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Abstract: The present study reports the one-step synthesis of several 3-formyl-4-hydroxycouramin-
derived enamines (4a–4i) in good yields (65–94%). The characterization of the synthesized compounds
was carried out via advanced analytical and spectroscopic techniques, such as melting point, electron
impact mass spectrometry (EI-MS), 1H-NMR, 13C-NMR, elemental analysis, FTIR, and UV-Visible
spectroscopy. The reaction conditions were optimized, and the maximum yield was obtained at 3–4 h
of reflux of the reactants, using 2-butanol as a solvent. The potato disc tumor assay was used to
assess Agrobacterium tumefaciens-induced tumors to evaluate the anti-tumor activities of compounds
(4a–4i), using Vinblastine as a standard drug. The compound 4g showed the lowest IC50 value
(1.12 ± 0.2), which is even better than standard Vinblastine (IC50 7.5 ± 0.6). For further insight into
their drug actions, an in silico docking of the compounds was also carried out against the CDK-8
protein. The binding energy values of compounds were found to agree with the experimental results.
The compounds 4g and 4h showed the best affinities toward protein, with a binding energy value
of −6.8 kcal/mol.

Keywords: coumarin; hydroxycoumarin; enamines; anti-tumor

1. Introduction

Despite recent progress in oncology, treating tumors via chemotherapy also affects
neighboring normal cells, which is still a challenge to be addressed [1]. Reports from the
World Health Organization (WHO) reveal the noxious nature of cancer, which may cause
more than 13 million deaths by 2030 [2]. At present, cancer is the second-leading cause
of mortality (approximately 30%) in the world and will take the top position in the next
few decades [3]. Therefore, the development of potent anticancer and anti-tumor agents is
urgently needed.

Several drugs based on herbal formulations [4], inorganic complexes [5], and organic
moieties [6] have been reported to have anti-tumor potential. These drugs can suppress or
kill the abnormal cells in localized areas but have several disadvantages, such as herbal
medicines having high IC50 values and less selectivity, while metal-based drugs are toxic to
different body parts [7,8]. Metal-based drugs may also cause genetic mutations and affect
renal functions [9]. In this regard, organic compounds with versatile moieties are of great
interest due to their targeted actions and low IC50 values [10–12].
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Among biologically active organic compounds, coumarin derivatives have attracted
special attention from synthetic and medicinal chemists [13]. Coumarins, oxygen-bearing
heterocycles with a benzopyrone skeleton, are naturally occurring compounds extracted
from different plants, fungi, and bacteria [14]. This class of compounds has exhibited
antimicrobial, antioxidant, antifibrotic, and anti-inflammatory effects [15] and anti-tumor
potential. For example, fraxetin showed anti-tumor activity against hepatocellular carci-
noma (HCC) cells [16]. Some commercially available coumarin-based drugs are shown
in Figure 1 [17–20]. Among coumarin derivatives, enamines derived from coumarins are
proven to be important compounds that can act as anti-tumor, antibacterial, antiprolifer-
ative, and antifungal agents [21,22]. Different strategies can be used to derivatize these
heterocyclic compounds, but multistep synthesis routes often affect the yields of the final
products. Therefore, one-step optimized reactions are always preferred to obtain good
yields in shorter times [23].
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Figure 1. Commercially available coumarin-based drugs [17–20].

Although many derivatives of coumarins have been tested recently, the target selection
and proper delivery of anti-tumor agents to the target area still require the development
of new derivatives. The properties of coumarin derivatives can be tuned by introducing
different electron-withdrawing and electron-donating groups. Therefore, the development
of substituted heterocyclic enamines that can selectively pass the cell barriers of tumor cells
and interact with cell proteins is an interesting area [24]. Although many cell proteins can
be targeted to control cell growth, the selective targeting of the CDK-8 enzyme can be a
good strategy. This enzyme plays an important role in the cell cycle, i.e., gene transcription,
neuronal function, insulin secretion, and glycogen synthesis, and if a drug blocks its active
site, many types of tumor growth can be controlled [25,26]. Since the effects of coumarin
derivatives on the CDK-8 protein have been scarcely studied, we have targeted this protein
to study the in silico effects of newly synthesized coumarin-based enamines.

