Understanding of the Effect of the Adsorption of Atom and Cluster Silver on Chitosan: An In Silico Analysis
Abstract
:1. Introduction
2. Computational Aspects
3. Results and Discussion
3.1. Structural and Electronic Properties of Chitosan–Silver Complex
3.2. Effects of Solvent (Acetic Acid) on Chitosan–Silver Complex
Structures | BL | BA | ΔΕgap | DM | μ | CE | AE | IP | WF | AdE |
---|---|---|---|---|---|---|---|---|---|---|
Chitosan | - | - | −5.1 | - | - | |||||
Ag–c | 2.79 (Ag-Ag) 2.53 [29,50] | - | 1.3 2.2 [30] 0.02 [29] | - | −7.58 | −1.53 1.8 [30] | - | 4.43 4.26–4.73 [51] | - | |
MCh monomer | 1.519 (C–C), 1.10 (C–H), 1.453 (C–N), 1.408 (C–O), 1.014 (N–H), 0.962 (O–H) | C–C–C (110.83), C–C–H (108.46), C–C–N (112.39), C–C–O (109.86), C–N–H (110.3), C–O–C (113.38), C–O–H (106.29), H–C–H (108.31), H–N–H (106.99), N–C–H (108.01), O–C–H (109.95), O–C–O (108.79) | 7.21 | 3.45 | −6.69 | −5.40 | −2.32 | −9.52 | 6.95 | - |
MCh Dimer | 1.52 (C–C), 1.10 (C–H), 1.452 (C–N) 1.41 (C–O), 1.015 (N–H), 0.964 (O–H) | C–C–C (110.83), C–C–H (108.56), C–C–N (112.32), C–C–O (109.80), C–N–H (110.19), C–O–C (115.07), C–O–H (105.86), H–C–H (108.26), H–N–H (107.87), N–C–H (107.42), O–C–H (109.38), O–C–O (108.63) | 7.01 | 6.98 | −5.93 | −5.5 | −2.42 | −9.43 | 3.50 | - |
MCh–Ag | 1.53 (C–C), 1.10 (C–H), 1.45 (C–O), 1.47 (N–C), 1.03 (N–H), 1.01 (0–H) | C–C–C (80.89), C–C–H (108.56), C–C–N (114.41), C–C–O (99.41), C–N–H (110.19), C–O–C (114.80), C–O–H (83.73), H–C–H (108.64), H–N–H (109.97), N–C–H (104.95), O–C–H (109.66), O–C–O (107.84) | 3.1 | 7.1 | 2.96 | −5.26 | 3.01 | −0.05 | 0.05 | −1.63 |
MCh–Ag–Cluster | 1.52 (C–C), 1.10 (C–H), 1.45 (C–O), 1.47 (N–C), 1.02 (N–H), 1.00 (O–H), 2.43 (Ag–N) | C–C–C (110.83), C–C–H (108.46), C–C–N (112.39), C–C–O (109.86), C–N–H (110.3), C–O–C (113.38), C–O–H (106.29), H–C–H (108.31), H–N–H (106.99), N–C–H (108.01), O–C–H (109.95), O–C–O (108.79) | 0.55 | 2.17 | −1.16 | −4.10 | −0.31 | −0.85 | 0.85 | −2.45 |
MCh–Ag-Acetic acid solvent | 1.53 (C–C), 1.10 (C–H), 1.45 (C–O), 1.48 (N–C), 1.03 (N–H), 1.00 (0–H) | C–C–C (110.83), C–C–H (108.46), C–C–N (112.39), C–C–O (109.86), C–N–H (110.3), C–O–C (113.38), C–O–H (106.29), H–C–H (108.31), H–N–H (106.99), N–C–H (108.01), O–C–H (109.95), O–C–O (108.79) | 3.64 | 9.96 | −2.89 | −5.32 | 0.37 | −3.26 | 3.26 | −3.56 |
MCh–Ag–c-Acetic acid solvent | 1.53 (C–C), 1.10 (C–H), 1.46 (C–O), 1.46 (N–C), 1.02 (N–H), 1.01 (O–H) | C–C–C (110.83), C–C–H (108.46), C–C–N (112.39), C–C–O (109.86), C–N–H (110.3), C–O–C (113.38), C–O–H (106.29), H–C–H (108.31), H–N–H (106.99), N–C–H (108.01), O–C–H (109.95), O–C–O (108.79) | 0.48 | 2.97 | −4.39 | −4.11 | −1.95 | −2.43 | 2.44 | −3.53 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
System | Charge | Multiplicity | Energy (a.u.) |
