 × 0.5 mm3) by the hot filament chemical vapor deposition technique. Before the
deposition, the silicon substrates were subjected to stepwise ultrasonic pretreatments in
acetone, a nanodiamond suspension to seed, and ethanol for 10, 30, and 5 min, respectively.
The BDD film was then deposited in H2 (49 sccm), CH4 (1 sccm), and B2H6 (0.2 sccm) at a
temperature of 750 ◦C and a pressure of 3 kPa for 8 h. Secondly, a nano-thick (about 20 nm)
Ni film was deposited onto the formed BDD film by DC magnetron sputtering with a power
of 150W in Ar (30 sccm) at a pressure of 0.5 Pa for 20 s. Thirdly, the deposited Ni film sample
underwent thermal catalytic treatments in a tubular annealing furnace in H2 (100 sccm) at
a pressure of 10 kPa and a temperature of 700 °C for 30 min. Fourthly, the sample obtained
after the thermal catalytic treatment was subjected to oxygen plasma etching at two powers
(i.e., 200 and 400 W) for a duration of 5 min. Finally, the electrodes were encapsulated using
insulating adhesives, conductive silver pastes, and copper wires for electrochemical testing
purposes. The electrode without involving the oxygen plasma treatment was designated
as the untreated electrode, while the counterparts treated under 200 and 400 W oxygen
plasma powers were labeled as 200 W and 400 W electrodes, respectively.

3.3. Characterizations

The sample surface morphologies were observed by scanning electron microscopy
(SEM) (FEI, Hillsboro, OR, USA, Nova NanoSEM 230). The compositions of the prepared
electrodes were characterized by Raman spectroscopy (HORIBA, Paris, France, LabRAM
HR800; 532 nm, 10 mW) and X-ray photoelectron spectroscopy (XPS, Thermo Fisher-VG
Scientific, Waltham, MA, USA, ESCALAB250Xi).
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Figure 8. Schematic diagram of the preparation of the Ni/BDD composite electrode through oxygen
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3.4. Electrochemical Performance Analysis

Electrochemical testing was performed using a CHI660E electrochemical workstation
at room temperature (25 °C). A standard three-electrode system was adopted, with an
Ag/AgCl, a platinum sheet (10 × 10 × 1 mm3), and the prepared electrode as the reference,
counter, and working electrodes, respectively. Before each measurement, all electrodes
underwent cyclic voltammograms (CV) in a 0.5 M NaOH solution within the potential
range of 0.2 to 0.6 V for 100 cycles to achieve a stable Ni(OH)2/NiOOH layer. After the
pretreatment, all electrodes were immersed in ultrapure water with a resistivity of 18.2 MΩ.

4. Conclusions

In this study, the influence of the carbon layer thickness of Ni/BDD composite elec-
trodes on the electrocatalytic oxidation of glucose was analyzed systematically. Ni/BDD
composite electrodes obtained through thermal catalytic etching were subjected to oxygen
plasma etching to control the surface carbon layer thickness by varying the etching power
from 200 to 400 W. The increase in the etching power resulted in the reduction of the thick-
ness of the surface precipitated carbon. The 200 W electrode, subjected to a milder etching,
exhibited the best electrochemical performance, followed by the untreated electrode with
the thickest carbon layer, while the 400 W electrode with the thinnest carbon layer showed
the worst electrochemical performance. Two linear dependencies of current responses
vs. glucose concentrations were detected for the 200 W electrode in the glucose concen-
tration range of 0–2 mM and 2–12.8 mM, with the sensitivity measured as 1443.75 and
831.25 µA mM−1 cm−2, respectively. The 200 W electrode also exhibited the lowest LOD
of 0.5 µM (S/N = 3). All of the demonstrations indicated that the carbon layer thickness
exerted a significant impact on the electrocatalytic performance in glucose sensing. This
work will establish a solid foundation for mediating the precipitated carbon layer thickness
to optimize the structure and properties of BDD-based composite electrodes for a wide
range of applications even beyond biological sensing.
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