In the present study, the synthesis of 3-formyl-4-hydroxycoumarin-derived enamines
(4a–4i) is reported with good to excellent yields (65–94%). After successful characterization,
the compounds were evaluated against an Agrobacterium tumefaciens-mediated tumor via
the potato disc tumor assay. The compounds were also tested for their in silico binding
interactions with CDK-8.
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2. Results and Discussion
2.1. Characterization of Compounds (4a–4i)

One pot synthesis of 3-formyl-4-hydroxycoumarin-based enamines (4a–4i) was per-
formed by the condensation reaction of 4-hydroxy-2H-chromen-2-one (1), benzyl amine
derivatives (2) and triethyl orthoformate (3) under 3–4 h reflux at 80 ◦C. All the com-
pounds were characterized by spectroscopic and analytical techniques, such as FT-IR,
UV-Visible spectroscopy, 1H-NMR, 13C-NMR, EI-MS, elemental analysis, and melting
point. In FTIR spectra, the synthesis of target compounds was indicated by the absorption
bands in the range of 3200–3400, 1680, and 1600 cm−1, attributed to the vibrations of
NH, C=O, and C=N functional groups, respectively. The appearance of the imine group
peak (C=N) at 1600 cm−1 was the main indication of product formation. In UV-Vis spec-
tra, electronic transitions in the range of 19,380–19,500 cm−1 were assigned to the π→π*
and n→π* transitions in compounds (4a–4i). High Molar absorptivity constant values
(Є = 12,350 L·mol−1·cm−1) were observed for π→π* transitions at lower wavelength than
n→π* transitions (Є= 945 L·mol−1 cm−1) occurring at longer wavelength region. These
transitions were in accordance with the color of purified compounds.

The 1H-NMR spectra (Figures S1A–S9A) revealed the presence of both (Z) and (E)
isomers, as shown in Figure 2. The β-hydrogen cis- to the cyclic ester functional group of
an α,β-unsaturated ester appeared up field, hence representing the (E) isomer of hydroxy-
enamine, while the exocyclic vinyl proton in (Z) isomers appeared at a higher chemical shift
(δ) value. In the 1H-NMR spectra, the signals at the lowest chemical shift (3.82–3.94 ppm)
were assigned to the methoxy protons, and two signals around 4.68 and 4.72 ppm repre-
sented the methylene protons in (E) and (Z) isomers, respectively. The aromatic protons
of both phenyl rings appeared in the range of 6.83–7.85 ppm. Finally, two broad signals
around 10–12 ppm were assigned to NH protons of both (Z) and (E) isomers. The signal at a
higher chemical shift value was assigned to the (E) isomer because of strong intramolecular
H-bonding between H(17) and O(11), while the signal at the lower chemical shift value
was assigned to the (Z) isomer due to weak H-bonding between O(12) and H(17) [27,28].
The intensity of the (15) signal around 8.5–8.8 ppm due to (E) and (Z) isomers indicated the
presence of the (E) isomer in a higher ratio (72%) than the (Z) isomer (28%), and this was
attributed to the extra-stability of (E) isomer due to strong H-bonding.
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The 13C-NMR spectra (Figures S1B–S9B) decoupled with (13C-1H/13C-19F) signals
showed the chemical shift value for each carbon atom of the designed compound. The
coupling constant values of (13C-1H/13C-19F) coupling are very high, in the range of
200–300 Hz. Therefore, the decoupling of (13C-1H/13C-19F) signals was carried out to avoid
the peak broadening and accurate determination of chemical shift values. The signals at
chemical shift values of 50–55 ppm, 110–150 ppm, and 160–165 ppm were assigned to
the carbons of methylene, aromatic ring, and carbonyl groups, respectively. Elemental
analysis of the compounds was carried out to check the elemental composition and purity.
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The percentages of elements (C, H, and N) were found in agreement with the calculated
values, indicating the purity and the formation of desired compounds. Moreover, m/z
value molecular ion peaks in the EI-MS spectrum were also found in accordance with the
predicted molecular mass of compounds.

2.2. Optimization of Reaction Conditions

Several catalysts, including acids, bases, and metal salts, were screened to observe
their effect on reaction yield and time, as shown in Table 1. Among these solvents, 2-butanol
was the best choice with respect to the product yield. Neutral conditions of the reaction
were found to be the most suitable for the product yield. Moreover, no effect was observed
on the isomeric forms of the compound. Both isomers (E and Z forms) were found in the
reaction mixture, with and without a catalyst.

Table 1. Optimization of reaction conditions of enamine synthesis.

Sr. No. Solvents Catalysts Reaction
Conditions Yield %

1 MeOH - Reflux, 3 h 80
2 EtOH - Reflux, 3 h 75
3 THF - Reflux, 3 h 65
4 CHCl3 - Reflux, 3 h 64
5 2-BuOH - Reflux, 3 h 94
6 2-BuOH - Reflux, 6 h 78
7 2-BuOH AcOH Reflux, 3 h 55
8 2-BuOH ZnCl2 Reflux, 3 h 72
9 2-BuOH AlCl3 Reflux, 3 h 74

10 2-BuOH (CH3COO)2Pb Reflux, 3 h 71
11 2-BuOH Net3 Reflux, 3 h 60
12 2-BuOH HCl Reflux, 3 h 52

2.3. Anti-Tumor Activity

The anti-tumor activity of compounds (4a–4i) was performed following the potato disc
tumor assay [29]. Potato disc tumor assay is a rapid, reliable, and preliminary method to
evaluate the anti-tumor potential of compounds in laboratories. This assay is used to evalu-
ate the ant-mitotic potential of compounds to control tumor growth. A. tumefaciens-induced
tumor is a common disease in plants [30]. These bacteria contain tumor-inducing plasmids,
which cause uncontrolled cell growth in plants, and large sized tumors appear on their
surfaces. The histology and nucleic acid have shown the close similarity of these tumors to
human cancer cells. Therefore, this test was performed to evaluate the anti-tumor potential
of compounds [31,32].