---|---|---|---|
MCh monomer | Q = 0 | M = 1 | −666.82740955 |
M = 3 | −666.66173446 | ||
M = 5 | Not converged | ||
Q = 1 | M = 2 | −666.52571752 | |
M = 4 | −666.60926898 | ||
M = 6 | −666.21251597 | ||
Q = −1 | M = 2 | −666.76215072 | |
M = 4 | −666.35597400 | ||
M = 6 | −666.42863642 | ||
MCh dimer | Q = 0 | M = 1 | −1257.28370138 |
M = 3 | −1257.10948524 | ||
M = 5 | −1256.94272493 | ||
Q = 1 | M = 2 | −1256.99318357 | |
M = 4 | −1256.82376338 | ||
M = 6 | −1256.67429205 | ||
Q = −1 | M = 2 | −1257.22834634 | |
M = 4 | Not converged | ||
M = 6 | −1257.06361985 |
System | Charge | Multiplicity | Energy-Sn Solvent (a.u) |
---|---|---|---|
MCh–Ag | 1 | 1 | −5838.64279216 |
3 | −5838.50268676 | ||
5 | −5838.38555019 | ||
0 | 2 | −5838.78969058 | |
4 | −5838.61281027 | ||
6 | −5838.46723759 | ||
−1 | 1 | −5838.80708882 | |
3 | −5838.76019335 | ||
5 | −5838.65024934 | ||
MCh–Ag–cluster | 1 | 2 | −73,125.31239650 |
4 | −73,125.18277190 | ||
6 | −73,125.11091140 | ||
0 | 1 | −73,125.31239650 | |
3 | −73,125.29911230 | ||
5 | −73,125.32097840 | ||
−1 | 2 | −73,125.3655746 | |
4 | −73,125.3523194 | ||
6 | −73,125.3547286 |
References
- Pielichowski, K.; Njunguna, J. Thermal Degradation of Polymeric Materials; Rapra Technology Ltd.: Shropshire, UK, 2005. [Google Scholar]
- Heller, K.; Claus, L.; Huber, J. Notizen: Zur Identität von pflanzlichem und tierischem chitin. Z. Naturforschung B J. Chem. Sci. 1959, 14, 476–477. [Google Scholar] [CrossRef]
- Teli, M.D.; Sheikh, J. Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. Int. J. Biol. Macromol. 2012, 50, 1195–1200. [Google Scholar] [CrossRef]
- Burrows, F.M.; Louime, C.J.; Abazinge, M.D.; Onokpise, O.U. Extraction and Evaluation of Chitosan from Crab Exoskeleton as a Seed Fungicide and Plant Growth Enhancer. Am.-Eurasian J. Agric. Environ. Sci. 2007, 2, 103–111. Available online: https://www.idosi.org/aejaes/jaes2(2)/1.pdf (accessed on 9 May 2023).
- Daniel, M.C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Okuda, H. Prevention by chitosan of myelotoxicity, gastrointestinal toxicity and immunocompetent organic toxicity induced by 5-fluorouracil without loss of antitumor activity in mice. Jpn. J. Cancer Res. 1999, 90, 765–774. [Google Scholar] [CrossRef]
- Kimura, A.; Umehara, T.; Horikoshi, M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat. Genet. 2002, 32, 370–377. [Google Scholar] [CrossRef]
- Alzate, L.F.; Cuervo, R.A.; Valencia, M.E. Extracción y caracterización de quitosano fúngico experimental y comercial, como potencial biomaterial para aplicaciones en ingeniería de tejidos. Rev. Iberoam. Polím. 2015, 16, 112. Available online: https://reviberpol.files.wordpress.com/2019/07/2015-alzate.pdf (accessed on 5 June 2023).