Interestingly, it was observed that compounds (4a, 4c, 4e, 4g, and 4h) have better
anti-tumor activities than the standard drug Vinblastine. Of these compounds, 4g showed
the strongest cytotoxic activity with IC50 = 1.12 ± 0.02 mg/mL, while other compounds
4b, 4d, 4f, and 4i were observed to show moderate potency with IC50 values between
22.7–37.1 mg/mL, as shown in Table S1. A comparison of the IC50 values of compounds
has been depicted in Figure 3.

2.4. Molecular Docking Studies

Probing in silico interactions of synthetic drug candidates with the targeted proteins
or biomolecules is an effective strategy to evaluate their efficacy and mode of action [33,34].
Cyclin dependent kinases (CDKs) are actively involved in the cell cycle and other cellu-
lar phenomena, including gene transcription, neuronal function, insulin secretion, and
glycogen synthesis. CDKs inhibitors are extensively studied in cancer therapy because
these agents can block the cell cycle and control cell proliferation by inhibiting the CDK



Molecules 2023, 28, 5828 5 of 13

enzyme activity [35]. CDK-8 is an important enzyme that plays the main role in the cell
cycle; therefore, this enzyme is targeted for the in silico studies of compounds [36].

Docking interactions with CDK-8 revealed the good binding energies of all the com-
pounds. The docking score of each compound with CDK-8 is given in Table 2. Among
all the compounds, 4g and 4h exhibited the best binding score, consistent with the ex-
perimental studies (Figure 4). Both types of interactions (H-bonding and hydrophobic
interactions) were observed between compounds and CDK-8. Amino groups of Tyr-99,
Glu-101, His-154, Gly-161, and Phe-195 were involved in the H-bonding with the oxygen
atoms of ligands, while hydrophobic interactions were observed between Phe-5, Lys-47,
Asp-98, Tyr-153, and Tyr-156 residues and carbon atoms of ligands. In addition to synthe-
sized compounds, the docking simulations of vinblastine and native protein-bound ligand,
i.e., 8-(3-(3-amino-1H-indazol-6-yl)-5-chloropyridin-4-yl)-2,8-diazaspiro[4.5]decan-1-one
(5XG) were performed with the CDK-8. Vinblastine and 5XG exhibited good binding scores
of −9.11 and −9.18 kcal/mol, respectively. However, 4a, 4c, 4e, 4g, and 4h bind better
with CDK-8 than vinblastine and native ligand, 5XG. These interactions showed that the
protein-ligand complexes are highly stable. Docking simulations of compounds (4a, 4b, 4c,
4d, 4e, 4f, 4i, and vinblastine) are presented in Figure S10.
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Table 2. Binding energies, dissociation constants of synthesized compounds, native ligands, and
vinblastine.

Sr. No. Compound Protein Binding Energy
(kcal/mol)

Dissociation
Constant (nM) Main Contacting Amino Acid Residues

1 4a

CDK-8

−9.22 175.54 Lys-47, Asp-98, Gly-161 & Glu- 101
2 4b −8.45 89.46 Lys-47, Tyr-99, Gly-161 & Glu-101
3 4c −9.41 444.39 His-154, Pro-194 & Phe-195,
4 4d −8.87 194.89 Lys-47, Asp-48, Tyr-99, & Gly-161
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Table 2. Cont.

Sr. No. Compound Protein Binding Energy
(kcal/mol)

Dissociation
Constant (nM) Main Contacting Amino Acid Residues

5 4e −9.33 192.9 Lys-47, Tyr-99, Gly-161 & Glu-165
6 4f −8.66 83.5 Tyr-153, Tyr-156, Arg-157 & Pro-158
7 4g −9.53 106.69 Lys-47, Asp-98, Tyr-99 & Glu- 101
8 4h −9.52 104.28 Trp-6, Glu-98, His-154 & Pro-194
9 4i −8.53 98.42 Phe-5, Glu-98, His-154 & Phe-195

10 Vinblastine −9.11 3170 Asp-46, Lys-47, Gly-161 & Lys-355
11 5XG −9.18 185.8 Val-27, Ala-100, Asp-173 & Arg-356
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3. Experimental Section
3.1. Materials and Methods