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004, 100, 5–28. [Google Scholar] [CrossRef]
- Ali, M.A.; Srivastava, S.; Mondal, K.; Chavhan, P.M.; Agrawal, V.V.; John, R.; Sharma, A.; Malhotra, B.D. A surface functionalized nanoporous titania integrated microfluidic biochip. Nanoscale 2014, 6, 13958–13969. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Liu, Z.; Liu, L.; Wang, X.; Su, X.; Ma, Q. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence “turn on–off” nanosensor for lysozyme detection. Biosens. Bioelectron. 2014, 61, 9–13. [Google Scholar] [CrossRef]
- Qu, Y.; Han, H.; Zheng, X.; Guo, Z.; Li, Y. Detection of surface pH of paper using a chitosan-modified silica fluorescent nanosensor. Sens. Actuators B Chem. 2014, 195, 252258. [Google Scholar] [CrossRef]
- Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006, 18, 319326. [Google Scholar] [CrossRef] [Green Version]
- Kuchibhatla, S.V.N.T.; Karakoti, A.S.; Bera, D.; Seal, S. One Dimensional Nanostructured Materials. Prog. Mater. Sci. 2007, 52, 699–913. [Google Scholar] [CrossRef]
- Suryanarayana, C. The structure and properties of nanocrystalline materials: Issues and concerns. JOM 2002, 54, 24–27. [Google Scholar] [CrossRef]
- Gleiter, H. Nanocrystalline Solids. J. Appl. Crystallogr. 1991, 24, 79–90. [Google Scholar] [CrossRef]
- Hiramatsu, H.; Osterloh, F.E. A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants. Chem. Mater. 2004, 16, 2509–2511. [Google Scholar] [CrossRef]
- Lei, J.; Zhou, L.; Tang, Y.; Luo, Y.; Duan, T.; Zhu, W. High-Strength Konjac Glucomannan/Silver Nanowires Composite Films with Antibacterial Properties. Materials 2017, 10, 524. [Google Scholar] [CrossRef] [Green Version]
- Rajawat, S.; Malik, M.M. Silver Nanoparticles: Properties, Synthesis Techniques, Characterizations, Antibacterial and Anticancer Studies. MRS Bull. 2019, 44, 142. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Halim, E.S.; El-Rafie, M.H.; Al-Deyab, S.S. Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr. Polym. 2011, 85, 692–697. [Google Scholar] [CrossRef]
- Evanoff, D.D., Jr.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem 2005, 6, 1221–1231. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Ong, B.S. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 2005, 127, 3266–3267. [Google Scholar] [CrossRef] [PubMed]
- Kohn, W.; Becke, A.D.; Parr, R.G. Density Functional Theory of Electronic Structure. J. Phys. Chem. 1996, 100, 12974–12980. [Google Scholar] [CrossRef] [Green Version]
- Heyd, J.; Scuseria, G.E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Heyd, J.; Peralta, J.E.; Scuseria, G.E.; Martin, R.L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101. [Google Scholar] [CrossRef]
- Godbout, N.; Salahub, D.R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem. 1992, 70, 560–571. [Google Scholar] [CrossRef] [Green Version]
- Sosa, C.; Andzelm, J.; Elkin, B.C.; Wimmer, E.; Dobbs, K.D.; Dixon, D.A. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem. 1992, 96, 6630–6636. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. (Eds.) Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013.
- Rekha, T.N.; Rajkumar, B.J.M. Density functional theory study on silver clusters using dimers, trimers, and tetramers as building units. Can. J. Phys. 2015, 93, 318–325. [Google Scholar] [CrossRef]
- McKee, M.L.; Samokhvalov, A. Density Functional Study of Neutral and Charged Silver Clusters Agn with n = 2–22. Evolution of Properties and Structure. J. Phys. Chem. A 2017, 121, 5018–5028. [Google Scholar] [CrossRef]
- Yang, X.; Cai, W.; Shao, X. Structural variation of silver clusters from Ag13 to Ag160. J. Phys. Chem. A 2007, 111, 5048–5056. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1873. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergveld, P.; Hendrikse, J.; Olthuis, W. Theory and application of the material work function for chemical sensors based on the field effect principle. Meas. Sci. Technol. 1998, 9, 1801–1808. [Google Scholar] [CrossRef] [Green Version]
- Zunger, A. Self-consistent LCAO calculation of the electronic properties of graphite I. The regular graphite lattice. Phys. Rev. B 1978, 17, 626–640. [Google Scholar] [CrossRef]