Analytical grade chemicals purchased from Merck and Sigma Aldrich (Darmstadt, Ger-
many) were used without further purification. Solvents were used in raw form for a solubil-
ity check. Melting points were determined using the Fisher-Johns melting point apparatus
(Thermo Scientific, Waltham, MA, USA). Spectrophotometer (SHIMADZU UV 240, Kyoto,
Japan) and FT-IR (Shimadzu Prestige-21, Kyoto, Japan) were used to record UV/Visible and
FTIR spectra, respectively. Nuclear magnetic resonance spectra were recorded in DMSO-d6
on Bruker AM 300 spectrometer (Rhenistetten-Forchheim, Germany) operating at 300 MHz
and using TMS as an internal standard. The chemical shifts (δ) are reported in parts per
million (ppm) and coupling constants in Hz.

3.2. Synthesis of Substituted 3-((Benzylamino)methylene)-3H-chromene-2,4-dione (4a–4i)

Synthesis of substituted 3-((benzylamino)methylene)-3H-chromene-2,4-dione is reported
following the literature [37–39] with slight modification. A total of 2.5 mmol of sub-
stituted benzylamine (2) in 2-butanol was added dropwise in an equimolar solution of
4-hydroxycoumarin (1) in the same solvent, with a slight excess of ethyl orthoformate
under reflux conditions. The progress of the reaction was continuously monitored by TLC.
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After 3–4 h reflux, the product precipitates adhered to the flask surfaces, indicating the
completion of the reaction. Precipitates were filtered, washed with ethanol, dried in an
oven, and stored in airtight bottles as a purified product. Figure 5 represents the general
scheme of synthesis and structures of compounds (4a–4i).
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3-((2-methoxybenzylamino)methylene)-3H-chromene-2,4-dione (4a)
Yield: 81%; pink crystalline solid; FTIR (KBr, cm−1): 3380 (N-H), 1690 (C=O), 1626

(C=C); λmax (cm−1): 19,495; 1H-NMR: (300 MHz, DMSO-d6) δ (ppm): 3.94 (s, OCH3) 4.66 (d,
J = 6.0 Hz, 2H, CH2 (E)); 4.70 (d, J = 6.0 Hz, 2H, CH2 (Z)), 6.95 (dd, J = 9.0 Hz & J = 6.0 Hz,
2H, Ph, Ar-H & Ar-H), 7.00–7.28(m, 2H, Ar-H), 7.34–7.40 (m, 2H, Ar-H), 7.53–7.56 (m, 1H,
Ar-H), 8.00 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H (E)), 8.02 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz,
1H, Ar-H(Z)), 8.52 (d, JH(9),NH = 12 Hz, C9-H (E)), 8.65 (d, JH(9),NH = 12 Hz, C9-H(Z)); 10.62
(S, br, 1H, NH (Z)), 12.07 (s, br, 1H, NH, (E) (Figure S1A); 13C-NMR (300 MHz, CDCl3) 51.21,
55.54, 110.86, 117.24, 120.92, 122.90, 123.85, 124.04, 125.64, 126.35, 129.68, 130.55, 134.12,
157.58, 160.50, 162.14 (Figure S1B); EI-MS, m/z (%): 309(M+,100), 294(7.1), 278(3.6), 249(1.5),
188(12.5), 176(7.1), 147(1.8), 134(5.6), 121(64.8), 91(59.8), 82.9(26.8), 65(7.1), 51(2.4), 44(19.0);
elemental analysis: C18H15NO4: (309.32); calculated (%): C; 69.89, H; 4.89, N; 4.53; found
(%): C; 69.90, H; 4.85, N; 4.53; melting point: 218 ◦C.

3-((3-methoxybenzylamino)methylene)-3H-chromene-2,4-dione (4b)
Yield: 69%; Pink amorphous solid; FTIR (KBr, cm−1): 3400 (N-H), 1701 (C=O), 1647

(C=C); λmax (cm−1): 19,435; 1H-NMR: (300 MHz, DMSO-d6) δ (ppm): 3.82 (s, OCH3), 4.68
(d, J = 6.0 Hz, 2H, CH2 (E)), 4.72 (d, J = 6.0 Hz, 2H, CH2 (Z)), 6.83 (t, J = 3.0 Hz, 1H, ph,
C2
′-H), 6.88–6.93 (m, 2H, Ar-H), 7.24–7.33 (m, 1H, Ar-H), 8.00 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz,

1H, C5-H (E)), 8.02 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H (Z)), 8.50 (d, JH(9),NH = 15 Hz,
C9-H (E)), 8.66 (d, JH(9),NH = 15 Hz, C9-H (Z)), 10.48 (s Br, 1H, NH (Z)), 12.14 (s, br, 1H,
NH (E)) (Figure S2A); 13C-NMR (300 MHz, CDCl3); 55.44, 54.57, 97.35, 113.53, 114.13,
117.32, 119.87, 120.53, 123.99, 124.20, 130.44, 134.39, 135.95, 160.27, 160.68, 162.24 (Figure
S2B); EI-MS, m/z (%): 309(M+,100), 294(12), 292(22.9), 279(5.1), 249(3.2), 188(29.7), 176(8.8),
172(65.9), 160(12.5), 147(8.7), 134(12.7), 121(58.9), 91(18), 65(6.4), 51(2.7), 44(9.2).; elemental
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analysis: C18H15NO4: (309.32); calculated (%): C; 69.89, H; 4.89, N; 4.53; found (%): C; 69.90,
H; 4.85, N; 4.53; melting point: 118 ◦C.

3-((4-methoxybenzylamino)methylene)-3H-chromene-2,4-dione (4c)
Yield: 94%; Pink amorphous solid; FTIR (KBr, cm−1): 3400 (N-H), 1705 (C=O), 1607

(C=C); λmax (cm−1): 19,460; 1H-NMR: (300 MHz, DMSO-d6) δ (ppm): 3.83 (s, OCH3), 4.65
(d, J =6.0 Hz, 2H, CH2 (E)), 4.68(d, J = 6.0 Hz, 2H, CH2 (Z)), 6.93 (d, J = 3.0 Hz, 2H, Ar-H),
7.23–7.28(m, 4 H, Ar-H), 7.55–7.58 (m, 1H, Ar-H), 8.00 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H,
Ar-H (E)), 8.02 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H(Z)), 8.48 (d, JH(9),NH = 15 Hz, C9-H
(E)), 8.64 (d, JH(9),NH = 15 Hz, C9-H(Z)), 10.44 (s, br, 1H, NH (Z)), 12.11 (s, br,1H, NH, (E))
(Figure S3A); 13C-NMR (300 MHz, CDCl3): 54.05, 54.14, 55.38, 99.99, 114.72, 117.30, 123.97,
124.17, 125.68, 126.29, 126.40, 129.32, 134.33, 160.29, 161.86 (Figure S3B); EI-MS, m/z (%):
309(89.5), 292(7.1), 280(1.5), 188(5.7), 176(4.0), 172(7.5), 160(2.8), 147(1.6), 134(5.2), 121(M+

100), 91(3.7), 63(2.5), 51(1.7), 44(14.3); elemental analysis: C18H15NO4: (309.32); calculated
(%): C; 69.89, H; 4.89, N; 4.53; found (%): C; 69.90, H; 4.85, N; 4.53; melting point: 182 ◦C).

3-((2-fluorobenzylamino)methylene)-3H-chromene-2,4-dione (4d)
Yield: 85%; Light pink amorphous solid; FTIR (KBr, cm−1): 3220 (N-H), 1713 (C=O), 1634

(C=C); λmax (cm−1): 19,390; 1H-NMR: (300 MHz, DMSO-d6) δ (ppm): 4.75 (d, J = 6.0 Hz, 2H,
CH2 (E), 4.79 (d, J = 6.0 Hz, 2H, CH2 (Z), 7.15–7.39 (m, 2H, Ar-H), 7.55–7.58 (m, 4 H, Ar-H),
7.55–7.58 (m, 1H, Ar-H), 8.01 (dd J5,6 = 6.0, J5,7 = 3.0 Hz, 1H, Ar-H (E)), 8.02 (dd J5,6 = 6.0,
J5,7 = 3.0 Hz, 1H, C5-H(Z)), 8.53 (d, JH(9), NH = 15 Hz, C9-H (E)), 8.68 (d, JH(9), NH = 15 Hz,
C9-H(Z)), 10.46 (s, br, 1H, NH (Z)), 12.15 (s, br, 1H, NH (E)) (Figure S4A); 13C-NMR (300 MHz,
CDCl3): 48.86, 48.91, 115.98, 116.26, 117.32, 124.00, 124.88, 124.93, 125.71, 126.44, 129.83, 129.88,
131.00, 131.11, 134.44, 160.84, 162.43 (Figure S4B); EI-MS, m/z (%): 297(M+ 100), 280(10.7),
268(2.4), 252(1.8), 203(3.3), 188(87.5), 176(25.6), 160(16.2), 148.1(10.2), 135(2.2), 121(36.4),
109(94.3), 92(5.6), 82.9(19.7), 63(7.5), 51(2.9), 44(9.5); elemental analysis: C17H12NO3F: (297.30);
calculated (%): C; 68.68, H; 4.07, N; 4.71; found (%): C; 68.69, H; 4.04, N; 4.71; melting
point: 140 ◦C.