- Scrocco, E.; Tomasi, J. The electrostatic molecular potential as a tool for the interpretation of molecular properties. In New Concepts II. Topics in Current Chemistry Fortschritte der Chemischen Forschung; Springer: Berlin/Heidelberg, Germany, 1973; Volume 42. [Google Scholar] [CrossRef]
- Upma; Verma, M.L. First Principles Approach to Study the Structural, Electronic and Transport Properties of Dimer Chitosan with Graphene Electrodes. J. Electron. Mater. 2019, 48, 4007–4016. [Google Scholar] [CrossRef]
- Feng, Y.; Xia, W. Preparation, characterization and antibacterial activity of water-soluble O-fumaryl-chitosan. Carbohydr. Polym. 2011, 83, 1169–1173. [Google Scholar] [CrossRef]
- Santiago-Castillo, K.; Torres-Huerta, A.M.; del Ángel-López, D.; Domínguez-Crespo, M.A.; Dorantes-Rosales, H.; Palma-Ramírez, D.; Willcock, H. In Situ Growth of Silver Nanoparticles on Chitosan Matrix for the Synthesis of Hybrid Electrospun Fibers: Analysis of Microstructural and Mechanical Properties. Polymers 2022, 14, 674. [Google Scholar] [CrossRef]
- Terreux, R.; Domard, M.; Viton, C.; Domard, A. Interactions study between the copper II ion and constitutive elements of chitosan structure by DFT calculation. Biomacromolecules 2006, 7, 31–37. [Google Scholar] [CrossRef]
- Emmanuel, M.; Pogrebnoi, A.; Pogrebnaya, T. Interactions Between Sodium Ion and Constituents of Chitosan: DFT Study. Int. J. Mater. Sci. Appl. 2015, 4, 303. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Luo, Q.; Yuan, X.; Wang, D.; Li, X. Preparation and characterization of silver-chitosan nanocomposite particles with antimicrobial activity. J. Appl. Polym. Sci. 2011, 120, 3180–3189. [Google Scholar] [CrossRef]
- Morisawa, Y.; Tachibana, S.; Ikehata, A.; Yang, T.; Ehara, M.; Ozaki, Y. Changes in the Electronic States of Low-Temperature Solid n-Tetradecane: Decrease in the HOMO–LUMO Gap. ACS Omega 2017, 2, 618–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, A.; Lasso, E.; Prakash, S.; Paranthaman, S.; Gómez, E. Studies on the structure and electronic properties of Linear Chitosan-Silver nano-composite for biosensor applications. In Proceedings of the 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), Cuenca, Ecuador, 15–19 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Cinteza, L.O.; Scomoroscenco, C.; Voicu, S.N.; Nistor, C.L.; Nitu, S.G.; Trica, B.; Jecu, M.-L.; Petcu, C. Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. Nanomaterials 2018, 8, 826. [Google Scholar] [CrossRef] [PubMed]
- Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Available online: http://www.jmol.org/ (accessed on 14 July 2023).
- Govindan, S.; Nivethaa, E.A.K.; Saravanan, R.; Narayanan, V.; Stephen, A. Synthesis and characterization of chitosan–silver nanocomposite. Appl. Nanosci. 2012, 2, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. 2014, 6, 35–44. [Google Scholar] [CrossRef]
- Chen, M.; Dyer, J.E.; Li, K.; Dixon, D.A. Prediction of structures and atomization energies of small silver clusters, (Ag)n, n < 100. J. Phys. Chem. A 2013, 117, 8298–8313. [Google Scholar] [CrossRef]
- Dweydari, A.W.; Mee, C.H.B. Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi 1975, 27, 223–230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Juárez, A.; Carmona-Álvarez, V.; Díaz-Monge, F.; Chigo-Anota, E.; Zaca-Moran, O. Understanding of the Effect of the Adsorption of Atom and Cluster Silver on Chitosan: An In Silico Analysis. Molecules 2023, 28, 5809. https://doi.org/10.3390/molecules28155809
Rodríguez-Juárez A, Carmona-Álvarez V, Díaz-Monge F, Chigo-Anota E, Zaca-Moran O. Understanding of the Effect of the Adsorption of Atom and Cluster Silver on Chitosan: An In Silico Analysis. Molecules. 2023; 28(15):5809. https://doi.org/10.3390/molecules28155809
Chicago/Turabian StyleRodríguez-Juárez, Alejandro, Veronica Carmona-Álvarez, Fernando Díaz-Monge, Ernesto Chigo-Anota, and Orlando Zaca-Moran. 2023. "Understanding of the Effect of the Adsorption of Atom and Cluster Silver on Chitosan: An In Silico Analysis" Molecules 28, no. 15: 5809. https://doi.org/10.3390/molecules28155809
APA StyleRodríguez-Juárez, A., Carmona-Álvarez, V., Díaz-Monge, F., Chigo-Anota, E., & Zaca-Moran, O. (2023). Understanding of the Effect of the Adsorption of Atom and Cluster Silver on Chitosan: An In Silico Analysis. Molecules, 28(15), 5809. https://doi.org/10.3390/molecules28155809