3-((3-fluorobenzylamino)methylene)-3H-chromene-2,4-dione (4e)
Yield: 65%, Light pink crystalline solid; FTIR (KBr, cm−1): 3215 (N-H), 1701 (C=O),

1632 (C=C); λmax (cm−1): 19,480; 1H-NMR: (300 MHz, DMSO-d6) δ (ppm): 4.71(d, J = 6.0 Hz,
2H, CH2 (E), 4.75 (d, J = 6.0 Hz, 2H, CH2 (Z)), 7.04 (d, J = 9.0 Hz, 2H, Ar-H), 7.07 (d,
J = 6.0 Hz, 1H, Ar-H),7.09–7.41(m, 2H, Ar-H), 7.56–7.59 (m, 1H, Ar-H), 7.59–7.61 (m, 1H,
Ar-H), 8.01 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, C5-H (E)), 8.02 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz,
1H, Ar-H (Z)), 8.53 (d, JH(9),NH = 15 Hz, C9-H (E)), 8.68 (d, JH(9),NH = 15 Hz, C9-H (Z)), 10.50
(s, br, 1H, NH (Z)), 12.16 (s, br, 1H, NH (E)) (Figure S5A); 13C-NMR (300 MHz, CDCl3):
53.83, 53.96, 97.56, 114.57, 114.86, 115.74, 116.02, 117.30, 117.35, 120.45, 123.18, 123.22, 124.06,
124.27, 125.73, 129.83, 125.73, 126.43, 130.96, 131.07, 134.53, 136.98 154.93, 160.85, 162.44
(Figure S5B); EI-MS, m/z (%): 293(M+ 100), 280(20.8), 268(3.2), 252(3.0), 203(2.9), 188(67.1),
176(24.3), 160(41), 148.1(12.7), 135(4.9), 121(39.9), 109(63.5), 92(5.9), 82.9(44.2), 63(5.5), 51(2.7),
44(8.4); elemental analysis: C17H12NO3F: (297.30); calculated (%): C; 68.68, H; 4.07, N; 4.71;
found (%): C; 68.69, H; 4.04, N; 4.71; melting point: 180 ◦C.

3-((4-fluorobenzylamino)methylene)-3H-chromene-2,4-dione (4f)
Yield: 85%; Light pink crystalline solid; FTIR (KBr, cm−1): 3050 (N-H), 1715 (C=O),

1638 (C=C); λmax (cm−1): 19,450; 1H-NMR: (300 MHz, DMSO-d6) δ (ppm): 4.71 (d, J = 6.0 Hz,
2H, CH2 (E)), 4.75 (d, J = 6.0 Hz, 2H, CH2 (Z); 7.09 (d, J = 9.0 Hz 2H, Ar-H), 7.33–7.56 (m,
4H, Ar-H), 7.56–7.58 (m, 1Н,Ar-H), 8.01 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H(E)), 8.02
(dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H(Z)), 8.50 (d, JH(9),NH = 15 Hz, C9-H(E)), 8.71 (d,
JH(9),NH = 15 Hz, C9-H (Z)), 10.46 (s, br, 1H, NH (Z)), 12.13 (s, br, 1H, NH, (E)) (Figure S6A);
13C-NMR (300 MHz, CDCl3): 53.77, 53.89, 97.42, 116.21, 116.50, 116.70, 117.34, 124.05,
124.45, 124.81, 125.71, 126.43, 129.57, 132.56, 134.49, 160.58, 162.16, 164.56. EI-MS, m/z (%):
297(M+ 100), 280(11.3), 268(2.0), 252(1.4), 203(1.6), 188(34), 176(15.3), 160(17.7), 148.1(7.1),
135(2.2), 121(21.4), 109(92.2), 92(3.4), 63(4.9), 51(1.8), 44(16.5) (Figure S6B); elemental analy-
sis: C17H12NO3F: (297.30); calculated (%): C; 68.68, H; 4.07, N; 4.71; found (%): C; 68.69, H;
4.04, N; 4.71; melting point: 175 ◦C.
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3-((2-chlorobenzylamino)methylene)-3H-chromene-2,4-dione (4g)
Yield: 79%; Pink amorphous solid; FTIR (KBr, cm−1): 3250 (N-H), 1726 (C=O), 1655

(C=C); λmax (cm−1): 19,410; 1H-NMR(300 MHz, DMSO-d6) δ (ppm): 4.80 (d, J= 6.0 Hz,
2H, CH2 (E)), 4.84 (d, J = 6.0 Hz, 2H, CH2 (Z)), 7.23–7.36 (m, 2H, Ar-H), 7.38–3.55 (m, 3H,
Ar-H), 7.57–7.58 (m, 1H, Ar-H),7.58 (m, 1H, Ar-H), 8.01 (dd J5,6 = 9.0 Hz, J5,7 = 3.0 Hz,1H,
Ar-H (E)), 8.04 (dd J5,6 = 9.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H (Z)), 8.52 (d, JH(9),NH = 12 Hz,
C9-H (E)), 8.67 (d, JH(9),NH = 15 Hz, C9-H (Z)), 10.50 (s, br, 1H, NH (Z)), 12.19 (s, br, 1H,
NH (E)) (Figure S7A); 13C-NMR (300 MHz, CDCl3): 52.45, 52.67, 97.49, 117.32, 120.50,
124.01, 124.21, 125.73, 126.43, 127.68, 129.95, 130.24, 130.49, 132.40, 134.44, 154.92, 160.95,
162.52 (Figure S7B); EI-MS, m/z (%): 313(M+ 100), 296(4.1), 278(11.0), 257(8.9), 249(2.3),
188(7.1), 176(18.4), 158(5.6), 140(9.9), 125(38.7), 89(5.6), 63(7.3), 44(29.2); elemental analysis:
C17H12NO3Cl: (313.74); calculated (%): C; 65.08, H; 3.86, N; 4.46; found (%): C; 65.07, H;
3.83, N; 4.46; melting point: 165 ◦C.

3-((3-chlorobenzylamino)methylene)-3H-chromene-2,4-dione (4h)
Yield: 77%; Light purple crystalline solid; FTIR (KBr, cm−1): 3233 (N-H), 1703

(C=O), 1630 (C=C); λmax (cm−1): 19,550; 1H-NMR: (300 MHz, DMSO-d6) δ (ppm): 4.69 (d,
J = 6.0 Hz, 2H, CH2 (E), 4.74 (d, J = 9.0 Hz, 2H, CH2 (Z), 7.20–7.37 (m, 2H, Ar-H), 7.56–7.59
(m, 4 H, Ar-H), 7.59 (m, 1H, Ar-H), 8.01 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H (E)), 8.03
(dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, Ar-H (Z)), 8.51 (d, JH(9),NH = 15 Hz, C9-H (E)), 8.66 (d,
JH(9),NH = 15 Hz, C9-H (Z)), 10.48 (s, br, 1H, NH (Z)), 12.15 (s, br, 1H, NH (E)) (Figure S8A);
13C-NMR (300 MHz, CDCl3): 53.80, 53.96, 117.31, 117.36, 120.45, 124.07, 124.28, 125.73,
126.44, 127.84, 129.09, 130.61, 134.55, 136.58, 154.93, 160.83, 162.42 (Figure S8A); EI-MS,
m/z (%): 293(M+ 100), 296(15.5), 278(26.2), 249(1.6), 219(2.6), 188(68.9), 176(54.4), 164(7.7),
146(4.6), 139(7.6), 125(48.4),105(1.9), 82.9(28.5), 89(11.1), 63(6.4), 44(14.4); elemental analysis:
C17H12NO3Cl: (313.74); calculated (%): C; 65.08, H; 3.86, N; 4.46; found (%): C; 65.07, H;
3.83, N; 4.46; melting point: 176 ◦C.

3-((4-chlorobenzylamino)methylene)-3H-chromene-2,4-dione (4i)
Yield: 79%; Light pink crystalline solid; FTIR (KBr, cm−1): 3200 (N-H), 1715 (C=O),

1636 (C=C); λmax (cm−1): 19,608; 1H-NMR(300 MHz, DMSO-d6) δ (ppm): 4.71(d, J = 6.0 Hz,
2H, CH2 (E)), 4.73 (d, J = 9.0 Hz, 2H, CH2 (Z)), 7.23–7.42 (m, 4 H, ph), 7.56–7.59 (m, 2H,
C6-H & C8-H),7.61 (m, 1H, C7-H), 8.00 (dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, C5-H (E)), 8.02
(dd J5,6 = 6.0 Hz, J5,7 = 3.0 Hz, 1H, C5-H (Z)), 8.50 (d, JH(9), NH = 15 Hz, C9-H (E)), 8.65
(d, JH(9), NH = 12 Hz, C9-H (Z)), 10.47 (s (br.), 1H, NH (Z)), 12.14 (s (br.), 1H, NH (E))
(Figure S9A); 13C-NMR (300 MHz, CDCl3): 53.75, 53.88, 97.51, 117.35, 120.45, 124.07, 124.28,
125.73, 126.43, 129.05, 129.53, 133.05, 134.53, 160.71, 162.30 (Figure S9B); EI-MS, m/z (%):
313(M+ 100), 296(13.8), 278(2.1), 219(1.7), 188(43.5), 176(32.4), 164(5.0),146(3.4), 138(6.8),
125(81.7), 105(1.8), 89(9.6), 63(4.6),51(2.5), 44(9.7); elemental analysis: C17H12NO3Cl: (313.74);
calculated (%): C; 65.08, H; 3.86, N; 4.46; found (%): C; 65.07, H; 3.83, N; 4.46; melting
point: 166 ◦C.

3.3. Proposed Mechanism of Reaction

For insight into the chemical reaction, a mechanism was proposed to form the targeted
product, as shown in Figure 6 [27]. Briefly, in the first step, the nucleophilic addition of
benzylamine (I) to triethyl orthoformate (II) occurs, releasing two molecules of ethanol. In
the second step, the imine intermediate (III) reacts with a molecule of 4-hydroxycoumarin
to produce aminal (IV). In the third and final step, another ethanol molecule is eliminated
from aminal (IV), forming the final product, enamine (V).

3.4. Potato Disc Tumor Assay

Agrobacterium tumefaciens was kept in nutrient agar for 48 h before use in the assay.
A. tumefaciens were standardized to 1 × 109 CFU in phosphate-buffered saline. Fresh
potatoes purchased from the local market of Sargodha, Pakistan, were washed several
times with distilled water and bleach to remove impurities on the surface. The potato skin
was peeled off after cleaning the surface with a sterile towel. After peeling, potatoes were
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washed with distilled water and cut into small discs of 0.5 cm in diameter. These discs
were placed in a 24-well culture plate containing 15% agar in water. Dilute solutions of the
as-synthesized compounds containing both the isomers (‘E’ and ‘Z’ isomer) (4a–4i) in the
range of 0.1–50 mg/mL were prepared in DMSO and 50 µL of each solution was applied
on potato disc. Pure DMSO was used as a negative control, and vinblastine (standard drug)
solutions in DMSO were used as a positive control. Vinblastine was used as a positive
control due to its almost similar mode of action as the synthesized compounds (4a–4i); it
binds to the microtubular proteins to hinder the cell division of cancer cells [35]. After
incubation for 14 days, discs were stained with Lugol’s reagent. This reagent stained the
starch in the discs to blue, but the tumors appeared creamy. Tumors were counted under a
microscope in each disc to calculate the IC50 values.

The bacterial viability of compounds was also checked by the disc diffusion method
by loading sterile paper discs with compounds (0.1 mg/mL). Pure DMSO was used as a
positive control. After incubation of 48 h, the growth of bacteria was evident, which showed
the non-active nature of the compounds at this concentration (0.1 mg/mL) toward bacteria.
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Figure 6. Proposed mechanism for the synthesis of enamines from 4-hyroxycoumarin. Benzylamine (I),
triethyl orthoformate (II) the imine intermediate (III), aminal (IV), enamine (V).

3.5. Molecular Docking Analysis

The in silico anti-tumor activity of synthesized compounds was predicted by screening
against the CDK-8 protein using a YASARA (Yet Another Scientific Artificial Real Applica-
tion) software version 20.7.4 [40]. The 3D structure of CDK-8, as shown in Figure 7, was
obtained from Protein Data Bank (PDB ID, 5FGK). AutoDock LGA module and AMBER03
forcefields in YASARA with 100 global docking runs and 1000 random seed values were
used for docking. The AutoDock local search (LGA-LS) method in YASARA was then used
to rescore docked ligands (4a–4i), as described before [41].

The docking scoring and rescoring were calculated following the empirical Equation (1).

∆G = ∆G(Van der Waal) + ∆G(H−bonding) + ∆G(electrostatic) + ∆G(torsional f ree energy) + ∆G(desolvation energy) (1)

The LigPlus [42] and PyMOL [43] were used to extract the lowest energy binding
energy docking poses, and ligand-protein interactions were mapped.
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3.6. Statistical Analysis

Each bioactivity experiment was repeated thrice, and results were analyzed statistically
by ANOVA. Statistical significance was accepted at a level of p < 0.05. Mean ± SD values
were reported in tables and graphs.

4. Conclusions

Novel 3-formyl-4-hydroxycoumarin-derived enamines (4a–4i) were synthesized by
a one-pot condensation reaction and characterized by state-of-the-art spectroscopic and
analytical techniques. All the compounds were evaluated for their anti-tumor potential
against Agrobacterium tumefaciens by potato disc tumor assay. The bacterial viability of
compounds was also checked, which showed no prominent effect on bacterial growth.
Five compounds (4a, 4c, 4e, 4g, and 4h) have shown better activity than the standard drug,
vinblastine. Molecular docking simulations of compounds were also performed with the
human protein CDK-8. This enzyme is actively involved in the cell cycle, and the synthe-
sized compounds have shown good binding affinities with this protein. Molecular docking
results were in good agreement with the experimental IC50 values of the compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28155828/s1, Potato disc assay results, 1H-NMR spectra,
13C-NMR spectra and molecular docking diagrams are given in supporting information.
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